

فهرست مطالب 🖨 مقدمه ای بر مزمعای فولادی: مقدمہ و روش های طراحی نوین. منعنی تنش کرنش معند سی، تاثیر حرارت بر منحنی تنش کرنش، تنش تسلیم احتمانی، پلاستیسته، حیستریس، انثر باشینگر، پروسه تسلیم خولاد، کریں معادل، ختّلی ناشی از چرخہ کم و چرخہ زیاد، مدلھاک رفتارک مصالح (صلب – خبیرک) (ارتجاعی- خبیرک) ، تابع توان و رامبرگ اسگود، مزایاک رفتار پلاستیک فولاد 2 م فل فه طراحی فرزهای در آیین نامه های مختصانی؛ ترکیب بارهای طراحی در آیین نامه، معرف ضریب 🗘 رفتار و فلف استفاده از ضریب مقاوت افزون در طراحی ۲ الم احمد قاب معاریندی شره شکل پذیر منگرا، واگرا و کمانش ناپذیر؛ قاب معاریندی شره منگرا (توجه مصريندي صمرا، ياسخ چرخه اي نيروي محوري، ياسخ غيرخطي محاريند هم محور، لاغرى محاريند، شرايط انتصابی مصاربند، تحل مقلع) ، فله طراحی مصاربند عنه محور (مختی جانبی CBF) ، مصاربندها ، تتونعا ، EBF ها، فله طراحي مصاربندي وأكرا، تعذب قاب EBF، حركت شامي EBFرفتار و طول تير يبوند، معاميم مقاومت و تغییر تکل تیر پیوند، جزئیات تیر پیوند، طراحی اجراد قاب خارج از تیر پیوند، اصول و عملکرد مصاربندهای BRB ، روش تحلیل و طراحی، طراحی ورق اتصال و تعیین جزئیات منابب برای ورق اتصال مصاربندها Δ صفحه This publication or any part thereof must not be reproduced in any form without the written permission

من منظم المحلم المح مازيان المحلم	
Design Code Multi-Response Case Design Framing Type Seismic Design Category Importance Factor Design System Rho Design System Sds Design System B	در برنامه ETABS چه آییننامهای را انتخاب کنیم؟ AISC 360-16 AISC 360-05 AISC 360-05 AISC 4SD 89 AISC ASD 89 AS 4100-1998 BS 5950-2000 CSA S16-14 Eurocode 3-2005 IS 800:2007 Italian NTC 2018 Italian NTC 2018 KBC 2016 KBC 2009 NZS 3404:1997
	NZS 3404:1997 SP 16.13330.2017

در ابطه (۲)، مقدار
$$\Omega$$
 که همان ضریب اطمینان است، برابر ۱/۶۵ در نظر گرفته شده است. روش
تعیین این ضریب اطمینان به صورت زیر است: در صورتی که Ω اضافه سربار، Q بار طراحی، R
مقاومت در نظر گرفته شده و Aß کمبود مقاومت (در اثر عوامل مختلف مانند اجرای بد) برای یک
مازه باشد.
 $R_n - \Delta R_n = Q + \Delta Q \implies R_n \left(1 - \frac{\Delta R_n}{R_n}\right) = Q \left(1 + \frac{\Delta Q}{Q}\right)$ (3)
 $\Omega = \frac{R_n}{Q} = \left(1 + \frac{\Delta Q}{Q}\right) \div \left(1 - \frac{\Delta R_n}{R_n}\right)$
در صورتی که در رابطه (۳) اثر اضافه بار ($\Delta Q/Q$) برابر ۴۰٪ مقدار اسمی، و کمبود مقاومت
در صورتی که در رابطه (۳) اثر اضافه بار ($\Delta Q/Q$) برابر ۴۰٪ مقدار اسمی، و کمبود مقاومت
 $\Omega = \frac{1 + 0.4}{1 - 0.15} = \frac{1.4}{0.85} \approx 1.65$
 $\Omega = \frac{1 + 0.4}{1 - 0.15} = \frac{1.6}{0.85} \approx 1.65$
 1.65
 $N/۶/V$ در نظر گرفته شده است. در روش حالات حدی، بارهای طراحی توسط ضرایب بزرگتر از
واحد افزایش و مقاومت سازه توسط ضرائب کمتر از واحد تقلیل می یابد، این ضرایب تقلیل بسته به
 $N/8/V$ در نظر گرفته شده است. در روش حالات حدی، بارهای طراحی توسط ضرایب بزرگتر از
 $N/8/V$ در نظر گرفته شده است. در موسل می از واحد تقلیل می یابد، این ضرایب بزرگتر از
 $N/8/V$ در نظر گرفته شده است. در موسل می ماز رواحد تقلیل می یابد، این ضرایب بزرگتر از
 $N/8/V$ در نظر گرفته شده است. در موسل می ماز محی بارهای طراحی توسط می ایب برارگتر از
 $N/8/V$ در نظر گرفته شده است. در موسل می مان معاز می عابد، این ضرایب بزرگتر از
 $N/8/V$ در نظر گرفته شده است. در موسل می ایست می ای مقدار ضریب اطمینان (N/8/V) در نظر معاربی در معاور می مقاورت سازه توسط ضرایب می می ای می این می ای می ای می ای می ای می ای مقدار صدی ای می می ای م

بر نظری محمد کرید تین بازمان نظری اسان یزد	\$ \$	6 7	2 2
LRFD دای	ASD	ں روش طراحی	مقادير ضريب اطمينان و ضريب كاهش مقاومت براي
0).			تلاشهای مختلف:
اطمىنان در	در ضرب	ب کاهش مقاومت و	ي فيرد
يت کي کو ش ASD		روش LRFD	کاربرد
Ω _B =2.3	1	φ _B =0.65	برای اتکایی روی بتن
Ω _b =1.6	7	φ _b =0.9	برای خمش اعضای فولادی
Ω _c =1.6	7	φ _c =0.9	براي فشار محوري
Ω _c =2.)	φ _c =0.75	برای فشار محوری ستونهای مرکب
Ω _{sf} =2.	0	φ _{sf} =0.75	برای برش در مسیر گسیختگی
Ω _T =1.6	7	φ _T =0.9	برای پیچش اعضا
Ω _t =1.6	7	φ _t =0.9	برای کشش اعضا
Ω _t =2.		ϕ_t =0.75	برای گسیختگی کششی
Ω _t =2.		φ _t =0.75	گلمیخ در کشش
Ω _v =1.67	1.5	φ _v =0.9-1.0	برای برش
Ω _v =2.3	1	φ _v =0.65	گلمیخ در برش
	l'and	and the second second	
This put صفحه	lication or any	part thereof must not be	e reproduced in any form without the written permission

بعد از عبور از ناحیه ارتجاعی، مصالح وارد ناحیه غیرارتجاعی شده و کرنشهای ایجاد شده در این ناحیه ۱۵ تا ۲۰ برابر کرنش حد الاستیک است. در این قسمت فولاد دچار سخت شوندگی شده و با شیبی ملایمتر (E_{sh}) از شیب ارتجاعی به سمت بالا حرکت خواهد نمود. این شیب برای فولاد برابر ۹۰۰ کیلوپوند بر اینچ مربع (معادل ۶۲۰۰ مگاپاسکال) در ε_{st} برابر ۹۰۰ (۸۱۴ و برای A36فولاد Â441 برابر ۷۰۰ کیلوپوند بر اینچ مربع (معادل ۴۸۰۰ مگاپاسکال) در s برابر ۲۱/۰۲۱ مگاپاسکال) در s برابر ۲۱/۰۲ $\mu = \frac{\varepsilon_{ult}}{\varepsilon_v} \ge 1$ میشود: 🗢 طبق مبحث دهم: ۱ - نوع فولاد باید به صورت فولاد نرمه کربن دار معمولی تا فولاد پرمقاومت آلیاژی باشد. ۲- مقاومت مشخصه حداقل تسلیم آن، (F_y) در محدوده ۲۳۰۰ کیلوگرم بر سانتیمتر مربع تا ۳۷۵۰ کیلوگرم بر سانتیمتر مربع باشد. ۳- مقاومت کششی نهایی، (F_u)، حداقل ۱/۲ برابر مقاومت مشخصه حداقل تسلیم، (F_v) باشد. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۵

م محند کریافتی کم جارا اسان یزد	بازیک	Ś	Ĵ	0	0		X			5	, فولا	مداقل	سليم ح	ننش ت
	323	5 IR	Γ.	V.à	<u>م</u>		اختر آن ت			(\mathbf{C})	N	. à	1 7 *	·
، (معادر	525	551		فوم	سود.	ىيىن ا	001001		راسس	یستی ب	د ب	بم فو	س مسب	
ردەھاي	یکی	مكان	ات	خص	مش	دارند.	تر کاربرد	ر ایران بیشا	.ST) د	ادل 52	ا (مع	\$35.	و 5JR	(ST3)
	- A							. Т		25.20	04	11		•1
							زیر است:	I به صورت		23:20	נ 40	ناندار	طبق است	حتلف م
	Мра	حسب		تسلد	. تنش	حداقا	د حسب Mpa	مقاومت كششى	ى	ں گسیختگ	كرنشر		ن نمونه	طاقت
2			J. 10		0				Lo	= 5,65 * √\$	So (%)		اردار	شي
0 0	1	ب nm	ر حس	سمی ب	خامت ا	<u>ض</u>	بر حسب mm	ضخامت اسمى	ب mm	ىمى بر حسا	خامت اس	ض		171
2	≤16	>16	>4	>6	>80	>100	>3	>100	>3	>40	>63	>100	دمای	حدافل
0		<10	0	3	<100	<125	<100	<125	<10	<62	<100	<125	ازمایش 00	انرژی
		240	3	0	2100	2125	3100	3125	240	203	2100	2123	C	J
S235JR	235	225		215		195	360-510	350-500	26	25	24	22	20	27
S235J0	235	225		215		195	360-510	350-500	26	25	24	22	0	27
S235J2	235	225		215		195	360-510	350-500	26	25	24	22	-20	27
S275JR	275	265		255		245	235	225	410-560	400-540	23	22	21	19
S275J0	275	265		255		245	235	225	410-560	400-540	23	22	21	19
S275J2	275	265		255		245	235	225	410-560	400-540	23	22	21	19
S355JR	355	345		335		325	315	295	470-630	450-600	22	21	20	18
S355J0	355	345		335		325	315	295	470-630	450-600	22	21	20	18
S355J2	355	345		335		325	315	295	470-630	450-600	22	21	20	18
S355K2	355	345		335		325	315	295	470-630	450-600	22	21	20	18
S355J0 355 345 335 325 315 295 470-630 450-600 22 21 20 18 S355J2 355 345 335 325 315 295 470-630 450-600 22 21 20 18 S355J2 355 345 335 325 315 295 470-630 450-600 22 21 20 18 S355K2 355 345 335 325 315 295 470-630 450-600 22 21 20 18														
T صفحه ۰	his pu	blicati	on o	r any p	part th	ereof m	ust not be repr	oduced in any fo	rm withou	t the writte	en perr	nission		•
								,						

· · · ·		- 11 - 11 -		ش غم ال ت	
البي	رود برای سیستم باربر ج	لصالح الكثر	دەبىدى م	سخصات ر	
	مشخصات	ىصرفى E70 E8	ده الکترود م E9	0	
	مقاومت تسليم (MPa)	400 47	0 54	0	
	مقاومت کششی (MPa)	480 55	0 62	0	
N	حداقل درصد ازدیاد طول، ٪	22 19) 17	7	
	حداقل طاقت J) CVN (J)	27@- 18°0	C 34@-	30°C	
	یهای نیاز بحرانی	نیکی جوش	بواص مکا	ż	
V	یهای نیاز بحرانی مشخصات	نیکی جوش رفی	بواص مکا الکترود مص	خ رده	
	یهای نیاز بحرانی مشخصات	نیکی جوش ر _{فی} E70	بواص مكا الكترود مص E80	خ ردہ E90	
	های نیاز بحرانی مشخصات مقاومت تسلیم (MPa)	نیکی جوشر رفی E70 400	يواص مكا الكترود مص E80 470	خ ردہ E90 540	
	های نیاز بحرانی مشخصات مقاومت تسلیم (MPa) مقاومت کششی (MPa)	نیکی جوشر رفی E70 400 480	نواص مكا الكترود مص 800 470 550	خ دی 540 620	
	های نیاز بحرانی مشخصات مقاومت تسلیم (MPa) مقاومت کششی (MPa) حداقل درصد ازدیاد طول، ۱	نیکی جوش E70 400 480 22	بواص مكا الكترود مص 880 470 550 19	خ E90 540 620 17	
	های نیاز بحرانی مشخصات مقاومت تسلیم (MPa) مقاومت کششی (MPa) حداقل درصد ازدیاد طول، . حداقل طاقت CVN (J)	نیکی جوش E70 400 22 54@10°C	یواص مکا الکترود مص 80 470 550 19 54@20°C	خ E90 540 620 17 54@10°C	
	یهای نیاز بحرانی مشخصات مقاومت تسلیم (MPa) مقاومت کششی (MPa) حداقل درصد ازدیاد طول، (حداقل طاقت CVN (J)	نیکی جوش رفی 400 480 22 54@10°C	بواص مكا الكترود مص 880 470 550 19 54@20°C	خ E90 540 620 17 54@10°C	
	های نیاز بحرانی مشخصات مقاومت تسلیم (MPa) مقاومت کششی (MPa) حداقل درصد ازدیاد طول، ک حداقل طاقت (J) CVN	نیکی جوش دفی 400 480 22 54@10°C	نواص مكا الكترود مص 80 470 550 19 54@20°C	خ E90 540 620 17 54@10°C	

