www.SoftCivil.ir

استاد (6) جاز

دانشگاه تربیت دبیر شهید رجایی

منبع: www.laag.ir

www.SoftCivil.ir Date: استاد: خالم معصوسه أمّاحابي مادلات ديغر لينسل معادله د من سل مولى : معادلاتى كم تتما مشتقات مولى درآن عاد فرد رامعادله د خراس مولى ی نامند $\frac{d'Q(t)}{d(t)} + \frac{R}{d(t)} + \frac{1}{C}Q(t) = R(t)$ مرتب معادله ديغ اسل : دالاترين مرئيم مشك در معادله المرئيم معادله د خرا سل كو مند . $g(n, f(n), \dots, f^{(n-1)}(n)) = g(n, f(n), \dots, f^{(n-1)}(n))$ معادله <u>= (مر د ... د کرد پر ۲) حورت صن من ما دله د نیز اسل م</u>نه ۳ می ما بسد . اگر بتون ماداردن اسل را سبب بم بالاترين رئيد سنون حل كرده و دانسته ما يشم : (" كور ، كوه كود م) ا = (" كو درای مورت فرم بالا صورت منبع معادله دیز اس اس توجة ميلى مورى ار المام عرام مربع را در معادلات در السل بركارى مربع. مد ميلى مورى الرابع مرام مربع را در معادلات در السل بركارى مربع. $y' + ty' + ty' = 0 \qquad \Rightarrow \qquad y' = -t \pm \sqrt{t' - 1}y = 0$ مادلات در السل على وغريطي مادله در السل علمان .= ((" بر... , بروبر) كاراخ راجل كرم، هركاه ATLAS AOTEBOOK

www.SoftCivil.ir Date ۶ مک تابع خلی از شنیرهای مو و و ... و ⁽ کو یا سند هین : $a_{1}(t)y_{+}^{(m)}a_{1}(t)y_{+}^{(m-1)}+\dots+a_{n}(t)y_{-}=g(t)$ بواب مادار د نواسل، مل جواب معادار د نواسل بر صورت (" يو ... و ير . يو د +) + (" يو مريان (طرو مح) تايي است ماند (مرطور لله فر " و " و موديدده و بر از اي هر $\frac{1}{2} \frac{1}{2} \frac{1}$ يكن ت ك 1) t' dy + t dy + ty = sin tطى لرّمته $\frac{dt}{dt} + \frac{dt}{dt} = \frac{dt}{dt}$ عرظل مرئيرا ت من . تعقیق کند که کابع داده مشده واب معادله دند است کاهر؟ V) $\chi'' = \chi = \chi (t) = e^{t}$, $\chi (t) = cosh(t)$, $\chi (t) = cost$ ") $\chi'(t) = \sinh(t) \rightarrow \chi'' = \cosh(t) \qquad \chi'' - \chi = \cosh(t) = o'$ c) x (t) = - sint - X = - cost - Y - y - cost - cost - Y cost

www.SoftCivil.ir () حل مادلات در براسیل خلی مرتبه اول $\chi'_{+} P(t)\chi = q(t)$ ∫P(+)dt µ(+)= e روین فاکتر افغال المر (روین لاب نیز) ، حل بر این روین مسکر اخرب معادله دین اسل مال المدل ليري است. تابع (٤) الردائا كتور أمكر إلى مائل من شن ، مطلوب است عل معادلات زمر: ا $\mathcal{M}(t) = \mathcal{C} = \mathcal{C}^{t+1}$ $\frac{dy}{dt} + \frac{dy}{dt} = \frac{\theta}{\theta}$ $\frac{e^{t}}{dt} + \frac{e^{t}}{dt} + \frac{e^{t}}{dt} = \frac{e^{t}}{dt}$ $\frac{d}{dt} \stackrel{(e^{rt})}{\longrightarrow} \frac{d}{dt} \stackrel{(e^{rt})}{\longrightarrow} \stackrel$ $e^{rt} \chi = \frac{c}{r} e^{rt} + c \Rightarrow \chi = \frac{c}{r} + ce^{-rt}$ $\frac{dy}{dt} + \frac{1}{7}\frac{y}{x} + \frac{y}{t} + t$ $e^{\frac{1}{r}t} \frac{dx}{dt} + \frac{1}{r}e^{\frac{1}{r}t} = \frac{r}{e^{\frac{1}{r}}} + te^{\frac{1}{r}} \rightarrow \frac{d}{dt} (e^{\frac{1}{r}t}) = (r+t)e^{\frac{1}{r}}$ $\mu(t) = c \int \frac{1}{c} dt = c + t$ 2.) $t \chi = sint$ t > 0 (, $e^{\frac{1}{7}t} = \int (t+t)e^{\frac{1}{7}t} - f(t+t)e^{\frac{1}{7}t} = fe^{\frac{1}{7}t}$ $6 \chi = \frac{1}{2} t + c e^{\frac{1}{7}}$ * $\int \frac{y}{t} = \frac{y}{t} = \frac{y}{t}$ $\mu(t) = e^{\int \frac{y}{t}} = e^{-t}$

Date: $t \times (y + \frac{y}{t} \times \frac{\sin t}{t}) \Rightarrow \frac{d}{dt} (t \times y) = t \sin t$ $\frac{y = -\cos t}{t} + \frac{\sin t}{t} + \frac{c}{t'}$ خال حل مك مسلم مدار لولد خلى . مطلوب است حل مسل على مقدار ادام زير: $\mathcal{M}(t) = e^{\int \frac{t}{t} dt} = e^{t/t} = t^{\prime}$ Y = (1) Y + Y = Et + Y + (1) $\xrightarrow{-t} (\underbrace{t}_{\chi} + \underbrace{t}_{\chi} = \widehat{t} + \underbrace{t}_{\chi} + \underbrace{t}_{\chi} = \underbrace{t}_{\chi} + \underbrace{t}_$ $t_{\mathcal{X}}^{\prime} = \frac{\xi t_{\mathcal{X}}^{\prime} C}{r^{\prime}} \xrightarrow{\mathcal{X}} = \frac{\xi t_{\mathcal{X}}^{\prime} C}{r^{\prime}} \xrightarrow{\mathcal{X}} \overset{\xi t_{\mathcal{X}}^{\prime} C} \xrightarrow{\mathcal{X}} \overset{\xi$ $(f) = e^{\int \frac{e}{t}} + \frac{e}{t} + \frac{e}{t} = e^{\int \frac{e}{t}} + \frac{e}{t} + \frac{e}{t} = e^{\int \frac{e}{t}} +$ $-\frac{t}{4} \underbrace{f_{x}}_{t} = \underbrace{e^{-t}}_{t} \underbrace{f_{x}}_{t} \underbrace{f_$ $\frac{d}{dt} = -te^{-t}e^{$ ×(-)=. e e e - c => c=. مسر می مقامد برای بافتن سیطی عود ریک دسته منعن اسا است بر از مشرق ار و

www.SoftCivil.ir ما حدث مى كثيم سيس كورابه . ال- تسبيل مى كثيم . معاد معامل راحل مى كثيم ، جواب مسرحامي متعامد (بردستهنفن است. $n'+\chi'=C'$ $n+\chi'\chi'=0$ $n+\chi'(-\frac{1}{2})=0 \rightarrow n\chi'=\chi'$ - $\chi = cn'$ $\chi' = c'n \rightarrow c = \chi'$ $\chi' = c'n \rightarrow c = \chi'$ $= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2} = \frac{1}$ $\chi' = C \omega \cos(\omega n + C_{\star}) \rightarrow \chi'' = -C, \omega' \sin(\omega n + C_{\star}) \rightarrow \chi'' = -\omega' \chi$ $\chi = C_1 n + C_2 \sin n \xrightarrow{48} \chi = \chi + \frac{y_{ci}}{\sin n} = \sin n \Rightarrow \Box$ "... $\chi' = C_{\gamma} = C_{\gamma} = C_{\gamma} = C_{\gamma} = -\frac{3}{2} + \frac{3}{2}$

. بابعامین بون ارتبا احاد ار از من یک طرف و مدیطرف و کمبر www.SoftCivil.ir مکته : بوری برهورب مصح م می نولیدمایند $(n-c)^{r} + y^{r-1} \rightarrow h c q$ $n-c = \pm \sqrt{1-y^{r}} \rightarrow l u c q$ Date: $D^{=>} y = y'n + \frac{y''n}{\sin n} \cos \alpha xn$ پوینی دسته مندی : پوینی دسته مندی : $\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{(1)} \begin{pmatrix} & & & \\ & & \\ \end{array} \xrightarrow{(2)} \begin{pmatrix} & & & \\ & & \\ \end{array}$ \xrightarrow{(2)} \begin{pmatrix} & & & & \\ & & \\ \end{array} <u>مین دیداد بر را که برتیا منص های •= (عربو، ۲) همان نابشد و در هر نقطی او در فرد قدامل بر</u> ىك منف كذريسة منطق = (ى بور») جريمان بايندرا بويش دريسة منطق ي ماميد. مرادي بوست أوردن چین مسته سنمی مشب به می شویم عراض کرده و فواب ها رامی یا بیم میں مطلوب است یون دستہ سنگن ا^ی ¹ (2- م) n=C $(c-c)'+\chi'=1 \Rightarrow \chi=\pm1$ $y = cn + \frac{1}{c} c^{s} \xrightarrow{(-)} = n + c^{s} = \sqrt{-n}$ °C y= V-nxn+ 1 V(-n)= سرطى متطعد المشتى سن كير ٢ من ٢ مرد كرد وال ال- عوى كرده عم مادر راس جاب x' + (n-c)' = c' --LAS NOTEBOOK