Application	R	R.	
Hot-rolled structural shapes and bars:	y		
• ASTM A36/A36M	15	12	
• ASTM A36/A36M	1.5	12	
• ASTM A992/A992M	11	11	R R I
• ASTM A572/A572M Gr. 50 (345) or 55 (380)	11	11	ادير ۲۸ و ۲۸
• ASTM A913/A913M Gr. 50 (345), 60 (415), 65 (450), or 70 (485)	1.1	1.1	اساس AISC:
• ASTM A588/A588M	1.1	1.1	
• ASTM A1043/A1043M Gr. 50 (345)	1.2	1.1	
• ASTM A529 Gr. 50 (345)	1.2	1.2	
• ASTM A529 Gr. 55 (380)	1.1	1.2	
Hollow structural sections (HSS):			
• ASTM A500/A500M Gr. B	1.4	1.3	
• ASTM A500/A500M Gr. C	1.3	1.2	
• ASTM A501/A501M	1.4	1.3	
• ASTM A53/A53M	1.6	1.2	
• ASTM A1085/A1085M	1.25	1.15	
Plates, Strips and Sheets:			
• ASTM A36/A36M	1.3	1.2	
• ASTM A1043/A1043M Gr. 36 (250)	1.3	1.1	
• ASTM A1011/A1011M HSLAS Gr. 55 (380)	1.1	1.1	
• ASTM A572/A572M Gr. 42 (290)	1.3	1	
• ASTM A572/A572M Gr. 50 (345), Gr. 55 (380)	1.1	1.2	
• ASTM A572/A572M Gr. 50 (345), Gr. 55 (380)	1.1	1.2	
• ASTM A1043/A1043M Gr. 50 (345)	1.2	1.1	
Steel Reinforcement:			
• ASTM A615/A615M Gr. 60 (420)	1.2	1.2	
 ASTM A615/A615M Gr. 75 (520) and Gr. 80 (550) 	1.1	1.2	
 ASTM A706/A706M Gr. 60 (420) and Gr. 80 (550) 	1.2	1.2	

بن مختر بی بختی بازین طفا اسان یز			
fine Draw Select Assig Material Properties	n Analyze	عمال در ETABS:	وه ا
, Section Properties		امه چند مصالح فولادی باید تولید کنیم؟	برن
Spring Properties			
Diaphragms		😭 Material Property Data	2
Pier Labels		General Data	5
Snandrel Labels		Material Name S235JR-PL-t<16	2
Spanarer cabels		National Summers Tune	2
Ganua Dafinitia		Material Dienlay Color	3
Material Property Design Data		Material Notes Modify/Show Notes	<
Material Name and Type			
Material Name	S235JR-PL4<16	Material Weight and Mass	-5
Material Type	Steel, Isotropic	Specify Weight Density Specify Mass Density	3
Grade	\$235	Weight per Unit Volume 7850 kg/m²	R
Design Properties for Steel Materials	5	Mass per Unit Volume	1
Minimum Yield Stress, Fy	2350 kgf/cm ²	Mechanical Property Data	1
Minimum Tensile Strength, Fu	3600 kgf/cm ²	Modulus of Elasticity, E 200000 kgf/cm ²	4
	2702.5 kgf/cm ²	Poisson's Ratio, U	
Expected Yield Stress, Fye		Coefficient of Thermal Expansion, A 0.0000117 1/C	2
Expected Yield Stress, Fye Effective Tensile Strength, Fue	3960 kgf/cm ²		
Expected Yield Stress, Fye Effective Tensile Strength, Fue	3960 kgf/cm ²	Shear Modulus, G 769230.77 kgf/cm²	1
Expected Yield Stress, Fye Effective Tensile Strength, Fue	3960 kg/cm ²	Shear Modulus, G 759230.77 kgf/cm ²	3
Expected Yield Stress, Fye Effective Tensile Strength, Fue	396cl kg/cm ²	Shear Modulus, G T69230.77 kg7/cm² by Data Modify/Show Material Property Design Data	~
Expected Yield Stress, Fye Effective Tensile Strength, Fue OK	sseci kg/cm ²	Shear Modulus, G Thy Data Modify/Show Material Property Design Data	

م این محمد میدیند ماری خط اسان زد كربن معادل جوش پذیری فولاد به ترکیب شیمیایی فولاد و در صدر همه آنها به درصد کربن بستگی دارد. هر چه میزان کربن فولاد بالاتر باشد جوش پذیری آن نیز مشکلتر می شود. از نظر ارزیابی جوش پذیری، نقش عناصر آلیاژی موجود در فولاد را گاهی با معادل کربن میسنجند. معادل کربن یعنی اینکه بجای عناصر آلیاژی، فولاد و چه میزان کربن میتواند داشته باشد تا همان نقش را در جوش پذیری فولاد بازی کند. یکی از راههای بررسی جوش پذیری فولاد، محاسبه کربن معادل است. یکی از معروفترین فرمولهای ارائه شده طبق استاندارد کشور انگلیس (BS4360) و همچنین AWS 2010 به صورت رابطه زیر میباشد که در آن، علامت اختصاری هر عنصر، معرف درصد همان عنصر در آناليز شيميايي فولاد است. $\frac{\%Mn + \%Si}{6} + \frac{\%Cr + \%Mo + \%V}{5} + \frac{\%Ni + \%Cu}{15}$ $C_{eq} = \% C +$ ۵۴ صفحه This publication or any part thereof must not be reproduced in any form without the written permission

در رابطه (۱) میتوان کرنش غیرار تجاعی را به صورت تابعی از کرنش ارتجاعی بیان نمود. بنابراین:

$$\varepsilon_{plastic} = a \left(\frac{\sigma}{E}\right)^n = a \varepsilon_{elastic}^n$$
 (2)
 $\varepsilon_{plastic} = log(a \varepsilon_{elastic}^n) = log a + n log(\varepsilon_{elastic})$ (3)
 $\log \varepsilon_{plastic} = log(a \varepsilon_{elastic}^n) = log a + n log(\varepsilon_{elastic})$ (3)
 $\log \varepsilon_{plastic}$ (3)
 $\log \varepsilon_{plastic}$ (2)
 $n = \left(\frac{\log \varepsilon_{plastic-2} - \log \varepsilon_{plastic-1}}{\log \varepsilon_{elastic-1}}\right)$ (4)
 $n = \left(\frac{\log \varepsilon_{plastic-2} - \log \varepsilon_{elastic-1}}{\log \varepsilon_{elastic-1}}\right)$ (4)
 $\log a = \log \varepsilon_{plastic-2} - n \log \varepsilon_{elastic-1}$ (5)
 $\log a = \log \varepsilon_{plastic-2} - n \log \varepsilon_{elastic-1}$ (5)

سیختی سان یزد	من من المنظمة الم ماريك فقالم	10	0	7.5 6				
وبرو	مثال عددی: نتایج تجربی حاصل از یک آزمایش تجربی تنش – کرنش به مانند جدول روبرو							
رید. نشر	است. نمودار تنش کرنش مهندسی را با استفاده از روش تابع توان و رامبر ک اسکود بدست اورید. فرض نمایید مدول الاستیسیته برایر 10000ksi بوده و با استفاده از روش آفست ۲/۲٪ تنش							
تنش	کرنش	تىن ، ـــــ	کرنش کرنش	تسليم برابر 37ksi بدست آمده است.				
0	0	34	0.00345	$\sigma_{\rm ex} = 37 \rm ksi$ $E = 10000 \rm ksi$				
5	0.0005	35	0.0037	by by kin $E = 10000$ kin				
10	0.00102	36	0.0042					
15	0.00151	37	0.0052	كرنش تسليم:				
20	0.00202	38	0.008	σ 37				
25	0.00251	39	0.015	$\varepsilon_{y} = \frac{\sigma_{y}}{\pi} = \frac{\sigma_{y}}{10000} = 0.0037$				
30	0.00301	40	0.0265	y E 10000				
31	0.00311	41	0.056					
32	0.00321	42	0.122					
33	0.00333			استفاده از تابع توان:				
	استفاده از قابع توان؛ نقطه اول در حوالی کرنش تسلیم و نقطه دوم فراتر از نقطه کرنش تسلیم انتخاب شود.							
11 424	This publication	on or any	part mereor mus	the benefit out each in any form without the written permission				

م بن فریکی کند کر اینی کند سازمان استان یزد	Ŷ	
ننش بر حسب ksi	كرنش	
0	0	استفاده از تابع رامبر ک اسکود
5	0.0005	
10	0.00102	کرنش تسلیم به عنوان ع ₀ در نظر گرفته میشود. با استفاده از روش
15	0.00151	آفست ۲/۰٪ مقدار تنش تسلیم را داریم:
20	0.00202	
25	0.00251	$\sigma_y = 37 \text{ ksi}$ $E = 10000 \text{ ksi}$
30	0.00301	$\sigma_{\nu} \sigma_0 = 37$
31	0.00311	$\rightarrow \varepsilon_y = \varepsilon_0 = \frac{y}{E} = \frac{10000}{E} = \frac{10000}{E} = 0.0037$
32	0.00321	
33	0.00333	(\mathbf{Y}) all \mathbf{y} and \mathbf{m} is a set of the set \mathbf{z} of \mathbf{x}
34	0.00345	تفطه A در 000- التحاب شده و سيب An با توجه به رابطه (۱) بدست
35	0.0037	می اید:
36	0.0042	$\varepsilon_A = a (\sigma_0)^n = 1$ 0.0052 1
37	0.0052	$\frac{1}{\varepsilon_0} = 1 + \frac{1}{\varepsilon_0} \left(\frac{1}{E}\right) = \frac{1}{m_A} \Rightarrow \frac{1}{0.0037} = \frac{1}{m_A} \Rightarrow m_A = 0.711$
38	0.008	
39	0.015	
40	0.0265	
41	0.056	
This publ صفحه ۲۵	ication or an	y part thereof must not be reproduced in any form without the written permission

مرینها سازیان نظام سازیان میان	\$ \$	2 2 2 2
ننش بر حسب ksi	كرنش	
0	0	نقطه B را در جایی فراتر از نقطه تسلیم در نظر می کیریم. با استفاده از
5	0.0005	رابطه (۳) داریم:
10	0.00102	(ε_B) 0.0265
15	0.00151	$\left(\frac{\varepsilon_0}{\varepsilon_0}\right) = 1 = \frac{1}{0.0037} = 1$
20	0.00202	$\frac{1}{\sigma_B} = \frac{1}{m_B} = \frac{1}{40} = \frac{1}{m_B} \Rightarrow m_B = 0.151$
25	0.00251	$\left(\frac{\sigma_B}{\sigma_0}\right)$ $\frac{1}{37}$ m_B
30	0.00301	(*0/ 0/
31	0.00311	
32	0.00321	يا جا , رابطه (۴):
33	0.00333	
34	0.00345	$(1 - m_{\star})m_{\rm p}$ $(1 - 0.711)0.151$
35	0.0037	$\log \frac{(1 - m_A)m_B}{(1 - m_B)m_B} = \log \frac{(1 - 0.11)(0.101)}{(1 - 0.151)(0.711)}$
36	0.0042	$n = 1 + \frac{(1 - m_B)m_A}{(1 - m_B)m_A} = 1 + \frac{(1 - 0.131)(0.711)}{(27)}$
37	0.0052	$\log\left(\frac{o_0}{a}\right)$ $\log\left(\frac{37}{40}\right)$
38	0.008	= 347
39	0.015	0117
40	0.0265	
41	0.056	
42 This pub صفحه ۲۶	0.122 lication or an	y part thereof must not be reproduced in any form without the written permission

با نوشتن معادلات تعادل و جایگذاری در رابطه (۲) داریم:

$$P_{1} \cos 45^{\circ} + P_{1} = F \Rightarrow F = 1.707P_{2} (2)$$

$$P_{1} \cos 45^{\circ} + P_{1} = F \Rightarrow F = 1.707P_{2} (2)$$

$$P_{1} \cos 45^{\circ} + P_{1} = F \Rightarrow F = 1.707P_{2} (2)$$

$$P_{2} = \frac{AE}{L} \Delta \Rightarrow F = 1.707 \frac{AE}{L} \Delta (3)$$

$$P_{2} = \frac{AE}{L} \Delta \Rightarrow F = 1.707 \frac{AE}{L} \Delta (3)$$

$$P_{y} = AF_{y}$$

$$P_{y} = \frac{P_{y}L}{EA} \Rightarrow P_{y} = \frac{AE}{L} \Delta_{y} (4)$$

$$P_{y} = \frac{P_{y}L}{EA} \Rightarrow P_{y} = \frac{AE}{L} \Delta_{y} (4)$$

$$P_{y} = \frac{P_{y}L}{EA} \Rightarrow P_{y} = \frac{AE}{L} \Delta_{y} (4)$$

$$P_{y} = 1.707 \frac{\Delta}{\Delta_{y}} \Rightarrow \Delta \leq \Delta_{y} (5)$$

$$P_{y} = 1.707 \frac{\Delta}{\Delta_{y}} \Rightarrow A \leq \Delta_{y} (5)$$

$$P_{y} = AF_{y} = (1.707 \frac{\Delta}{\Delta_{y}} \Rightarrow A \leq \Delta_{y} (5))$$

$$P_{y} = 1.707 \frac{\Delta}{\Delta_{y}} \Rightarrow A \leq \Delta_{y} (5)$$

$$P_{y} = (1.707 \frac{\Delta}{\Delta_{y}} \Rightarrow A \leq \Delta_{y} (5))$$

$$P_{y} = (1.707 \frac{\Delta}{\Delta_{y}} \Rightarrow P_{y} = C$$

$$P_{y} = C$$

ریختی م اسان یزد									
۴-۳	مقادیر ضریب رفتار و ضریب بزرگنمایی جابجایی و مقاومت افزون در ASCE7-10 ASCE7-10 و ۲۸۰۰ (جدول ۳-۴)								
ŀ	ASCE7-16 ASCE7-10		·10	۲۸۰۰ ویرایش چهارم					
Ω	C_{d}	R	Ω_0	C_{d}	R	Ω_0	C_d	R	سیستم سازه
	سیستم قاب ساختمانی ساده								
2	4	8	2	4	8	2	4	7	قاب مهاربندی شده واگرا
2	5	6	2	5	6	2	5	5.5	قاب مهاربندی شده همگرای ویژه
2	3.25	3.25	2	3.25	3.25	2	3.5	3.5	قاب مهاربندی شده همگرای معمولی
	سیستم قاب خمشی								
3	5.5	8	3	5.5	8	3	5.5	7.5	قاب خمشي فولادي با شكل پذيري ويژه
3	4	4.5	3	4	4.5	3	4	5	قاب خمشی فولادی با شکل پذیری متوسط
3	3	3.25	3	3	3.25	3	3	3.5	قاب خمشی فولادی با شکل پذیری معمولی
3	5.5	8	3	5.5	8	3	5.5	7.5	قاب خمشی بتنی با شکل پذیری ویژه
3	4.5	5	3	4.5	5	3	4.5	5	قاب خمشی بتنی با شکل پذیری متوسط
3	2.5	3	3	2.5	3	3	2.5	3	قاب خمشی بتنی با شکل پذیری معمولی
لفحه ۱۰۱	۲ صفحه This publication or any part thereof must not be reproduced in any form without the written permission								