ww.SoftCivil.ir $\frac{Date:}{} \xrightarrow{y'} + (y') = (n+y') \xrightarrow{y'} + (y') = n' + (y')^{+}$ $\chi' = \lambda' + \chi' \xrightarrow{\chi' \to \frac{1}{2}} \chi' - \chi \gamma \chi(-\frac{1}{2}) - \lambda' = \rightarrow \chi' \chi' + \chi \gamma - \lambda' \chi' = .$ مع سوما المراحل فر ۲۴ ب الملوب لسب مسرهای مطلع مذهبی : $n' = \varepsilon (\gamma + c) \rightarrow in = \varepsilon \gamma' \rightarrow c = in = n$ $\varepsilon \gamma' \gamma' \gamma'$ $n' = \frac{\varepsilon_n}{\varepsilon_{\gamma'}} \left(\chi + \frac{n}{\varepsilon_{\gamma'}} \right) \xrightarrow{\gamma' + \frac{1}{\gamma'}} n' = -\frac{\varepsilon_n}{\varepsilon_{\gamma'}} n_{\gamma'} \left(\chi + -\frac{n_{\gamma'}}{\varepsilon_{\gamma'}} \right) \xrightarrow{\gamma' + \frac{1}{\gamma'}} n_{\gamma'} \left(\chi + \frac{n_{\gamma'}}{\varepsilon_{\gamma'}} \right)$ $n' + \frac{nyy}{2} - \frac{nyny}{2} \longrightarrow n' + \frac{nyy}{2} - \frac{ny'}{2} = \frac{n}{2} n + \frac{nyy}{2} - \frac{n'}{2} = 0$ $n'_{+}y'=c' \rightarrow in+iy'=c \rightarrow in+iy'=c \rightarrow in+iy'=c'$ $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy$ مادلات حلی بند : معادله (برد ۲) = بل حالی بند کا سده می سود هرگاه بندن آمرا به تسک مله M(n) dn + N(y) dy = 0

www.SoftCivil.ir

Date: روین حل معادلات حبابی بذری جل معادله حبابی بذیر اساساً می روند اجرای سود مرمی کشم He + He بترتيب بإدر شتق های دلغاه Me با بيند. در اين مورت C = (ي) + + (د) + جلب حادله دين اسل است شکل مطلوب (ست عل ما دلات زیر : $\frac{dy}{dy} = \frac{\chi'}{\chi'}$ n'dn + (y'-1)dy = 0n" + x" - y = C (or E ch) $\frac{dy}{dn} = \frac{n'}{y} \frac{dy}{dx} = \frac{n'}{dn} \frac{dn}{dn}$ $\frac{1}{\sqrt{2}} = \pi - tan'\pi + C$ مکل سن می مشام حدار اولیم زمیر راحل کرده د بازه جواب را تقیس کسید ¥(•)=_1 $\frac{d\chi}{dn} = \frac{r'n' + \epsilon n + r}{r(y-1)}$ $t(y-1) dy = (tn^{y} + En + t) dx$ $\frac{y'-y'-y'-y'-1}{y'-y'+1} = \frac{y'-y}{y'-1} + \frac{y'-y'-y}{y'-1} + \frac{y'-y}{y'-1} + \frac{y'-y'-y}{y'-1} + \frac{y'-y'-y}{y'-1} + \frac{y'-y'$

www.SoftCivil.ir Date: $\begin{array}{c} \lambda'(n+1) + Y(n+1) \rightarrow y = 1 - \overline{\left(n+1\right)\left(n+1\right)} \\ \geqslant & \geq \end{array}$ $y = 1 = \sqrt{n^2 + n^2 + n^2}$ Yn+ 1 n+1) => n)-1 سال، ملاب (س - عل مادله ديراب رير: (1+n')(dy.dn) = 1 ny dn $\frac{(1+n^{t})}{dn} = \frac{(1+n^{t})}{dn} = \frac{(1+n^{t})}{dn} = \frac{dy}{dn}$ $\frac{-(1+n')'(\frac{dy}{dn}-1)}{\frac{dy}{dn}}=\frac{t'n}{1+n'}y(1+n')'' \qquad \frac{dy}{dn}(1+n')^{-1}-\frac{t'n}{1+n'}(1+n')''y=(1+n')''$ $\frac{1}{1+n^{\prime}} \frac{1}{2} = \int \frac{dn^{-1}}{1+n^{\prime}} \frac{tan^{-1}n + c}{1+n^{\prime}} \rightarrow \chi = (1+n^{\prime})(tan^{-1}n + c)$ م معادل برزم " y (n) = y (n) + ' x كدر ان n صورا ناسد به مادار برزل مادله بعلى ن رو تعسیم بر " بر ی نسم دسی تقسیر سفی " ' بر = z رای دهم $\frac{Z}{1-n} + P(n) Z = q(n)$

www.SoftCivil.ir $\frac{y'-x}{n} = \frac{y''}{n'} \qquad h= t'$ $\frac{n'z'}{x}, \frac{n'z}{x'} = \frac{-\varepsilon}{n''}, \frac{d\tilde{z}}{x'}, \frac{n'z}{x'} = \int \frac{-\varepsilon}{n'} \rightarrow \frac{n'z}{x'} = n'' + C$ $\xrightarrow{Y'=} \frac{n'}{1+Cn^{f}} \implies \underbrace{Y=+}_{V=+} \frac{n''}{\sqrt{1+Cn^{f}}}$ in or or y = ny' + f(y') $\frac{dy}{dn} = \frac{p}{dn} + \frac{f(p)}{dn} + \frac{f(p$ $P = P + n \frac{dP}{dn} + \frac{f'(P) dP}{dn} \rightarrow \frac{(n + f'(P)) dP}{dn} = .$ n+f(p)=. جواب استشابی (حل) بوش کلرد) م راهند ی کنم و ی رابر هم به می ا بليه: كام ع حذب مي تشود وما ما دل بر مروف 🖼 بلموں دارم ی آورم که برای جاب فواص استنابی معادلد کوری کو بند

www.SoftCivil.ir ب استنابی معادله کنردجان دوین دسته دواب سندی است نکشو: می قدان کامت کرد که جوار فكل مطوب لست على ما دلرزي y= ny+ y'+1 (+ ¹ + CA + C¹ + C¹ + C¹ + C¹ (p) = r + r معادله دخراسی ناکرانش هرمعادله دخ اسه م تبه به مورت (y) + f (y) و ۲۰ = بر ر مادلد ارز نامد. برای ما مد مادله کلرو م = کونون ی کنیم لذا از طوین سنب به م مشق ی بی لیریم میں لرجل se برجسب ۶ مطاسیر می سوند و با استفاده ^از معادله بالا × و این معادله می توکن ۶ را وذب مرد و بارا بره با ب $y'_{P} \Rightarrow x = n.g(P) + f(P)$ $\frac{d\chi}{dn} = \frac{g(P) + ng'(P)dP}{dn} + \frac{f(P)dP}{dn}$ $\Rightarrow P = g(P) + (ng'(p) + f(p)) \frac{dP}{dn}$ توجه وأكر مملأ ۶ قابل طن باسد، ۳ و بر را بر حسب ۶ حساب ی کنیم وی توسم وجواب هارا به فور بالأسري منص فايم

Scanned by CamScanner

www.SoftCivil.ir Date: hipsory girs x y= inj+y' y= y= inp+p' dy dy = ip+ ing tredp dh $\frac{-P - dP}{dn} (\frac{1}{n+rp'}) \rightarrow \frac{-Pdn}{dP} = (\frac{1}{n+rp'}) dP \xrightarrow{r}{p} \frac{dn}{dP} - \frac{1}{n-rp} \frac{r}{dP}$ $\rightarrow \frac{dn}{dp} + \frac{v}{p} \frac{n}{n} = \frac{c}{p} \frac{\int e^{\int \frac{1}{p} dn} p^{\prime}}{p} \frac{p^{\prime}p}{p} + \frac{vpn}{p} = \frac{c}{p} \frac{p^{\prime}}{p} + \frac{c}{p} + \frac{c}{p} \frac{p^{\prime}}{p} + \frac{c}{p} + \frac$ $q_{1} = \frac{q_{1}}{2} P^{2} + C$ X= Inp + p" $\frac{dy}{dx} = \frac{n'}{1+y'} \xrightarrow{(1+y')} \frac{dy}{dx} = \frac{n'dn}{dx} \xrightarrow{f} \frac{y+y''}{r'} = \frac{n''+C}{r'}$ $dy = rn(y-1) dn \rightarrow \frac{dy}{dn} = rn(y-1)$ yFl dx - indn => Ln جراب استعال X=1 => X'=1 معادله رفلي $\chi' + P(n)\chi + q(n)\chi' = R(n)$ رس مع البي مادله باسدانك، <u>ا + با = با حواب عمدی</u> مادلدات. میں من الر بو مک جا