من نفاع مندریانی بازمن نفاع اسان یزد قاب مهاربندی شده همگرای معمولی (OCBF): مزايا: ۱ - سادگی طراحی و ساخت، مناسب برای ساختمانهای کوتاه ۲- دریفت کم که باعث آسیب کمتر به اجزای غیر سازهای می شود. ۳- این سیستم نسبت به قاب خمشی و قاب مهاربندی شده واگرا اقتصادیتر است. معايت: ۱ - کاهش شکل پذیری نسبت به قاب خمشی و قاب مهاربندی شده واگرا. ۲- ضريب رفتار R=3.25 dsce7-16 و R=3.5 طبق استاندارد ۲۸۰۰ که باعث ايجاد نيروی طراحی زیاد برای اجزای سازه و دیافراگمها خواهد شد. ۳- برای استفاده در مناطق با لرزه خیزی بالا محدودیت دارد. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۰۲

مار نظام محد کمی کند کمی اینان پزد ایران پزد قاب مهاربندی شده همگرای ویژه (SCBF)؛ مزايا: ۱ - دریفت کم که باعث آسیب کمتر به اجزای غیر سازهای میشود. ۲– این سیستم نسبت به قاب خمشی و قاب مهاربندی شده واگرا اقتصادیتر است. ۳- ضریب رفتار R=6 طبق ASCE7-16 و R=5.5 طبق استاندارد ۲۸۰۰ که باعث ایجاد نیروی کمتر طراحی نسبت به قاب مهاربندی همگرای معمولی می شود. ۴– تا ارتفاع ۵۰ متر طبق استاندارد ۲۸۰۰ قابل طراحی است. ۵- نسبت به مهاربند همگرای معمولی قابلیت اطمینان بالاتری دارد معايت: ۱- کاهش شکل پذیری نسبت به قاب خمشی و قاب مهاربندی شده واگرا. This publication or any part thereof must not be reproduced in any form without the written permission صفحه

مان منظم محتر مي فيما مازم منظم اسان يزد قاب مهاربندی شده واگرا (EBF)؛ مزايا: ۱- مقدار R=8 طبق ASCE7-16 و R=7 طبق استاندارد ۲۸۰۰ که باعث ایجاد نیروی کمتر طراحی مىشود. ۲- جاری شدن در تیر پیوند متمر کز است. ۳- عدم کمانش مهاربند و آسیب به نازک کاری معايت: ۱- کاهش فضای معماری با ایجاد نمای خرپایی نسبت به قاب خم ۲ – ابعاد تیر زیاد. ۳- ارتفاع کمتر مجاز نسبت به قاب خمشی This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۶۰

م این محمد میافتا سازه خط اسان زد دیوار برشی فولادی ویژه (SPSW)؛ مزايا: ۱ - مقدار R=7 طبق ASCE7-16 که باعث ایجاد نیروی کمتر طراحی می شود. ۲- ضخامت کمتر دیوار نسبت به دیوارهای برشی بتنی. ۳- وزن کمتر ساختمان نسبت به یک ساختمان دارای دیوار برشی بتنی. معايت: ۱ – اجرای سخت و نیاز به نیروی پیمانکار ماهر ۲ – ارتفاع کمتر مجاز نسبت به قاب خمشی This publication or any part thereof must not be reproduced in any form without the written permission صفحه

من تقام الماني أن المان يزد ساريا المان يزد	20 2	ث ششم برای طراحی	یم مبح	ترکیب بارهای قد
	وشهای مختلف طراحی	کیببارهای خلاصه شده برای ر	ترا	
	ش مجاز	روش طراحی تنا		
	تركيب بار	نوع بار	رديف	
	D + L	مرده + زنده	١	
	$0.75(D + L \pm (E \downarrow W))$ $0.75(D \pm (E \downarrow W))$	مرده + زنده + زلزله یا باد	٢	
	ات حدی	روش طراحی حالا		
	1.4D 1.25D+1.5L	مرده + زنده	١	
	$D + 1.2L + 1.2(E \downarrow W)$ $0.85D + 1.2(E \downarrow W)$	مرده + زنده + زلزله یا باد	٢	
۱۱۸ صفحه This publication	or any part thereof must not be rep	roduced in any form without the wr	itten permis	ssion

ار بنده مرینه این است این از	یب بارهای جدید مبحث ششم برای طراحی	ترک
	510	
تر کیب بار	شرايط	رديف
$1.4D 1.2D + 1.6L + 0.5(L_r \sqcup S \sqcup R)$	ترکیب بار مبنا	١
$\begin{array}{c} 1.2D + 1.6(L_r \sqcup S \sqcup R) + (L \sqcup 0.5(1.4W) \\ 1.2D + 1.0(1.4W) + L + 0.5(L_r \sqcup S \sqcup R) \end{array}$	ترکیب بار مرده، زنده و باد	٢
1.2D + 1.0E + L + 0.2S 0.9D + 1.0E	ترکیب بار مرده، زنده و زلزله	٣
$\begin{split} 1.2D + 0.5L + 0.5(L_r \sqcup S) + 1.2T \\ 1.2D + 1.6L + 1.6(L_r \sqcup S) + 1.0T \end{split}$	ترکیب بار مرده، زنده، آثار حرارتی، جمع شدگی و نشست تکیهگاهی	۴
	، بارهای فوق از آییننامه ASCE برداشت شده است.	تركيب
	له ضریب ندارد؟	بار زلز
This publication or any part thereof must no	at be reproduced in any form without the written permission	1

کا بندا تركيبهاي طراحي سازه فولادي طراحی سازه بر اساس حالات حدی: در این روش از ترکیب بارهای حد نهایی استفاده شده و مقاومت نهایی اعضاء که با یک ضریب کاهشی کم شده باشد با نیروهای در سطح نهایی مقایسه می شود. ترکیبات بارگذاری برای طراحی براساس حالات حدی طبق ASCE7-16 به صورت زیر است: I. I.4D 2. 1.2D + 1.6L + 0.5(Lr or S or R) 3. 1.2D + 1.6(Lr or S or R)+(L or 0.5W) 4. $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$ 5. 0.9D + 1.0W 6. $I.2D + E_v + E_h + L + 0.2S$ 7. 0.9D – $E_v + E_h$ در ترکیب بارهای ۳، ۴ و ۶ فوق، به شرطی که حداقل بار گسترده یکنواخت زنده L₀ کمتر از 4.78 kN/m² باشد (به استثناء کف پارکینگها یا محلهای اجتماع عمومی)، می توان ضریب بار زنده را **0.5** در نظر گرفت. در ترکیب بارهای فوق، E_v نیروی قائم زلزله و E_h نیروی افقی زلزله است. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۴

بدودیت های فشردگی مقاطع انش موضعی در اثر لاغری لبههای مقاطع ایجاد می گردد. برای این منظور دو محدودیت λ_{md} و Δ_{ki}						
ے میسود.	ز ریاد) تعریف نا به ضخامت	دیری متوسط و بیشینه نسبت په	با سكلپا	ببت لا عری پهنا به صحامت برای اعصا		
مثال نمونه	λ _{hd} اعضا با شکلپذیری زیاد	λ _{md} اعضا با شکلپذیری متوسط	نسبت پهنا به ضخامت	شرح اجزا		
$\begin{array}{c} m_{p_{i-1}}^{2} = 1 \\ \\ \frac{1}{p_{p_{i-1}}} + 1 \\ \\ \frac{1}{p_{i-1}} + 1 \\ \\ \frac$	$0.32\sqrt{\frac{E}{R_yF_y}}$	$0.40\sqrt{\frac{E}{R_yF_y}}$	b/t	بالهای مقاطع I شکل نورد شده و ساخته شده از ورق، ناودانیها، سپریها، ساق نبشیهای تک و نبشیهای دوبل با فاصله ۲۰ ۵۰ ۲۰ ۲۰		
	کاربرد ندارد	$0.48\sqrt{\frac{E}{R_yF_y}}$	b/t	رم ۲۰ ۲۰ ۱۰ بالهای مقاطع شمعهای H شکل		
	$0.32\sqrt{\frac{E}{R_yF_y}}$	$0.40\sqrt{\frac{E}{R_yF_y}}$	d/t	تیغه (جان) مقطع سپری		
This publicatio صفحه ۲۳۳	on or any part th	ereof must not be re	produced in	any form without the written permission		

مقاومت مورد نیاز طراحی ستون مقاومت مورد نیاز ستونها در سیستم باربر جانبی (SFRS) بایستی براساس بزرگترین مقادیر زیر در نظر گرفته شود: (۱) اثر بارهای حاصل از تحلیلهای تجویز شده برای هر یک از سیستمهای لرزهبر. (۲) اثر بارهای حاصل از ترکیب بارهای تشدید یافته بدون حضور نیروهای برشی و لنگرهای خمشی. (۲) اثر بارهای حاصل از ترکیب بارهای تشدید یافته بدون حضور نیروهای برشی و لنگرهای خمشی. (۲) اثر بارهای حاصل از ترکیب بارهای تشدید یافته بدون حضور نیروهای برشی و لنگرهای خمشی. (۲) اثر بارهای حاصل از ترکیب بارهای تشدید یافته بدون حضور نیروهای برشی و لنگرهای خمشی. (۲) متونهایی که در معرض بار جانبی در بین دو انتهای ستون قرار دارند، اثر لنگر خمشی ناشی از این منود. (۵) AlisC341-16: The required strength of columns in the SFRS shall be determined from the greater effect of the following: (۵) The load effect resulting from the analysis requirements for the applicable system per Chapters E, F, G and H. (b) The compressive axial strength and tensile strength as determined using the overstrength seismic load. It is permitted to neglect applied moments in this determination unless the moment results from a load applied to the column between points of lateral support.

م این نظام ایتان نزد سازیان نظام استان نزد هشدار در ارتباط با نحوه اعمال ترکیب بار اضافه مقاومت به همراه اثرات متعامد در تحلیل ديناميكي برای در نظر گرفتن اثر زلزله در جهات متعامد در تحلیل طیفی سه روش وجود دارد: ۱– در یک تحلیل طیفی، ۱۰۰٪ طیف در جهت x (مقیاس شده) و ۳۰٪ طیف در جهت y (مقیاس شده) بر سازه اعمال شده و اثرات آنها با هم جمع زده می شود (قدرمطلق). ۲- در دو تحلیل جداگانه یک بار ۱۰۰٪ طیف در جهت x (مقیاس شده) و یک بار هم ۱۰۰٪ طیف در جهت y (مقیاس شده) بر سازه اعمال شده و در ترکیب بارها ۱۰۰٪ نیروی زلزله در هر جهت را با ۳۰٪ در جهت عمود بر آن ترکیب نمایید. ۲- در یک تحلیل طیفی، ۱۰۰٪ طیف در جهت x (مقیاس شده) و ۱۰۰٪ طیف در جهت y (مقیاس شده) بر سازه اعمال شده و اثرات آنها با هم بصورت جذر مجموع مربعات جمع زده This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۳۶

ETABS Help:
Absolute Sum Method
This method combines the response for different directions of loading by taking the sum of their absolute values. A scale factor, dirf, is available for reducing the interaction between the different directions. Specify **dirf=1** for a simple absolute sum:

$$R = |R_1| + |R_2| + |R_3|$$

This method is usually over-conservative. Specify $0 < \text{dirf} < 1$ to combine the directional results by the scaled absolute sum method. Here, the directional results are combined by taking the maximum, over all directions, of the sum of the absolute values of the response in one direction plus **dirf** times the response in the other directions. For example, if **dirf** = 0.3, the spectral response, R, for a given displacement, force, or stress would be:
 $R = \max(\bar{R}_1, \bar{R}_2, \bar{R}_3)$
where:
 $\bar{R}_1 = R_1 + 0.3(R_2 + R_3)$ $\bar{R}_2 = R_2 + 0.3(R_1 + R_3)$ $\bar{R}_3 = R_3 + 0.3(R_1 + R_2)$
and R1, R2, and R3 are the modal-combination values for each direction.