www.SoftCivil.ir aliste to E in ()Date: ین اطلوب است عل معادلد الم = الود بو ا- بو الد مر = بو مل فرب حفوص أن است معادله رتبانی است <u>y'=1 - z'</u> z' $\frac{(\lambda^{i}\mu^{i})}{z^{*}} = \frac{1-z^{*}}{z^{*}} - \frac{1}{n}\left(n+\frac{1}{z}\right) + \left(n+\frac{1}{z}\right)^{*} - \frac{1-z^{*}}{z^{*}} - \frac{1-1}{n^{*}} + \frac{1}{n^{*}} + \frac{1}{2} - \frac{n^{*}}{z^{*}} - \frac{1}{n^{*}} + \frac{1}{2} - \frac{1}{n^{*}} + \frac{1}{n^{*}} + \frac{1}{n^{*}} + \frac{1}{n$ $\frac{z}{z'} = \frac{1}{z} \left(\frac{1}{n} \neq n \right) + \frac{1}{z'} = \frac{x - z^{+'}}{z'} = \frac{z}{z'} + \frac{z}{z'} \left(\frac{1}{n} - \frac{r_n}{z} \right) - 1 = 0$ $e^{\int \frac{1}{n} - in} \qquad (lnn - n') = e^{lnn} - ne^{-n'} \qquad \square$ $\frac{\partial}{\partial x} = \frac{n}{2} + \frac{ne^{-n}}{2(\frac{1}{n} - \frac{1}{n})} = \frac{n}{2}e^{-n} + C$ $\int \frac{\partial}{\partial x} = \frac{1}{2}e^{-n} + C$ $\rightarrow \chi = \chi + \chi - 1 + rce^{\chi + r}$ مادلات حکی . مرمادله بوتسل (م) ع - او را مادله مل مرتبه ادل ی اس $\frac{dY}{dn} = n \frac{dt}{dn} + t$ معی فراری معم t = 1 d tr = 4 در اب مورد مثلی، مادلم <u>X-۸ = بر</u> یک سادله همی اس ؟ بنی ی وزان از را مورت می و ی منابع دوت محوت

w.SoftCivil.ir $\frac{y' = \frac{n+y}{n-y}}{y' = \frac{y' + y'}{n-y}}$ $\frac{x}{\lambda} = \frac{1+\frac{y}{\lambda}}{\frac{\lambda-y}{\lambda}} = \frac{1+\frac{y}{\lambda}}{\frac{\lambda-y}{\lambda}} = \frac{y}{\lambda} = \frac{1+t}{\lambda} = \frac{1+t}{\lambda} = \frac{1+t}{\lambda} = \frac{1+t}{\lambda} = \frac{1+t}{1-t}$ $\frac{dt}{dn} = \frac{1+t'}{1-t} \rightarrow \frac{1}{2} dn = \frac{1-t}{1+t'} dt \rightarrow \frac{1}{2} \frac{1}{2} \frac{dt}{dt} = \frac{$ $\ln n + c = tan't - f(n(1+t') \rightarrow \ln n + \ln c = tan't - \ln \sqrt{1+t'} \rightarrow$ $tan^{-t} t = ln cn \sqrt{1+t^{\prime}} \qquad cn \sqrt{1+t^{\prime}} = c^{tan^{-t}t} \qquad tan^{-t} \qquad cn \sqrt{1+t^{\prime}} = c^{tan^{-t}t} \qquad n \sqrt{1+t^{\prime}} = c^{tan^{-t}t}$ $\rightarrow C^{\tan^{-1}\frac{y}{h}} = C \frac{m}{|h|} \sqrt{n^{+}y^{+}}$ y' = an + by + c $a_i n + b_i y + c_i$ برای ما دلاے سروال در زماری کرم : طالب اول : الكر ٥= ٢ = ٢ المكاه هادار المكن السب وبروش مادار هل حل حاليم عامت دوم ، المر در معنی مرکب مورد در صورت و مغری شد دین - اط مه ا سب $ab_{i} = a_{i}b \xrightarrow{\pm a_{i}b_{i}} \frac{\alpha}{a_{i}} = \frac{b}{b_{i}} = k \Rightarrow a = ka_{i}, b = kb_{i} \Rightarrow \frac{c_{i}c_{j}}{b_{i}}$ Z'=a, +by' <= Z=a, n + b, y per store $\chi' = \frac{k(a_1n+b_1\chi) + C}{a_1n+b_1\chi + C} \Rightarrow \frac{\chi' - a_1}{b_1} = \frac{kz + C}{z + C} \Rightarrow \frac{\chi' - b_1}{z + C} = \frac{\chi' - b_1}{z + C} = \frac{\chi' - b_1}{z + C}$ AL ANTIBOOK

درار بهاست سادنه جدایی پذیر است و طالنگران نیری ارطرمین جاب عومی طرمی قدار بابت · حارث سوم : أكرجات اول دوم برزار مناسد در ان مورب ما انتقال سدا بر نغط (ع و ٥) می توان معادلہ راہ مل معادلہ دجزا سُل همگ سَدِيل لرد X=na + dn=dx () A $= \frac{dx}{dn} = \frac{dx}{dX} \times \frac{dx}{dn}$ $\begin{cases} n = X + \alpha \\ y = Y + \beta \end{cases}$ $\frac{dX}{dX} = \frac{d(Y+B)}{d(Y+B)} = \frac{dX}{dX}$ $\frac{dY}{dX} = \frac{a(X+\alpha) + b(Y+\beta) + c}{a(X+\alpha) + b_1(Y+\beta) + c_1}$ $\frac{dY}{dX} = \frac{aX + bA}{a_1X + b_1Y + (\alpha a_1 + \beta b_1 + C_1)}$ $\Rightarrow \frac{dY}{dx} = \frac{ax + bY}{a, x + bY} \qquad (a) = \frac{dY}{dx} = \frac{ax + bY}{a, x + bY} \qquad (b) = \frac{dy}{dx} = \frac{dx + bY}{dx} \qquad (c) = \frac{dy}{dx} = \frac{d$ $\begin{cases} \alpha a_{+} \beta b_{+} C = 0 \\ \alpha a_{i+} \beta b_{i+} C_{i} = 0 \end{cases}$ Or a center certa شنل: مطلوب است اط معادله زب $\begin{vmatrix} y \\ y \end{vmatrix} = 0$ $n+y=z \rightarrow z'=1+y \rightarrow y=z'-1$ $y' = \frac{Y_{n+Y} - \xi}{n+y}$ $\frac{y'=Y(n+\chi)-\xi}{z} = \frac{Yz-\xi}{z} \rightarrow \frac{z'-1}{z} - \frac{Yz-\xi}{z} \rightarrow \frac{z'-\chi-\xi}{z}$ $\frac{dz}{dx} = \frac{r_2 \cdot f}{z} \qquad \frac{z}{r_2 \cdot f} \qquad \frac{dz}{dz} = dx \qquad \int \frac{f}{r_1 \cdot f} \frac{f}{r_2 \cdot f} \frac{dz}{dz} = \int dx$ $\frac{z}{r_2 \cdot f} \qquad \frac{z}{r_2 \cdot f} \qquad \frac{z}{r_2 \cdot f} = \frac{f}{r_1 \cdot f} \frac{dz}{dz} = \int dx$ OTIAL BOTERO

www.SoftCivil.ir =>) = () dz +) + dz =) dn => Eln + z= + + + z= + + = => 5 Lu(1"(n+x)-E1 + 1 (n+x)=n+C y = x+y-r x-y. scub by (x,B) شکل: مطلوب است حل معادله زیر : $\begin{cases} n = X + \alpha & dY = X + Y + \alpha + \beta - Y = 0 \\ \chi = Y + \beta & dX & X - Y + \alpha - \beta & = \} \begin{pmatrix} \alpha + \beta - Y = 0 \\ \alpha - \beta = 0 \end{pmatrix} \xrightarrow{=} \alpha = \beta = d$ $\frac{y}{\partial y} = n(\frac{y}{2}) + \frac{y'}{2} + \frac{y'}{$ $\chi = n(1P+1) + P' \xrightarrow{\varphi} \chi' = (1P+1) + 1nP' + 1PP' \rightarrow -P-1 = (1n+1P) dP$ $-(P+1) dn = (Y_n + Y_p) dp \rightarrow -(P+1) dn + Y_n = Y_p \rightarrow dn + Y_n = Y_p dn + P+1 -(P+1) dp + P+1 -(P+1)$ $C = (P+1)^{2} + (P+1)^{2} +$ $\frac{(P+1)' \mathcal{H}}{(P+1)'} = \frac{\gamma}{P} \stackrel{P}{-} \stackrel{P$ $\frac{y}{y} = n\left(\frac{(P+1)}{P+1} + P' \xrightarrow{y} \frac{(-\frac{r}{C}P' - P' + C)}{(P+1)}\right)(xP+1)$ y= 1 (an+ by+c) سادلات برم مون على: از تغيير بتغير + c + y + c استفاده مي كسم وداريم