م این نظر مختر کنی کنی سازه سفار اسان پز	, ,				2
$L = D + L \pm L$ $L = D + L \pm L$	Spx ± 0.3S 0.3Spx ± S	уру Уру		S	ں دوم
oad Case Data			× 🖬 Load Case Data		×
Load Case Name		Design	Load Case Name	Sev	Design
Load Case Type	Response Spectrum	V Notes	Load Case Type	Response Spectrum	Notes.
Mass Source	Previous (MsSrc1)		Mass Source	Previous (MsSrc1)	
Analysis Model	Default		Analysis Model	Default	
Loads Applied			Loads Applied		14
Load Type Load Nan Acceleration U1	10 Function 280011 980	Scale Factor G65 Add Delete	Load Type Acceleration	Load Name Function	Scale Factor 80.665 Add Delete
		Advanced	7		Advanced
Modal Load Case	Modal		Modal Load Case	Mada	
	CQC		Modal Combination	Method CQC	× N
Modal Combination Method	Rigid Frequency, f1		Include R	igid Response Rigid Frequency, f1	
Modal Combination Method				Rigid Frequency, f2	
Modal Combination Method	Rigid Frequency, f2				
Modal Combination Method	Rigid Frequency, f2 Periodic + Rigid Type			Penodic + Rigid Type	
Modal Combination Method	Rigid Frequency, f2 Periodic + Rigid Type		Earthquake D	Periodic + Rigid Type Juration, td	
Model Combination Method Include Rgid Response Earthquake Duration, td Directional Combination Type	Rigid Frequency, f2 Periodic + Rigid Type		Earthqueke D Directional Combina	Periodic + Rigid Type Auration, td SRSS	
Modal Combination Method Include Rigid Response Earthquake Duration, td Detectional Combination Type Absolute Directional Combination 1	Rigid Frequency, 12 Petrodic + Rigid Type SRSS icale Factor		Earthquake D Directional Combina Absolute Direc	Penodic + Rigid Type Arration, td tion Type SRSS ctional Combination Scale Factor	×
Modal Combination Method Include Rigid Response Earthquelle Duration, Id Directional Combination Type Absolve Directional Combination Modal Damping Constant et (Rigid Frequency, 12 Periodic + Rigid Type SRSS Scale Factor I05	Modify/Show	Earthquake L Directional Combina Abasikke Dire Modal Damping	Penodic + Rijed Type Arration, td tion Type SRSS ctional Combination Scale Factor Constant at 0.05	Vodfy/Show
Modal Continuition Method Include Rigit Response Esthquille Duration, td Directional Combination Type Assolute Directional Combination Modal Damping Constant at Daphragm Eccentroly Of or Al Dapi	Rigid Frequency, 12 Petiodic + Rigid Type SRSS Scale Factor 105 vragme	Modfy/Show Modfy/Show	Earthopaixe I Directional Combina Abaekuto Dire Modal Damping Disphragm Eccentrik	Periodic + Rigid Type Zuration, til tion Type SRSS cional Combunition Scale Factor Constant at 0,05 sty Ofer Al Disphages	Modfy/Show
Modal Continution Method Indude Rigid Response Earthquille Duration, til Detectional Continuation Type Absolute Directional Continuation Modal Damping Constant et C Dephragm Eccentricity 0 for Al Depi	Rigit Frequency, 12 Periodic + Rigit Type SRSS Scale Factor 105 tragme OK Cancel	Modify/Show	Sanhagala ni Directional Combina Abaloka Dire Modal Damping Daphragin Eccentri	Periodic = Rigid Type Austion, 64 dom Type	V Modiy/Sven Modiy/Sven

بن غذی میشن بازمان زد سازمان زد		2				
هشدار ؛ کاربر بایستی در بکار بردن روش دوم برای ترکیب بارهای تشدید یافته، دقت داشته باشد. در این حالت، برنامه برای هر ترکیب بار، ضرایب بارهای زلزله را برداشته و در آنها ضریب اضافه						
ETABS Help:		مقاومت معرفی شده را اعمال می کند.				
The program automatic (ASCE 2.3.6, 2.4.5, 12.4.3) each load combination, the force is represented where	cally considers seis B), as special load c involving seismic by E_{mh} and the vert	mic load effects, including overstrength factors ombinations that are created automatically from loads. In that case, the horizontal component of tical component of the force is represented by E_v ,				
$E_{\rm mh} = \Omega_0 QE$	(ASCE 12.4.3.1)					
$Ev = 0.2S_{DS}D$	(ASCE 12.4.2.2)					
Effectively, the special se	Effectively, the special seismic combinations for the LRFD provision are					
$(1.2 + 0.2S_{DS})DL \Omega_0 Q_E$		(ASCE 2.3.6-6, 12.4.2.2, 12.4.3.1)				
$(1.2 + 0.2S_{DS})DL \Omega_0 Q_E + 1$.0LL	(ASCE 2.3.6-6, 12.4.2.2, 12.4.3.1)				
$(0.9 - 0.2S_{DS})DL \Omega_0 Q_E$		(ASCE 2.3.6-7, 12.4.2.2, 12.4.3.1)				
	<u></u>					
This publication or any pa صفحه	art thereof must not be repro	oduced in any form without the written permission				

م بند مریقان ماری نظام اسان زد				2			
همانطور که دیده میشود، تنها برش در آخرین طبقه از ۳۵٪ برش پایه کمتر است.							
Story	Load Case/Combo	Location	P Tonf	V _x Tonf	V _i /V _b		
Story6	Ex	Тор	0	-34.5088	0.28		
Story6	Ex	Bottom	0	-34.5088	0.28		
Story5	Ex	Тор	0	-63.9989	0.52		
Story5	Ex	Bottom	0	-63.9989	0.52		
Story4	Ex	Тор	0	-87.591	0.71		
Story4	Ex	Bottom	0	-87.591	0.71		
Story3	Ex	Тор	0	-105.285	0.86		
Story3	Ex	Bottom	0	-105.285	0.86		
Story2	Ex	Тор	0	-117.0811	0.95		
Story2	Ex	Bottom	0	-117.0811	0.95		
Storyl	Ex	Тор	0	-122.9791	1.00		
Storyl	Ex	Bottom	0	-122.9791	1.00		
۲۶ صفحه This publication or any part thereof must not be reproduced in any form without the written permission							

م این محمد میدیند ماری خط اسان زد وصله ستون **محل وصله**: به غیر از موارد ذکر شده در زیر، در کلیه ستونهای باربر و غیرباربر جانبی لرزهای، محل درز وصله در بالا و پایین وصله نباید از ۱۲۰ سانتیمتر به بال متصل به ستون نزدیکتر باشد. در حالتی که ارتفاع آزاد ستون کمتر از ۲۴۰ سانتیمتر باشد، محل وصله باید در وسط ارتفاع آزاد ستون قرار گیرد. ۲) در مواردی که درز لب به لب ورقهای بال و 120 cm جان به صورت نفوذی کامل انجام می شود، محل درز وصله میتواند از ۱۲۰ سانتیمتر کمتر باشد ولی در هر حال این فاصله نباید از عمق ستون کمتر در نظر گرفته شود. ۳) وصلهها در ستونهای مرکب. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ١٥٢

فرنش سختی مختی معنان کرنش سختی در نظر گرفته شده است. $C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$ * کاربرد کرنش سختی در کجاست؟ This publication or any part thereof must not be reproduced in any form without the written permission صفحه

مقایسه استاندارد ۲۸۰۰ و ASCE7 و ASCE									
پارامترهای اساسی طراحی، براساس استاندارد ۲۸۰۰ و آییننامه ASCE7-16 برای این سیستم									
سازهای همگرا									
پارامترهای اساسی طراحی همگرای معمولی									
بيشترين ارتفاع	ضریب بزرگنمایی	ضريب اضافه							
مجاز (متر)	جابجایی C _d	Ω_0 مقاومت	طريب رحكار ٢						
15	3.5	2.0	3.5	استاندارد ۲۸۰۰					
10*	3.25	2.0	3.25	ASCE7-16					
» این سیستم در طبقهبندیهای لرزهای B و C محدودیتی نداشته و در طبقهبندی لرزهای F نیز حداکثر تا ۳۰ متر مجاز است.									
پارامترهای اساسی طراحی همگرای ویژه									
بيشترين ارتفاع	ضریب بزرگنمایی	ضريب اضافه	R lià (à						
مجاز (متر)	جابجایی C _d	Ω_0 مقاومت	صريب رتدر ٢						
50	5.0	2.0	5.5	استاندارد ۲۸۰۰					
48.7*	5.0	2.0	6.0	ASCE7-16					
می این سیستم در طبقهبندیهای لرزهای B و C محدودیتی نداشته و در طبقهبندی لرزهای F نیز حداکثر تا ۳۰ متر مجاز است. *									
165 d This publication of any part thorough must not be considered in any form without the written permission									
This publication of any part thereof must not be reproduced in any form without the written permission									

میشود زیرا یک تغییرشکل قبلی داریم. در صورتی ظرفیت قبلی برابر **C**_r باشد، ۲۸۰۰از این به بعد ظرفیت کم ویرایش سوم، ضریب B را بصورت زیر معرفی مینماید. این ضریب در نسخه $B = \frac{P'_{cr}}{P_{cr}} = \frac{1}{1 + 0.5 \frac{kL/r}{C}}$ جديد مبحث دهم حذف شده در LRFD، ضربت 0.8 آورده شده که در آن 4L/r=65 و Cc=130 می باشد. این چرخه یبن چرخه اول و نهایی است. در آییننامه کانادا رابطه زیر پیشنهاد میشود. $C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$ UBC97 بند (2213.8.2) آیین نامه UBC97 که λ_y برابر لاغری نظیر زمانی است که تنش اویلر برابر تنش جاری شدن شود. $\frac{P_{cr}'}{P_{cr}} = \frac{1}{1 + 0.35 \frac{kL/r}{r}} \qquad \lambda_y = \sqrt{\frac{\pi^2 E}{F_y}}$ This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۷

فشاری مهاربندها را هم جمع میزنیم. نهایتا کنترل شود در هر طبقه مجموع نیروی زلزله مهاربندهای کششی در امتداد هر محور از ۷۰٪ مجموع نیروی زلزله مهاربندهای کششی و فشاری در امتداد همان محور بیشتر نباشد و از ۳۰٪ مقدار ذکر شده نیز کمتر نباشد.

$$\frac{KL}{r} = \frac{1 \times 360 \text{ cm}}{9.806 \text{ cm}} = 36.76$$

$$4.71 \sqrt{\frac{E}{F_y}} = 4.71 \sqrt{\frac{2 \times 10^6}{2350}} = 137.4 > 36.76 \Rightarrow$$

$$F_e = \frac{\pi^2 E}{(KL/r)^2} = \frac{\pi^2 \times 2 \times 10^6}{(36.76)^2} \approx 14600 \frac{\text{kg}}{\text{cm}^2}$$

$$\Rightarrow F_{cr} = \left(0.658^{\frac{2350}{14600}}\right) 2350 \approx 2196 \frac{\text{kg}}{\text{cm}^2}$$

$$\Rightarrow \phi_c P_n = 0.9 \times 2242.9 \times 96 \times 10^{-3} \approx 189.8 \text{ ton}$$

$$\phi_t P_n = 0.9 \times A_g \times F_y = 0.9 \times 96 \times 2350 \times 10^{-3} \approx 203 \text{ ton}$$
TYY assign This publication or any part thereof must not be reproduced in any form without the written permission

۲) از فایل اصلی یک Save as بگیرید و در فایل جدید کلیه گرهها را انتخاب و آنها را از مسیر Assign menu > Joint > Diaphragms از حالت دیافراگم صلب جدا کنید.
۳) در فایل جدید از مسبر Analyze menu > Set Active Degrees of Freedom حالت No Z
Rotation را انتخاب کنید. Rotation
Building Active Degrees of Freedom
Full 3D XZ Plane YZ Plane No Z Rotation
OK Cancel
and the second second
This publication or any part thereof must not be reproduced in any form without the written permission

۴) این کنترل بایستی برای هر قابی انجام شود. در قابی که قصد اعمال این ضابطه برای آن را دارید، گرهای خارج از دهانه مهاربندی را در کلیه طبقات در آن قاب بایستی مقید کنید. برای این منظور گرههای مورد نظر را انتخاب و از مسیر Assign menu > Joint > Restraints انتقال افقی آن در امتداد قاب (مثلا UX یا Uy) را ببنید. در بررسی قاب در آکس دیگر، ابتدا گره مقید شده قاب قبلی
بار سده و سپس به دره جدید، فید اختصاص داده سود. Bestairts in Global Directions
Translation X Rotation about X Translation Y Rotation about Y
Translation Z Rotation about Z
This publication or any part thereof must not be reproduced in any form without the written permission

ند کی بختی کم استان یزد		2 2	
Desi	مسیر < gn menu > Steel Design اضافه نمایید.	اخته شده در گام قبلی را از Sele به ترکیب بارهای طراحی	۸) ترکیب بارهای س ct Design Combo
ت ۲۵ ی اثر	Design menu > Steel اگزینههای ردیف کنید و اعضای قاب مهاربندی شده را برا	Design > View/Revise Pref د. در نهایت تحلیل و طراحی , نیروها طراحی نمایید.	۹) از مسیر erences) و ۲۶ را غیرفعال کنی ایجاد شده ناشی از این
	0	2	
23	Phi(Shear-Short Webed Rolled I)	1	
24	Phi(Torsion)	0.9	
25	Ignore Seismic Code?	Yes	
26	Ignore Special Seismic Load?	Yes	
27	Is Doubler Plate Plug-Welded?	Yes	
28	HSS Welding Type	ERW	
1	Reduce HSS The Loesan	No mo	
مفحه ۲۴۶	This publication or any part thereof must not be reprod	uced in any form without the written perr	nission

المان في المان	
دی ۷ و ۸ برای بارهای ثقلی بدون حضور	کنترل کفایت تیر در قاب OCBF و در پیکربن مهاربندها در برنامه ETABS
شکل، درجات آزادی انتقالی سازه برداشته شود.	از فایل اصلی بگیرید و مطابق Save as از فایل اصلی بگیرید و مطابق Active Degrees of Freedom
Analyze Display Design Options Tools Help Check Model * Set Active Degrees of Freedom Set Load Cases To Run Advanced SAPFire Options Automatic Mesh Settings for Floors This publication or any part thereof must not be reprod	Building Active Degrees of Freedom Full 30 X2 Plane No Z Rotation W U W W W W W W W W W W W W W W W W W W W W W W W W W OK Cancel Uter din any form without the written permission

ان مواد مریند بازی سازی ا	N L
دهید. برای این منظور آنها انتخاب نموده و مطابق روند زیر ِار دهید.	- سختی محوری مهاربندها را کاهش دام نمایید. سختی محوری را 0.001 قر
Assign Analyze Display Design Options Tools Help Joint Frame Shell Link Tendon Tendon Display Design Options Tools Help Section Property Property Modifiers Releases/Partial Foity End* ength Offsets Property Modifiers End* ength Offsets Property Modifiers End* ength Offsets Property Modifiers Releases/Partial Foity End* ength Offsets Int Int Int Int Int Int Int Int Int Int	Property Modifiers Property Modifiers Property /Stiffness Modifiers for Analysis Cross section (axial) Area Shear Area in 3 direction Shear Area in 3 direction Torsional Constant Torsional Constant Torsional Constant Moment of Inettia about 2 axis Moment of Inettia about 3 axis Mass Weight 1
FA + - i This publication or any part thoreof must not be concodured in any form	