www.SoftCivil.ir $\frac{dz}{dx} = a + b \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{dz}{dx} - a$ $\frac{dz}{dx} = \frac{dz}{dx} - a$ $\frac{dz}{dx} = \frac{dz}{dx} - a$ $\frac{dz}{dx} - a}{b} = f(z) \Longrightarrow \frac{dz}{dx} = bf(z) + a$ این مادلد دولی بزیر رادل می کنیم و جاب Z را بر دیس بر میں بیلی 2+ y+c مثل مطلوب است مل مادله: $\begin{aligned} \begin{array}{cccc} & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & \\ & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ \end{array} \end{array}{\end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array}{\end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array}{\end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array}{\end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} &$ $\tan^{-1} z = n + C \rightarrow Z = \tan(n+C) = n + y + Y \rightarrow y = \tan(n+C) - n - Y$ 1) $r_{y}'_{y} - a_{y}' - n - 1 = \frac{1}{2} r^{2}$ $e^{\frac{2}{7}n} y'' = \frac{1}{9} \left((n \cdot i) \frac{9}{6} e^{\frac{9}{7}n} - \frac{11}{a^{2}} e^{\frac{9}{7}n} \right) + C$ e) y= ny 1 X= " J-" x = مادار دیزان کالی . راد بر ۱ ما ۸ مه (بر ۲) ۸ مه (بر ۲) ۸ مادله دخراس .= بر (بر، ۳) ۸ + (برد ۳) M من مادله دبراس کان اس اتر سران کانون $\frac{d\psi}{dn} = M(n,y) \quad (1,y) \quad$

Date: www.SoftCivil.ir $\frac{y}{y} = \frac{y}{y} = \frac{M(n, y)}{N(n, y)}$ M (n , y) + M(n , y) y'=. شعت صادله ديني ليسل محامل فرین نیم N, N, W, N, N, در نافیه مستطلی ۶ ۲ ۲ ۲ و ۲ ۸) که بهرسته باسکو در کس $M_{y}(n,y) = N_{n}(n,y): \mathcal{O}_{\mathcal{O}}(n,y) = \mathcal{O}_{\mathcal{O}}(n,y)$ بنال ، مطلوب لست على معا دلات زير: 189 $\frac{1}{(\chi \cos n + Y n e^{x})} + (\sin n + n^{2}e^{y} - 1) \chi' = 0$ درتابع (ير.«) ٨ , (ير.«) ٨ , مشتقات جن) بن جمل پيوسته اند هريس لارا عدد ورلاي له $Nn = \cos x + ine^{y}$ $M_{y} = \cos x + ine^{y}$ $\frac{d\psi}{dr} = \mathcal{M}(n, \chi), \quad \frac{d\psi}{d\chi} = \mathcal{N}(n, \chi)$ $\frac{d\psi}{dn} = \chi \cos n + \ln e' \Rightarrow \psi_{(m,\chi)} = \chi \sin n + n e' + g(\chi) 0$ $\frac{d\psi}{dn} = \chi \cos n + \ln e' + g(\chi) 0$ $\frac{d\varphi}{dy} = \sinh n + n^2 e^2 - 1 e^2$ $\frac{d\psi}{dy} = sinn + nc^{*} + g(x) \implies sinn + nc^{*} - 1 = sinn + nc^{*} + g(y)$

www.SoftCivil.ir $g(y) = 1 \xrightarrow{\int dy} g(y) = -y$ y sinn + n'e -y = c Got ((my)=ysinn+n'c -y E OF Mr.y 1) (xny + xy) + (xny + xn) y = 0 $M(n,y) = lny' + ly \rightarrow My = Eny + l$ $M(n,y) = ln'y + ln \rightarrow M_n = Eny + l$ M و M و منتقات مرتباول و M به به سته و M = و M بس مادله کامل است $\frac{d\Psi}{dn} = \chi n y' + \chi y = \left(\mathcal{H}(n,y) = n' y' + \chi n y + g(y) \right)^{\widehat{\sigma}}$ dy = i n'y + in Q dy = inig+ in+giv) @ $Q, \mathcal{D} \Rightarrow \forall m'_{\mathcal{Y}}, \forall n = \forall m'_{\mathcal{Y}}, \forall h + g'_{\mathcal{Y}}) \rightarrow g'_{\mathcal{Y}} = 0 \implies g_{\mathcal{Y}} = 0$ ((my) = n'y + 1 my + . =) n'y + 1 my = C (200 - 12 مادلات عبركال 2 My= (n+y + Nn= Kn+y => with it ("nx+x")+(n'+nx)y'=. ATLAS NOTEROOK

ب من کامی میں حادلہ دینراس عرک مل ماہی توہی جا مزیب آس مدیک عامل طِ عَالَمَو رِ انْدَرَالِ پ تبدل ويك مادله كامل تمرد تقسي عال حلى المكر للسار: الف) عالى لنكر في ساز رجست ٢٠ هر مر مر منطق تابع ارام باشد آنان ما عال انترال ساز ماند م = (m) مرجو است که حادله البیل بویک سادله کامل کند. ((my + y') + (n'+ my) y'=. 1de My = "n+ ty Na= In+y => My + Na (- w for som $G_{in} = \frac{M_y - N_n}{N} = \frac{n + y}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n}$ 101,6 $n\left(\frac{(x_1,y_1,y_1)}{(x_1,y_2,y_1)}+(n',n'y)\right)=0$ $\frac{d\psi}{dn} = \frac{\partial n''}{\partial n''} + \frac{n''}{n''} \Longrightarrow \qquad (\mu(n,y) = \frac{n'}{2} + \frac{n'}{2} \frac{y'}{y'} + \frac{g(y)}{y'}$ $\frac{d\psi}{dx} = \frac{n^{\prime} + n^{\prime} y}{2}$ $\frac{d\psi}{dy} = n^{c} + n^{c}y + g'(y) = n^{c} + n^{c}y \implies g'(y) = s$