م این نظام عند میدندی مارز سفال اسان یزد طراحی مهاربندهای هم محور پارامترهای موثر در پاسخ ارتجاعی یک دهانه مهاربندی: لاغری و نسبت عرض به ضخامت یک دهانه مهاربندی مقاومت مهاربند مقاومت اتصال کفایت مهاربند جانبی در محل اتصال تیر مهاربندی شده شورن به تیر مقاومت و فشردگی مقاطع در دهانه مهاربندی *در این مهاربندها رفتار شکل پذیر، بایستی توسط خود عضو مهاربند تامین شود. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۵۴

انید وی نامتعادل:

$$P_{un} = (T - C)\sin \theta$$
 :
 $K_e = \frac{F}{\delta_t}$, $K_e = \frac{F}{\delta_t}$, $K_e = \frac{T}{\delta_t}$, BI g BI g 2 BI g 2 B, H_t (ست.
 $F = 2T \cos \theta$
 $\delta_t = \frac{\delta_1}{\cos \theta} \rightarrow \delta_1 = \frac{TL}{AE} \Rightarrow \delta_t = \frac{TL}{1E} \frac{1}{\cos \theta}$
 $K_e = \frac{2T \cos \theta}{\delta} = 2\frac{AE}{L}\cos^2 \theta$
 $K_e = \frac{2T \cos \theta}{\delta_t} = 2\frac{AE}{L}\cos^2 \theta$
 $K_s = \frac{\Delta F}{\Delta \delta_t}$ $\Delta F_{un} = (\Delta T - \Delta C)\sin \theta$
 $\Delta F = (\Delta T + \Delta C)\cos \theta$
Year This publication or any part thereof must not be reproduced in any form without the written permission

$$\Delta T = K_{br}\Delta\delta_{brt}$$

$$\Delta T = K_{br}\Delta\delta_{brt}$$

$$\Delta C = K_{bb}\Delta\delta_{brc}$$

$$\Delta C = K_{bb}\Delta\delta_{brc}$$

$$\Delta L = (\Delta T - \Delta C)\sin\theta$$

$$\Delta F = (\Delta T + \Delta C)\cos\theta$$

$$\Delta F = (\Delta T - \Delta C)\sin\theta$$

$$\Delta F = (\Delta T + \Delta C)\cos\theta$$

$$\Delta F = (K_{br} - \Delta C)\sin\theta$$

$$\Delta F = (K_{br} - \Delta C)\sin\theta$$

$$\Delta F = (K_{br} + K_{bb})\Delta\delta_{r}\cos^{2}\theta - (K_{br} - K_{bb})\Delta\delta_{r}\cos^{2}\theta + K_{bb}\Delta\delta_{n}\cos\theta\sin\theta$$

$$\Delta F = (K_{br} + K_{bb})\Delta\delta_{r}\cos^{2}\theta - (K_{br} - K_{bb})\Delta\delta_{r}\cos\theta\sin\theta$$

$$\Delta P_{un} = K_{bn}\Delta\delta_{n}$$

$$= K_{bn}\Delta\delta_{n}\sin^{2}\theta = K_{bn}\Delta\delta_{n}\sin^{2}\theta - K_{bb}\Delta\delta_{r}\cos\theta\sin\theta$$

$$-K_{bb}\Delta\delta_{n}\sin^{2}\theta = K_{bn}\Delta\delta_{n}$$

$$I = (K_{br} - K_{bb})\Delta\delta_{r}\cos\theta\sin\theta$$

$$\Delta \delta_{n}\sin^{2}\theta = K_{bn}\Delta\delta_{n}$$

$$\Delta \delta_{n}\sin$$

$$K_{s} = \frac{\Delta F}{\Delta \delta_{r}} = (K_{br} + K_{bb})\cos^{2} \theta - \frac{(K_{br} - K_{bb})^{2}\sin^{2} \theta \cos^{2} \theta}{K_{bn} + (K_{br} + K_{bb})\sin^{2} \theta}$$

$$K_{bb} = K_{br} = \frac{AE}{L}$$

$$K_{s} = \frac{2EA}{L}\cos^{2} \theta$$

$$K_{bn} = (K_{br} + K_{bb})\cos^{2} \theta$$

$$K_{bn} = \infty \Rightarrow K_{s} = (K_{br} + K_{bb})\cos^{2} \theta$$

$$K_{bb} = 0 \Rightarrow K_{s} = \frac{K_{br}\cos^{2} \theta}{1 + \frac{K_{br}}{K_{bn}}\sin^{2} \theta}$$

$$K_{bb} = 0 \Rightarrow K_{s} = \frac{K_{br}\cos^{2} \theta}{1 + \frac{K_{br}}{K_{bn}}\sin^{2} \theta}$$

$$K_{bb} = 0 \Rightarrow K_{s} = \frac{K_{br}\cos^{2} \theta}{1 + \frac{K_{br}}{K_{bn}}\sin^{2} \theta}$$

$$K_{bb} = 0 \Rightarrow K_{s} = \frac{4K_{br}}{1 + \frac{K_{br}}{K_{bn}}\sin^{2} \theta}$$

$$K_{bb} = 0 \Rightarrow K_{s} = \frac{4K_{br}}{1 + \frac{K_{br}}{K_{bn}}\sin^{2} \theta}$$

$$K_{bb} = 0 \Rightarrow K_{bb} = \frac{-4K_{br}K_{bb}}{(K_{br} + K_{bb})}\sin^{2} \theta$$

$$K_{bb} = \frac{192EI}{L^{3}}$$

$$K_{bn} = \frac{48EI}{L^{3}}$$

$$K_{bn} = \frac{48EI}{L^{3}}$$

$$K_{bn} = \frac{48EI}{L^{3}}$$

$$K_{bn} = \frac{48EI}{L^{3}}$$

ل کمانش بایستی نسبت شعاع ژیراسیون حول محور x به شعاع ژیراسیون حول محور y کمتر از کمانش بایستی نسبت شعاع ژیراسیون حول محور x به شعاع ژیراسیون حول محور y کمتر از
$$\frac{r_x}{r_y} = 0.65$$

* در صورتی که مهاربند در داخل دیوار باشد، به سبب سختی درون صفحه دیوار امکان وقوع کمانش داخل صفحه کاهش مییابد.
* در صورتی که مهاربند متقارن باشد، امکان وقوع کمانش داخل و خارج از صفحه ۸۰٪–۰۰۰.
* در صورتی که مهاربند متقارن باشد، امکان وقوع کمانش داخل و خارج از صفحه دیوار امکان وقوع در خواهد بود ولیکن در اغلب اوقات به سبب سختی پایین تر خارج از صفحه، کمانش خارج از صفحه کاهش می باید
* در بیشتر مواقع (بالای ۹۵٪) کمانش مهاربند خارج صفحه رخ میدهد و سختی در یا و سختی در و نوبی به در بیشتر مواقع (بالای ۹۵٪) کمانش مهاربند خارج صفحه رخ میدهد و سختی باید و به در بیشتر مواقع (بالای ۹۵٪) کمانش مهاربند خارج صفحه رخ میدهد و سختی ورق نیز خارج صفحه بسیار ناچیز است.
* در بیشتر مواقع (بالای ۹۵٪) کمانش مهاربند خارج صفحه رخ میدهد و سختی باید و به در بیشتر مواقع (بالای ۹۵٪) کمانش مهاربند خارج صفحه رخ میدهد و سختی ورق نیز خارج صفحه بسیار ناچیز است.

ب فا^مند کیدیک در راستای سازگاری اتصال با کمانش مهاربندها، اتصالات مهاربندها باید یکی از الزامات زیر را ىر آوردە نمايند. الف) اتصال اعضای مهاربند باید دارای مقاومت خمشی مورد نیاز حداقل برابر I.IR_vM_p/α_s باشد که در آن، R_vM_p ظرفیت خمشی مورد انتظار مقطع مهاربند حول محور کمانش بحرانی مُقطع است. ب) سازگاری دوران حاصل از تغییرشکلهای پس از کمانش در خارج یا داخل صفحه از طریق مهیا نمودن شرایط کمانش که در شکل های اسلاید بعد نشان داده شده تامین شود. شکل (الف) و (ب) جزئیات ایجاد کمانش خارج از صفحه برای اتصال مهاربند را تامین میکند. بطوری که مهاربند تا رسیدن به خط فرضی خمش که در شکل نشان داده شده، تمام میشود. فاصله بین انتهای مهاربند تا خط فرضی خمش حداقل 2t پیشنهاد شده است که در آن t ضخامت ورق اتصال است. در عمل مىتوان اين مقدار را برابر 2t+2.5cm در نظر گرفت. اين فاصله نبايستى بيشتر از 4t شود. در شکل (پ) شرایط کمانش مهاربند برای اتصال مفصلی در داخل صفحه محیا است. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۹ م این از محمد میاند میاند مارین از اسان زر برای تامین دوران انتهای ورق بایستی به میزان حداقل ۲و حداکثر ۴ برابر ضخامت ورق با انتهای مهاربند فاصله داشته باشد. (Astaneh-Asl et al., 1986) محدوده دوران ستون ستون رق اتصال 2t 2t فوم تير الف) سازگاری دورانی برای کمانش خارج صفحه ب) سازگاری دورانی برای کمانش خارج صفحه پ) سازگاری دورانی برای کمانش دورن This publication or any part thereof must not be reproduced in any form without the written permission صفحه

م این نظام محد کمی خونک سازه خط اسان یزد برای تعیین رابطه (۱) سه گام در نظر گرفته شده است[۱]: گام اول: تعیین جابجایی ارتجاعی قاب بر حسب هندسه قاب و مشخصات مصالح گام دوم: ساده سازی رابطه بدست آمده و تعیین جابجایی طبقه بر حسب هندسه سیستم گام سوم: با تقسیم برش طبقه بر جابجایی ارتجاعی آن، سختی بدست میآید. * در تعیین این رابطه از تغییر شکل محوری ستونها صرف نظر شده است. (Δ_{ba}) ، (Δ_{ba}) تغییرشکل برشی تیر پیوند ($\Delta_{
m bv}$) و تغییرشکل قاب در اثر خمش تیر ($\Delta_{
m bf}$) در نظر گرفته شده است. I. Paul W. Richards., "Estimating the Stiffness of Eccentrically Braced Frames" Practice Periodical on Structural Design and Construction, Vol. 15, No. 1, February 2010, pp. 91-95

This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۳۴۳

بن فغام المان يُولاً بازمان يزو آیا برنامه ETABS کنترل فشردگی اجزای قاب مهاربندی شده واگرا را انجام میدهد؟ – برنامه ETABS برای مهاربندها به درستی مقدار فشردگی را براساس حداکثر نسبت پهنا به ضخامت برابر λ_{md} کنترل و در صورت عدم اقناع پیام خطایی صادر می کند. - برنامه ETABS برای (کلیه) ستونها، مقدار فشردگی را براساس حداکثر نسبت پهنا به ضخامت برابر λ_{hd} کنترل و در صورت عدم اقناع پیام خطایی صادر می کند. - برنامه ETABS فقط برای تیرهای پیوند، مقدار فشردگی را براساس حداکثر نسبت پهنا به ضخامت برابر λ_{hd} کنترل و در صورت عدم اقناع پیام خطایی صادر می کند. - برنامه ETABS برای تیرهای خارج از تیر پیوند، فشردگی را براساس حداکثر نسبت پهنا به ection is not seismically compact for moderately ductile. 341-10 Section is not seismically compact for moderately ductile members (AISC 341-10 Table D1. Section is not seismically compact for moderately ductile members (AISC 341-10 Table D1 (AISC 341-10 Table D1. Section is not seismically compact for moderately ductile members Section is not seismically compact for moderately ductile members (AISC 341-10 Table D1. Section is not seismically compact for moderately ductile members (AISC 341-10 Table DI is not seismically compact moderately ductile members 341 This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۵۴

بن فقام من المعاني في م المعان استثنا: طبق AISC341-16 در صورتی که $e \leq rac{1.6M_p}{V_p}$ باشد، فقط در بال تیرهای پیوند با مقطع *ا شکل میتوان به جای محدودیت حداکثر نسبت پهنا به ضخامت $\lambda_{
m hd}$ از $\lambda_{
m md}$ استفاده کرد. ا استثنا: طبق AISC341-16 در صورتی که $e \leq \frac{1.6M_p}{V_p}$ باشد، فقط در جان تیرهای پیوند با $\lambda_{
m md}$ مقطع جعبهای شکل، میتوان به جای محدودیت حداکثر نسبت پهنا به ضخامت $\lambda_{
m hd}$ از $\lambda_{
m md}$ استفاده کرد. * دو استثنای فوق در مبحث دهم ویرایش فعلی وجود ندارند. آیا برنامه ETABS این دو استثنا را در نظر می گیرد؟ بله. برنامه این کنترل را انجام میدهد. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۳۵۵

الین نامه با در نظر گرفتن کرنش سختی روابط زیر را ارائه می دهد

$$e \leq \frac{1.6M_p}{V_p}$$

 $e \geq \frac{2.6M_p}{V_p}$
 $rulun + cmis relation $relation form without the written permission$
 $e \geq \frac{2.6M_p}{V_p}$
 $e \geq \frac{2.6M_p}{V_p}$
 $rulun + cmis relation $relation form without the written permission$
 $e \geq \frac{2.6M_p}{V_p}$
 $rulun + cmis relation $relation form without the written permission$
 $rulun + cmis relation $relation form without the written permission$
 $rulun + cmis relation $relation form without the written permission$
 $rulun + cmis relation $relation form without the written permission$$$$$$$

$$\begin{split} & V_{u} \leq \varphi_{v} V_{n} \qquad \varphi_{v} = 0.9 \quad LRFD \\ & V_{a} \leq V_{n} / \Omega_{v} \qquad \Omega_{v} = 1.67 \quad ASD \\ & V_{a} \leq V_{n} / \Omega_{v} \qquad \Omega_{v} = 1.67 \quad ASD \\ & V_{p} = \begin{cases} 0.6F_{y}A_{lw} \qquad \frac{\alpha_{s}P_{r}}{P_{y}} \leq 0.15 \\ 0.6F_{y}A_{lw} \sqrt{1 - \left(\frac{\alpha_{s}P_{r}}{P_{y}}\right)^{2}} \qquad \frac{\alpha_{s}P_{r}}{P_{y}} > 0.15 \\ & U_{p} = \begin{cases} ZF_{y} \qquad \frac{\alpha_{s}P_{r}}{P_{y}} \leq 0.15 \\ ZF_{y} \left(\frac{1 - \alpha_{s}P_{r}/P_{y}}{0.85}\right) \qquad \frac{\alpha_{s}P_{r}}{P_{y}} > 0.15 \\ ZF_{y} \left(\frac{1 - \alpha_{s}P_{r}/P_{y}}{0.85}\right) \qquad \frac{\alpha_{s}P_{r}}{P_{y}} > 0.15 \\ & A_{lw} = \begin{cases} (d - 2t_{f})t_{w} & \text{for I-shaped link sections} \\ 2(d - 2t_{f})t_{w} & \text{for box link sections} \\ P_{y} = F_{y}A_{g} \qquad P_{r} = P_{u}(LRFD) \text{ or } P_{a} (ASD) \\ \end{cases} \end{split}$$

$$If \frac{\alpha_s P_r}{P_y} \le 0.15 \rightarrow \text{No upper limit}$$

$$If \frac{\alpha_s P_r}{P_y} \le 0.15 \rightarrow \begin{cases} \rho' \le 0.5 \Rightarrow e \le \frac{1.6M_p}{V_p} \\ \rho' > 0.5 \Rightarrow e \le \frac{1.6M_p}{V_p} (1.15 - 0.3\rho') \end{cases}$$

$$\rho' = \frac{P_r/P_y}{V_r/V_y}$$

$$V_r = V_u \text{ (LRFD) or } V_a \text{ (ASD), as applicable, (N)}$$

$$V_u = \text{required shear strength using LRFD load combinations, (N)}$$

$$V_a = \text{required shear strength using ASD load combinations, (N)}$$

$$V_y = \text{shear yield strength, (N)} = 0.6F_yA_{lw}$$
TFST subscription or any part thereof must not be reproduced in any form without the written permission

دوران تير رابط:

$$e \leq 1.6 \frac{M_p}{V_p}$$

 $e \geq 2.6 \frac{M_p}{V_p}$
 $e \geq 2.6 \frac{M_p}{V_p}$
 $e \geq 2.6 \frac{M_p}{V_p}$
 $e \geq 2.6 \frac{M_p}{V_p}$
 $e \leq 2.6 \frac{M_p}{V_p}$
 $e \leq 2.6 \frac{M_p}{V_p} \Rightarrow \gamma_p \leq 0.04 \left(4.4 - 1.5e \frac{V_p}{M_p}\right)^{rad}$
 $1.6 \frac{M_p}{V_p} \leq e \leq 2.6 \frac{M_p}{V_p} \Rightarrow \gamma_p \leq 0.04 \left(4.4 - 1.5e \frac{V_p}{M_p}\right)^{rad}$
 $f = C_d \times \Delta_E$
 $f = C_d \times \Delta_E$

هند کریکی می کار اسان یزد	تغبي				4	21
	ئام مىدھد؟	ير پيوند را انج	ِ تیر خارج از ت	ن بین تیر پیوند و	E کنترل دورار	آيا برنامه TABS
گزينه	بوند) و انتخاب	ارج از تیر پ	يوند (يا تير خ	است روی تیر پ	ی با کلیک را	لمه. بعد از طراح
ر شدن	در صورت بیشتر	.اده میشود. د	از آن نمایش د	و مقدار حد مجا	وران تير پيوند	Details، مقدار د
				میشود.	خطایی صادر	مقدار دوران، پيام
	دوران موجود	Link E تر کیب بار	Beam Rotation In	oformation	طول تير پيوند	3
	Link Rotation	Load Combo	Limit Rotation	Bay Length (cm)	Link Length (c	mì
	0.001	DStIS9	0.073	500	70	5
			د دوران محاز	مل د هانه م ماریند ی ش	h	
					L.	.0
DSt1S12	173.600	3.523 (T) =	0.925 + 2	.598 + 0.000	0.798	0.000
DSt1S12 DSt1S12	173.600 215.000	3.523(T) = 4.276(T) =	0.925 + 2 0.925 + 3	.598 + 0.000 .351 + 0.000	0.798 0.843	0.000
DSt1S12 DSt1S12 DSt1S12	173.600 215.000 215.000 L	3.523(T) = 4.276(T) = ink Rotaion :	0.925 + 2 0.925 + 3 is too high	.598 + 0.000 .351 + 0.000	0.798 0.843	0.000
DSt1S12 DSt1S12 DSt1S12 DSt1S12 DSt1S12	173.600 215.000 215.000 L 250.000 L	3.523(T) = 4.276(T) = ink Rotaion : ink Rotaion :	0.925 + 2 0.925 + 3 is too high	.598 + 0.000 .351 + 0.000	0.798 0.843	0.000

برنامه ETABS طراحی ظرفیتی مهاربندها، ستونها و تیرهای خارج از تیر پیوند را انجام میدهد؟ بله. برنامه طراحی این اجزا را با بزرگنمایی نیروهای داخلی این اجزا، در نسبت ظرفیت مورد انتظار به نیروی طراحی تیر پیوند، طراحی می کند. The brace strength is checked the brace forces corresponding to the amplified controlling link beam nominal shear strength 1.25R_vV_n for I-Shapes and 1.4R_vV_n for Box shapes (AISC 341-16 F3.3). The controlling link beam nominal shear strengths are obtained by the process described earlier (AISC 341-16 F3.5b(1)) For load combinations including seismic effects, a load Q1 is substituted for the term E, where Q1 is defined as axial forces and moments generated by at least 1.25 R_vV_n for I-Shapes and 1.4 R_vV_n for Box shapes, where V_n is the nominal shear strength of the link beam (AISC 341-16 15.6a). (AISC 341-Part I 15.6a, 15.2b: 1.25 * Q1 replaces E, Q1 leads to link shear of Ry This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۱

ار نظام محمد کمی کندی این زر م نکته: برای تعیین ضخامت ورق بایستی کفایت ظرفیت فشاری ورق مهاربند نیز کنترل شود. طول سخت نشده ورق شامل انتهای مهاربند (با لحاظ نمودن فاصله 2t) تا سطح تیر یا ستون که در شکل زیر نشان داده شده است به عنوان یک ستون با عرض واحد در نظر گرفته شده و ضریب لاغری آن برابر ۱/۲ برای خارج از صفحه و ۰/۸ برای داخل صفحه در نظر گرفته شود (As (recommended by Astaneh-Asl [1998] and Brown, 1988 Pu/Wt ظرفیت فشاری ورق بایستی از ظرفیت فشاری مهاربند در نظر گرفته شده، Longest Gusset 1" Strip in Compression Column بیشتر باشد. مقدار شعاع ژیراسیون نیز با توجه به عرض نوار برابر است با: W=Whitmore's Width t= Gusset Thickness L= Length of Gusset Column $=\frac{t}{\sqrt{12}}=0.3\times t$ This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۶۶٨

ساختی سان زد المجل بنظر محنه مثال) طول دهانه : 3.24 m ارتفاع طبقه : 3.24 m مقطع تير : IPE 18 مقطع ستون : 22 IPE 22 مقطع بادبند : **2 UPA 10** فاصله آزاد خمش : سه برابر ضخامت ورق اتصال. نوع مهاربند: ضربدری- میزان نیروی محوری تیر در اثر نیروی طراحی دیافراگم برابر ۷ تن میباشد. نوع الکترود E60 و کنترل کیفی در کارگاه به صورت چشمی صورت میگیرد This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۴۷۰

$$F_{V2} \text{ with a value This publication or any part thereof must not be reproduced in any form without the written permission$$

اللہ تیر:

$$l_w = (30 - 2.5_{ch}) = 27.5 \text{ cm}$$

 $f_x = \frac{H_b}{2(l_w)} = \frac{25600 \text{ kg}}{2(27.5 \text{ cm})} = 465 \frac{\text{kg}}{\text{cm}^2} \text{ (x-component)}$
 $f_y = \frac{V_b}{2(l_w)} = \frac{15360 \text{ kg}}{2(27.5 \text{ cm})} = 280 \frac{\text{kg}}{\text{cm}^2} \text{ (y-component)}$
 $f_r = \sqrt{\left(465 \frac{\text{kg}}{\text{cm}^2}\right)^2 + \left(280 \frac{\text{kg}}{\text{cm}^2}\right)^2} = 540 \frac{\text{kg}}{\text{cm}^2} \text{ (resultant)}$

بر نظام عند میدند) سازه خط اسان زد ملاحظات كلى قاب خمشی معمولی: طبق ۲۸۰۰، برای ساختمان با اهمیت زیاد و خیلی زیاد در تمام مناطق لرزه خیز و برای ساختمان با آهمیت متوسط در منطقه ۱ و۲ مجاز نیست. برای ساختمان با آهمیت متوسط در مناطق با لرزه خیزی ۳ و ۴ به ۱۵ متر باید محدود گردد. **قاب خمشی متوسط**: طبق ۲۸۰۰ ارتفاع آن به حداکثر ۵۰ متر محدود میشود. قاب خمشی ویژه: طبق ۲۸۰۰ ارتفاع آن به حداکثر ۲۰۰ متر محدود می شود. از قاب خمشی ویژه استفاده کنیم یا متوسط؟ $\frac{C_{SMF}}{C_{IMF}} = \frac{\frac{ABI}{7.5}}{\frac{ABI}{5}} = 0.66 \quad (34\% \downarrow)$ Another the set of اتصالات $\frac{C_{d(SMF)}}{C_{d(IMF)}} = \frac{5.5}{4} = 1.37$ ۵۱۱ صفحه This publication or any part thereof must not be reproduced in any form without the written permission

ر کریا تیمان کر اسان یزد ۳- قاب خمشی ویژه: طبق مبحث دهم و AISC341-16، مقاطع تیرها و ستونها باید از نوع فشردهٔ لرزهای با محدودیت حداکثر نسبت پهنا به ضخامت برابر λ_{hd} باشد. آیا برنامه ETABS کنترل خاصی برای فشردگی تیرها و ستونها در قاب خمشی ویژه انجام می دهد؟ بله. برنامه ETABS برای تیرها و ستونها فشردگی لرزهای با محدودیت حداکثر نسبت پهنا به ضخامت برابر λ_{hd} را بررسی و در صورت عدم اقناع شرایط پیام خطایی صادر میشود. Section is not seismically compact for highly ductile members (AISC 341-10 Table DI Section is not seismically compact for highly ductile members (AISC 341-10 Table DL. Section is not seismically compact for highly ductile members (AISC 341-10 Table D1 Section is not seismically compact for highly ductile members (AISC 341-10 Table DI compact for h 1v duction on in pot spiemical ۵۶۷ صفحه This publication or any part thereof must not be reproduced in any form without the written permission

الملكة سازين فللمساقين يزد				
				مثال
\overline{z}	λ_{hd}	λ_{md}		
and an			طع ا شکل نورد شده	بالهای مقا
	$0.32 \left \frac{E}{P F} \right $	$0.40 \left \frac{E}{P F} \right $	یده از ورق، ناودانیها،	و ساخته ش
	$\sqrt{N_y N_y}$	$\sqrt{N_y N_y}$	ساق نبشیهای تک و دورا را فاصله و ساقی	سپریها، س نیشرهای
			دوبل با فاطنته و سای شیهای دوبل به هم	ببسیهای ، برجسته نب
b		(7)		چسبیدہ
			-	
				1
6			man	AN
This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۶۶۸ صفحه				

يلحماً چشمه اتصال و ناحیه صلب انتهایی استان نرد FEMA 451: Members were modeled using centerline dimensions without rigid end offsets. This allows, in an approximate but reasonably accurate manner, deformations to occur in the beamcolumn joint region. در FEMA 451 نیز مقداری برای درصد ناحیه چشمه اتصال ارائه نشده است CSI Help: Concrete frames should never use a fully rigid zone. A value of 0.5 is recommended for concrete frames, where 50% of the actual offset is considered rigid. Frame Assignment - End Length Offsets Assign Analyze Display Design Opt ns Tools Hel · ♥ 號 ☑ @ · @ · □ ∨ 回 単 行 End Offset Along Length Y Fran Section Property. Automatic from Conne T Shell 1 Property Modifiers Link O Define Lengths Releases/Partial Fixity End Length Offs 41 Joint Load · I. j. al. Rigid-zone factor 0.5 وزن تير بدون لحاظ كردن ناحيه صلب انتهايى براساس طول Frame Self Weight Option خالص و وزن ستون براساس طول کل محاسبه مینا Auto وزن تير و ستون بدون لحاظ كردن ناحيه صلب Weight Based on Full Length انتهایی براساس طول کل محاسبه میشود. O Weight Based on Clear Length Close OK Apply This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۵۷۴

Model 3: Rigid zone factor = 0, Panel zone from column Maximum deflection: $\Delta x = 3.31$ cm در این مدل که ناحیه صلب انتهایی صفر در نظر گرفته و چشمه اتصال با استفاده از مشخصات هندسی ستون مدلسازی شده است. در این مدل گره ها انعطاف پذیر بوده و دوران زیادی در آنها رخ میدهد که باعث ایجاد جابجایی زیاد میگردد. این مدل توصیه نمیشود زيرا مقادير لنگرها در آن غيرمحافظه كارانه هستند. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۵۷۹

ظرفيت برشي چشمه اتصال: مقاومت برشی چشمه اتصال برابر $\phi_v \mathsf{R}_{\mathsf{n}}$ و مقاومت مجاز برشی آن برابر $\mathsf{R}_{\mathsf{n}}/\Omega_v$ است. که در آن: $\phi_v = 1.00 (LRFD)$ ۱ - در حالتی که تاثیر تغییر شکل چشمه اتصال در تحلیل منظور نشود: $\Omega_v = 1.50 (ASD)$ ۲- در حالتی که تاثیر تغییرشکل چشمه اتصال در تحلیل منظور شود:
$$\begin{split} n_n &= 0.6F_y d_c t_w \left(1 + \frac{0.7Cf}{d_b d_c t_w} \right) \\ R_n &= 0.6F_y d_c t_w \left(1 + \frac{3b_{cf} t_{cf}^2}{d_b d_c t_w} \right) \left(1.9 - \frac{1.2\alpha P_r}{P_v} \right)^{(n-1)} \\ \end{split}$$
 $R_n = 0.6F_y d_c t_w \left(1 + \frac{3b_{cf} t_{cf}^2}{d_{\rm h} d_{\rm c} t_{\rm m}}\right)$ This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۵۸۷

 $R_{n} = 0.6F_{y}d_{c}t_{w}\left(1 + \frac{3b_{cf}t_{cf}^{2}}{d_{b}d_{c}t_{w}}\right)$ $R_{n} = 0.6F_{y}d_{c}t_{w}\left(1 + \frac{3b_{cf}t_{cf}^{2}}{d_{b}d_{c}t_{w}}\right)$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8\frac{F_{y}b_{cf}t_{cf}^{2}}{d_{b}} = V_{Panel} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8\frac{F_{y}b_{cf}t_{cf}^{2}}{d_{b}} = V_{Panel} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8\frac{F_{y}b_{cf}t_{cf}^{2}}{d_{b}} = V_{Panel} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8\frac{F_{y}b_{cf}t_{cf}^{2}}{d_{b}} = V_{Panel} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8\frac{F_{y}b_{cf}t_{cf}^{2}}{d_{b}} = V_{Panel} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8\frac{F_{y}b_{cf}t_{cf}}{d_{b}} = V_{Panel} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8\frac{F_{y}b_{cf}t_{cf}}{d_{b}} = V_{Panel} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} + 1.8V_{Flanges}$ $R_{n} = 0.6F_{y}d_{c}t_{w} \approx 0.6F_{y}d_{c}t_{w}$ ^{حت}مقاومت خمشی رابطه R_n براساس مشاهدات تجربی حاصل شده است. در این حالت با توجه به شکل اسلاید بعدی، می توان در محل اتصال بال تیر به ستون یک مفصل خمیری با ظرفیت زیر در نظر گرفت plastic moment capacity $M_p = ZF_y = \frac{b_{cf}t_{cf}^2}{4}F_y$ This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۵۹۷

$$M_{Flanges} = 1.8V_{Flanges}d_b = 1.8F_yb_{cf}t_{cf}^2$$
 (volume of the panel)
 $\theta_y = \gamma_y = \frac{M_{Panel}}{K_{Panel,\theta}} = \frac{0.6F_y \times (\text{volume of the panel})}{G \times (\text{volume of the panel})} = \frac{0.6F_y}{G}$
 $\eta_y = \gamma_y = \frac{M_{Panel}}{K_{Panel,\theta}} = \frac{0.6F_y \times (\text{volume of the panel})}{G \times (\text{volume of the panel})} = \frac{0.6F_y}{G}$
 $\eta_y = \gamma_y = \frac{M_{Flanges,\theta}}{K_{Panel,\theta}} = \frac{1.8F_yb_{cf}t_{cf}^2}{4 \times (0.6F_y}} = 0.75Gb_{cf}t_{cf}^2$
 $M_{Flanges,\theta} = \frac{M_{Flanges,\theta}}{4\theta_y} = \frac{1.8F_yb_{cf}t_{cf}^2}{4 \times (0.6F_y)} = 0.75Gb_{cf}t_{cf}^2$
 $\eta_y = 0.75Gb_{cf}t_{cf}^2$
 M_{ec} is a not in the set of t

مثال) در یک اتصال تیر به ستون، با مشخصات داده شده در زیر، پارامترهای مدل کاروینگر را
بدست آورید. مقطع تیر IPE300، مقطع ستون IPB300 که در آن از یک ورق مضاعف به
بدست آورید. مقطع تیر IPE270، مقطع ستون IPB300 که در آن از یک ورق مضاعف به
ضخامت یک سانتیمتر استفاده شده است.
$$F_{y} = 2400 \frac{\text{kg}}{\text{cm}^{2}}, \quad G = 800000 \frac{\text{kg}}{\text{cm}^{2}}$$

IPE270 $\rightarrow d_{b,nom} = 27 \text{ cm}$, $t_{f} = 1.02 \text{ cm}$, $d_{b} = 25.95 \text{ cm}$
IPB300 $\rightarrow d_{c,nom} = 30 \text{ cm}$, $t_{web} = 1.1 \text{ cm}$, $t_{cf} = 1.9 \text{ cm}$
 $d_{c} = 30 \text{ cm} - 1.1 \text{ cm} = 28.1 \text{ cm}$, $b_{cf} = 30 \text{ cm}$
Total panel zone thickness $t_{w} = 1.1 \text{ cm} + 1 \text{ cm} = 2.2 \text{ cm}$
 $V_{Panel} = \frac{1}{\sqrt{3}} F_{y} \times d_{c}t_{w} \approx 0.6F_{y}d_{c}t_{w} = 0.6 \times 2400 \times 28.1 \times 2.2 = 40400 \text{ kg}$
 $V_{Flanges} = 1.8 \frac{F_{y}b_{cf}t_{cf}^{2}}{d_{b}} = 1.8 \times \frac{2400 \times 30 \times 1.9^{2}}{25.95} = 10000 \text{ kg}$

چه وقت به ورق پیوستگی نیاز است؟
چه وقت به ورق پیوستگی نیاز است؟
طبق ضوابط آیین نامه در صورتی که مقاومت کاهش یافته بال ستون از حداکثر نیروی محتمل بال
تیر بیشتر شود. براساس تحقیقات Graham و همکاران در سال ۱۹۵۹، با استفاده از روابط خط
$$\varphi R_n = 0.9 \times 6.25t_{cf}^2 F_{yc}$$
 و همکاران در سال ۱۹۵۹، با استفاده از روابط خط
تسلیم، مقدار مقاومت بال ستون بصورت زیر تعیین شد:
همچنین میدار مقاومت بال ستون بصورت زیر تعیین شد:
ممچنین می مود و در آن ۳۰٪ کرنش سختی در نظر گرفته شده است. همچنین فرض
میشود که مقدار لنگر محتمل ایجاد شده توسط بال تیر، ۲۰٪ لنگر خمیری کل مقطع تیر باشد و
از اثر وجود جان صرف نظر میشود:
 $T = \frac{M_{max}}{d} = \frac{1.3M_p}{d} = \frac{1.3(ZF_{yb})}{d} = \frac{1.3(ZF_{yb})}{d} = \frac{1.8A_f dF_{yb}}{d}$
با برابر قرار دادن روابط فوق رابطه اسلاید بعدی بدست می آید.
۲۰ با برابر قرار دادن روابط فوق رابطه اسلاید بعدی بدست می آید.

XML را مطابق با مشخصات مقطع واقعی باکس تغییر دهید:	حال مشخصات فایل
xml version="1.0" encoding="utf-8" ?	
<pre><property_file xmlns="http://www.csiamerica.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemalocation="http://www.csiamerica.com CSIExtendedSectionPropertyFile.xsd"></property_file></pre>	
<control> <pre> <pre> <</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></control>	hission

من نظام المنارية) مان نظام المنان نزد	A		2	
<pre><street_ise< pre=""></street_ise<></pre>	Drodin	he writed	077	
<j>291.5408</j> <cw>2939860</cw> 				
				NI

Prequalifed Moment Connections - AISC358-16	
Connection Type	Systems
Reduced beam section (RBS)	SMF, IMF
Bolted unstiffened extended end plate (BUEEP)	SMF, IMF
Bolted stiffened extended end plate (BSEEP)	SMF, IMF
Bolted flange plate (BFP)	SMF, IMF
Welded unreinforced flange-welded web (WUF-W)	SMF, IMF
Kaiser bolted bracket (KBB)	SMF, IMF
ConXtech ConXL moment connection (ConXL)	SMF, IMF
SidePlate moment connection (SidePlate)	SMF, IMF
Simpson Strong-Tie Strong Frame moment connection	SMF, IMF
Double-tee moment connection	SMF, IMF
۲۹۶۲ صفحه This publication or any part thereof must not be reproduced in any form without the written permission	

م این محمد میشین ماری خط ایمان زد جوشکاری قوسی زیر پودری (SAW): فرآيند جوشكاري قوسي كه يك يا چند قوس بين الكترود فلزي لخت يا الكترودها (سيم جوش توپر) و حوضچهٔ جوش بکار میبرد. قوس و فلز مذاب توسط بستری از روان ساز دانه یا پودر جوش روی قطعات کار محافظت میشوند. فرآیند بدون فشار و فلز پرکننده تولیدی توسط الکترود (سیم جوش) و گاهی از منبعی ضمیمه (سیم جوش، روان ساز یا دانههای فلزی) تأمین میشود. از آنجایی که قوس الکتریکی در این فرآیند جوشکاری زیر پودرجوش مخفی میباشد گاهی به این فرآیند جوشکاری، جوشکاری قوس مخفی نیز می گویند. الكترود حوشكارى قوس الكتريكي روان ساز جوش جوش فلز پایه This publication or any part thereof must not be reproduced in any form without the written permission صفحه

روند طراحی
روند طراحی
گام ۱ - مقدار لنگر خمشی مورد انتظار در محل تشکیل مفصل پلاستیک (
$$M_{pr}$$
) با استفاده از رابطه
 $M_{pr} = C_{pr}Z_e R_y F_y$
 $M_{pr} = C_{pr}Z_e R_y F_y$
که در رابطه اخیر، F_r تنش تسلیم حداقل، R_r برابر نسبت تنش تسلیم مورد انتظار به تنش تسلیم
حداقل مصالح، Γ_{pr} ضریب مربوط به اثرات کرنش سختی، قیدهای موضعی و سایر شرایط بوده که
طبق رابطه زیر بدست میآید:
 $C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$

من نظام محلم مياني) ماري نظام اسان يزد گام ۲- مقدار نیروی برشی ایجاد شده در محل مفصل پلاستیک در هر دو انتهای تیر تعیین نمایید. مقدار مقاومت برشی در مرکز مفصل پلاستیک باید با در نظر گرفتن تعادل استاتیکی بارهای ثقلی ضریبداری که از ترکیب بار $D = f_1 L + 0.2S$ بدست آمده و با نیروی زلزله ترکیب می شوند و اثرات لنگر خمشی M_{pr} در محلهای تشکیل مفصل پلاستیک، تعیین شوند. در ترکیب بار ثقلی مقدار f₁ بایستی با توجه به الزامات مبحث ششم تعیین شود که مقدار آن حداقل برابر **0.5** است. گام ۳- مکان مفصل خمیری (S_h) از بر ستون، تعیین شود. $S_h = \max(L_{pt} \& L_{pb})$ گام ۴- مقدار لنگر ایجاد شده (ناشی از به ظرفیت رسیدن تیر در محل مفصل پلاستیک) در بَر ستون تعيين شود. $M_f = M_{pr} + V_h S_h$ مقدار لنگر و برش بدست آمده در دو گام قبل ملاک طراحی ورقهای روسری و زیر سری می باشد. • ۵ صفحه This publication or any part thereof must not be reproduced in any form without the written permission

$$t_{pb} = \frac{M_f}{\phi_d \times \left(d + \frac{t_{pb}}{2} + \frac{t_{pt}}{2}\right) \times b_{pb} \times F_y}$$

$$b_{pb} \times F_y$$

$$b_{pc} \times \left(d + \frac{t_{pb}}{2} + \frac{t_{pt}}{2}\right) \times b_{pb} \times F_y$$

$$b_{pc} \times f_y$$

گام ۶- تعیین طول ورق زیرسری (
$$L_{pb}$$
): طول ورق زیرسری براساس کوپل ایجاد شده در بر ستون
تعیین میشود. طول ورق زیرسری برابر است با:
 $L_{pb} = \frac{L_w}{2} + 2^{cm}$
طبق جدول ۱۰-۲-۹-۲ مبحث دهم. در صورتی که ضخامت ورق ها از ۱۵ میلیمتر بیشتر شود،
طبق جدول ۱۵ میلیمتر بیشتر شود،
یایستی از الکترود E70 استفاده نمود.
گام ۷- تعیین ضخامت ورق روسری (عرض الالی الیاس)
عرض بال تیر (b_{2p} تعیین میشود. به طوریکه فضای کافی برای جوش داشته باشد:
 $b_{2p} = b_{bf} - 5^{cm}$

مشخصات مقطع تير IPE500 مشخصات مقطع تير الPE500 مشخصات مقطع تير الPE500 مشخصات مقطع تير الPE500 مشخصات مقطع متير
$$d = 50 \ cm$$
 $t_{bw} = 1.02 \ cm$ $b_{bf} = 20 \ cm$ $t_{bf} = 1.6 \ cm$ $k_b = 3.7 \ cm$
 $Z_{bx} = 2194 \ cm^3$ $F_{yb} = 2400 \frac{kg}{cm^2}$ $F_{ub} = 3700 \frac{kg}{cm^2}$
 $d_c = 35 \ cm$ $t_{cw} = 2 \ cm$ $b_{cf} = 35 \ cm$ $t_{cf} = 2 \ cm$
 $Z_{cx} = 3271 \ cm^3$ $F_{yc} = 2400 \frac{kg}{cm^2}$ $F_{uc} = 3700 \frac{kg}{cm^2}$
 $(M_{pr}) = 1.27 > 1.2 \rightarrow C_{pr} = 1.2$
 $M_{pr} = C_{pr}Z_e R_y F_y = 1.2 \times 2194 \times 1.2 \times 2400 \times 10^{-5} = 75.8 \ ton. m$

بار گسترده ضریبدار روی تیر برابر است با:

$$q_u = 1.2D + 0.5L = 1.2 \times 1000 + 0.5 \times 800 = 1600 \, kg/m$$

 $q_u = 1.2D + 0.5L = 1.2 \times 1000 + 0.5 \times 800 = 1600 \, kg/m$
 $V_h = \frac{2M_{pr}}{L_h} + \frac{q_u L_h}{2} = \frac{2 \times 75.8 \times 10^2}{365} + \frac{1.6 \times 3.65}{2} = 44.45 \, ton$
 $S_h = \frac{2M_{pr}}{L_h} + \frac{q_u L_h}{2} = \frac{2 \times 75.8 \times 10^2}{365} + \frac{1.6 \times 3.65}{2} = 44.45 \, ton$
 $S_h \approx 50 \, cm$
 $S_h \approx 50 \, cm$
 $S_h \approx 50 \, cm$
 $M_f = M_{pr} + V_h S_h = 75.8 + 44.45 \times 0.5 = 98 \, ton. m$
 $M_f = M_{pr} + V_h S_h = 75.8 + 44.45 \times 0.5 = 98 \, ton. m$

الفرض بُعد جوش محاسبه می شود:

$$I_{w} = \frac{M_{f}}{\Phi R_{n} \times \left(d + \frac{t_{pb}}{2} + \frac{t_{pt}}{2}\right)} = \frac{98 \times 10^{5}}{0.75 \times (0.75 \times 0.6 \times 4900 \times 0.707 \times 1.4) \times (50 + 3)}$$

$$= 113 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{L_{w}}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} = \frac{113}{2} + 2^{cm} \approx 60 \ cm$$

$$I_{pb} = \frac{113}{2} + 2^{cm} = \frac{113$$

گام ۹- بُعد جوش ورق روسری به تیر: با توجه به ضخامت قطعه ناز کتر (ضخامت بال تیر) که برابر
گام ۹- بُعد جوش و حداکثر آن برابر ضخامت
t_br=1.6 cm گوشه به صورت زیر
قطعه ناز کتر است. با فرض بُعد جوش گوشه برابر ۶ میلیمتر و حداکثر آن برابر ضخامت
فطعه ناز کتر است. با فرض بُعد جوش
$$a_w$$
=1.6 cm گوشه به صورت زیر
 $L_w = \frac{M_f}{\phi R_n \times \left(d + \frac{t_{pb}}{2} + \frac{t_{pt}}{2}\right)}$
 $= \frac{98 \times 10^5}{0.75 \times (0.75 \times 0.6 \times 4900 \times 0.707 \times 1.6) \times (50 + 1.5 + 2.6)} = 97 cm$
 $Z_{pt} = \frac{L_w}{2} + L' = \frac{97}{2} + 15 \approx 65 cm$
(VYY mitor of the publication or any part thereof must not be reproduced in any form without the written permission)

نیروهای طراحی برش مستقیم و پیچش ناشی از خروج از مرکزیت برابر است:

$$V = V_u = 44.45 \ ton$$

 $T = V_u (b_{wp} - \bar{x}) = 44.45 \ (10 - 1.25) = 389 \ ton. \ cm$
 $P = V_u (b_{wp} - \bar{x}) = 44.45 \ (10 - 1.25) = 389 \ ton. \ cm$
 $P = V_u (b_{wp} - \bar{x}) = 44.45 \ (10 - 1.25) = 389 \ ton. \ cm$
 $P = V_u (b_{wp} - \bar{x}) = 44.45 \ (10 - 1.25) = 389 \ ton. \ cm$
 $P = \sqrt{\left(\frac{V}{2b_w} + L_{wp} + \frac{T(b_w - \bar{x})}{l_p}\right)^2 + \left(\frac{T(L_wp/2)}{l_p}\right)^2}$
 $= \sqrt{\left(\frac{44.45}{2 \times 8 + 35} + \frac{389(8 - 1.25)}{38238}\right)^2 + \left(\frac{389(35/2)}{38238}\right)^2} = 0.957 \ ton/\ cm$
 $\phi R_n = \phi \beta F_{nw} = 0.75 \times 0.75 \times 0.6 \times 4900 = 1653.7 \ kg/\ cm^2$
 $a_e = \frac{R_u}{\phi R_n} = \frac{957 \ kg/\ cm}{1653.7 \ kg/\ cm^2} = 0.57 \ cm$ $\rightarrow a_w = \frac{0.57}{0.75} = 0.77 \ USE \ a_w = 8 \ mm$
 $Q = \frac{100}{1000} \ P = \frac{1000}{1000} \ P = \frac{10000}{1000} \ P = \frac{1000}{1000} \ P = \frac{1000}{1$

روند طراحی
موند طراحی
گام ۱ - مقدار لنگر خمشی مورد انتظار در محل تشکیل مفصل پلاستیک (
$$(M_{pr})$$
 با استفاده از رابطه
 $M_{pr} = C_{pr}Z_eR_yF_y$
 $M_{pr} = C_{pr}Z_eR_yF_y$
که در رابطه اخیر، F_y تنش تسلیم حداقل، R_y برابر نسبت تنش تسلیم مورد انتظار به تنش تسلیم
حداقل مصالح، C_{pr} تس تسلیم حداقل، و R_y برابر نسبت تنش تسلیم مورد انتظار به تنش تسلیم
 $C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$

گام ۲- جهت جلوگیری از گسیختگی کششی بال تیر، حداکثر قطر پیچهای بصورت زیر از نوع استاندارد تعیین شود: $d_b \leq \frac{b_f}{2} \left(1 - \frac{R_y F_y}{R_t F_u} \right) - 0.3^{cm}$ با استفاده از رابطه فوق، قطر پیچ مورد نیاز تعیین شود و فاصله لبه تا سوراخها کنترل شود که ضوابط مبحث دهم در این ارتباط اقناع شود. گام ۳- با فرض مقداری برای ضخامت ورق بال (t_p)، عرض ورق بال (b_{fp}) تعیین شود. برای این مورد بایستی فواصل پیچها از هم و یا از لبه و همچنین عرض بال تیر نیز کنترل شوند. مقاومت برشی اسمی هر یک از پیچها براساس معیارهای برشی و لهیدگی آنها بصورت زیر تعیین شود: $r_n = \min \begin{cases} 1.0F_{nv}A_b\\ 2.4F_{ub}d_bt_{bf}\\ 2.4F_{up}d_bt_p \end{cases}$ This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۳۹

گام ۶- مقدار نیروی برشی ایجاد شده در محل مفصل پلاستیک در هر دو انتهای تیر تعیین نمایید. مقدار مقاومت برشی در مرکز مفصل پلاستیک باید با در نظر گرفتن تعادل استاتیکی بارهای ثقلی ضریبداری که از ترکیب بار $1.2D + f_1L + 0.2S$ بدست آمده و با نیروی زلزله ترکیب می شوند و اثرات لنگر خمشی M_{pr} در محل های تشکیل مفصل پلاستیک، تعیین شوند. در ترکیب بار ثقلی مقدار f₁ بایستی با توجه به الزامات مبحث ششم تعیین شود که مقدار آن حداقل برابر **0.5** است. گام ۷- مقدار لنگر ایجاد شده (ناشی از به ظرفیت رسیدن تیر در محل مفصل پلاستیک) در بَر ستون تعيين شود. $M_f = M_{pr} + V_h S_h$ که در آن V_h برابر با بیشترین برش ایجاد شده در دو انتهای تیر (و در محل مفصل پلاستیک) که در گام قبل تعیین شد، میباشد. در تعیین مقدار لنگر حاصل از رابطه اخیر از مقدار بارهای ثقلی روی تیر در حد فاصل بین مفصل پلاستیک و بَر ستون صرف نظر شده است. This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۲۴۳

کام ۸- مقدار نیروی ایجاد شده در ورق بال به سبب لنگر
$$M_f$$
 را تعیین نمایید.
 $F_{pr} = \frac{M_f}{(d + t_p)}$
که در آن b عمق تیر و tp ضخامت ورق بال است.
 $n \ge \frac{F_{pr}}{\phi_n r_n}$
 $n \ge \frac{F_{pr}}{\phi_n r_n}$
 $m \ge \frac{F_{pr}}{\phi_n F_p}$
 $t_p \ge \frac{F_{pr}}{\phi_d F_y b_{fp}}$
 $t_p \ge \frac{F_{pr}}{\phi_d F_y b_{fp}}$
 $This publication or any part thereof must not be reproduced in any form without the written permission$

کام ۲۱- کنترل پارگی کششی ورق بال:

$$F_{pr} \leq \phi_n R_n$$

که در آن R_n ظرفیت گسیختگی کششی و مطابق مبحث دهم تعیین میشود.
 $F_{pr} \leq \phi_n R_n$
 $F_{pr} \leq \phi_n R_n$
که در آن R ظرفیت برش قالبی بال تیر بوده و مطابق مبحث دهم تعیین میشود.
 $F_{pr} \leq \phi_n R_n$
کم در آن R_n ظرفیت کمانش فشاری ورق بال بوده و مطابق مبحث دهم تعیین میشود. در حالتی که
 $F_{pr} \leq \phi_n R_n$
کم در آن R_n ظرفیت کمانش فشاری ورق بال بوده و مطابق مبحث دهم تعیین میشود. در حالتی که
 $F_{pr} \leq \phi_n R_n$
کمانش فشاری ورق بال کنترل میشود. طول موثر LK را میتوان برای این قطعه برابر ا
مقرع رایی صورت گیرد.
(طر گرفت برای رسیدن به همگرایی، لازم است از گام ۳ تا ۳۱ تکرارهایی صورت گیرد.

کمان کار مقاومت کمان مورد نیاز طراحی در هر دو انتهای تیر محاسبه شود. مقدار مقاومت برشی مورد نیاز باید با در نظر گرفتن تعادل استاتیکی بارهای ثقلی ضریبداری که از ترکیب بار
$$M_{pr}$$
 برشی مورد نیاز باید با در نظر گرفتن تعادل استاتیکی بارهای ثقلی ضریبداری که از ترکیب بار M_{pr} می شوند و اثرات لنگر خمشی M_{pr} از الله مقصل پلاستیک، تعیین شوند. در ترکیب بار ثقلی مقدار f_1 بایستی با توجه به الزامات مبحث ششم تعیین شود که مقدار آن حداقل برابر 0.5 است.
 $V_h = \frac{2M_{pr}}{L_h} + V_{gravity}$
 $V_h = \frac{2M_{pr}}{L_h} + V_{gravity}$
it زمان محمد مقدار آن حداقل برابر 1.5 است.
که در آن h فاصله مفاصل پلاستیک از یکدیگر در امتداد تیر و $V_{gravity}$ نیز نیروی برشی ناشی از بارهای نقلی میباشد. ظرفیت برشی تیر طبق ضوابط مبحث دهم کنترل شود.
گام 10 - ورق تکی جان (در بَر ستون) با استفاده از نیروی بدست آمده در گام ۱۴، طراحی شود.
گام 10 - ورق تکی جان (در بَر ستون) با استفاده از نیروی بدست آمده در گام ۱۴، طراحی شود.
گام 10 - ازوم استفاده از ورقهای پیوستگی کنترل شود.

کام ۲- قطر پیچهای بصورت زیر از نوع استاندارد تعیین شود:

$$d_b \leq \frac{b_f}{2} \left(1 - \frac{R_y F_y}{R_t F_u}\right) - 0.3^{cm} = \frac{20}{2} \left(1 - \frac{1.2 \times 2400}{1.0 \times 3700}\right) - 0.3^{cm} = 1.91 \ cm$$

کام ۳- با فرض ضخامت ورق بال برابر the state of the st

۴-۴-۴ مقاومت فشاری اعضا در مجاورت ناحیهٔ اتصال	۹_۲_۱۰
فشاری اعضا در مجاورت ناحیهٔ اتصال، هPn ، باید به شرح زیر بر اساس حالتهای حدی	مقاومت
یکمانش منظور شود.	تسليم و
صورتی که ۲۵ $ m KL/r$ باشد:	الف) در
$\phi = -/9$ $P_n = F_y A_g$ (14-9-1-1)	۱۰)
	که در آر
طح مقطع کلی عضو	= Ag
ش تسلیم فولاد	F _y = تنہ
ر حالتی که KL/r > ۲۵ میباشد، مقاومت فشاری اعضا باید بر اساس الزامات بخش ۱۰−۲−	ب) برای
، شود. ۵	۴ تعیین
	_
6	
۶۰ صفحه This publication or any part thereof must not be reproduced in any form without the written permission	

بنيام طبق رابطه ۱۰-۲-۹-۱۴ مبحث دهم برای تسلیم روی مقطع کلی، داریم: $\phi R_n = 1.0 \times (0.6F_y A_{gv}) = 1.0 \times 0.6 \times 2400 \times 20 \times 1.2 \times 10^{-3} = 34.5 \text{ ton}$ > 10 ton Ok1-۲-۹-۲-۱ مقاومت برشی اعضا در مجاورت ناحیه اتصال مقاومت برشی طراحی اعضا در مجاورت ناحیهٔ اتصال، ϕR_n ، باید به شرح زیر برابر کوچکترین مقدار محاسبه شده بر اساس حالتهای حدی تسلیم برشی روی مقطع کلی و گسیختگی برشی روی مقطع خالص تعیین شود. الف) بر اساس تسلیم برشی روی مقطع کلی: φ = ١ $(14 - 9 - 7 - 1 \cdot)$ $R_n = \cdot \beta F_y A_{gv}$ بختگی برشی روی مقطع خالم ب) بر اساس گس $\phi = \cdot / V \Delta$ $(10 - 9 - 7 - 1 \cdot)$ $R_n = \cdot / \mathcal{P} F_u A_{nv}$ This publication or any part thereof must not be reproduced in any form without the written permission صفحه ۶۳