www.SoftCivil.ir -> (p(1,y) = " " y + 2" + = C ترب ۲۷ وال وجود دون دسته سفی زیر ابردی کس ny ₌C المدة الخانواد من (عدر) = بل دراني يوش دسالا = بل است الن ومقط الركانس ماسد (مدى موجود ماسد كمد (عدر) ع Y(n)=F(n, Cir) $y = \frac{C}{n} \Rightarrow \frac{F_{c}(n,c)}{n} = \frac{1}{n} \neq 0 \Rightarrow \frac{C_{n}(n,c)}{n} \xrightarrow{C_{n}(n,c)} \xrightarrow{C_{n}(n,c)} \frac{C_{n}(n,c)}{n} \xrightarrow{C_{n}(n,c)} \frac{C_{n}(n,c)}{n} \xrightarrow{C_{n}(n,c)} \xrightarrow{C_{n}(n,c)} \underbrace{C_{n}(n,c)}{n} \xrightarrow{C_{n}(n,c)} \xrightarrow{C_{n}(n,c)} \xrightarrow{C_{n}(n,c)} \underbrace{C_{n}(n,c)}{n} \xrightarrow{C_{n}(n,c)} \xrightarrow{C_{n}(n,c)} \underbrace{C_{n}(n,c)}{n} \xrightarrow{C_{n}(n,c)} \xrightarrow{C_{n}(n,c)}$ ب)عال العرال مان برجسب م المردر مادله دوز اسل ۲ dy (y, n) M (y, n) (y) با مال مال از بر بابسد در ابی صورت عامل M انتگرالی سازی بر مرا و فراهم داست. ydn+ (1ny-e-5) dy=. $M_y = 1$, $N_n = \frac{1}{2} - e \Rightarrow M_y \neq N_n Lindelland$ Q(2) = 1- 1 mace Q(y) = 1/2-1 d $\frac{e^{y}}{x} = \frac{e^{y}}{x} = \frac{e^{y}}{x} = \frac{e^{y}}{x} = \frac{e^{y}}{x} = \frac{e^{y}}{x}$ ATLAS NOTEBOOK

C

vww.SoftCivil.ir $\frac{c^{y}}{\chi} \chi dn + \frac{c^{y}}{\chi} \left(\frac{\eta_{y} - c^{-y}}{\chi} \right) dy \longrightarrow c^{y} dn + \left(\frac{c^{y} \eta_{n}}{\chi} - \frac{1}{\chi} \right) dy = 0$ $\frac{d\psi}{d\pi} = e^{\frac{y}{y}} \xrightarrow{j \in \pi} ne^{\frac{y}{y}} + g(y) = \psi(n,y)$ dy = c'in 1 => ine lny $\frac{d\psi}{dy} = \frac{r_{n}e^{r_{y}}}{2} = \frac{g'(y)}{2} = \frac{r_{n}e^{r_{y}}}{2} = \frac{1}{2} = \frac{g'(y)}{2} = \frac{-1}{2} = \frac{g'(y)}{2} = \frac{-1}{2} = \frac{g'(y)}{2} = \frac{-1}{2} = \frac{1}{2} = \frac{g'(y)}{2} = \frac{-1}{2} = \frac{1}{2} = \frac{$ (1)= net - lny = C <u>ع این انترال ماز رو (مور) و z = g</u> I construction of the second Man Man y dy = of the state تولى بي الروي كم سند در لي صورت مى وال عامل هم ير الدرط خي ما دلده ب كريد و در مروب المان او حراف الفيار كرد. كه مادار حاص ب سادار كال سدر فردد بال مطلب المست عل معادلون rayte, raying da + (n'yte' n'y' - rn)dy = . $\frac{M_y + N_n - M_y}{M} = \frac{M_y - N_n}{M} = \frac{M_y + Q_{(n)}}{M}$ طرب ادر هم بر مرب کی

www.SoftCivil.ir - (n x) dy =. $M'_{y} = 'n^{\alpha+1} \left((\xi + \beta) y'' e'' + e' y'' + e'' + (\xi + \beta) y'' + \beta \right) + n^{\alpha} (\beta + 1) y^{\beta}$ $N_{\chi} = (\gamma + \alpha) n^{1+\alpha} \chi^{\xi+\beta} e^{-\gamma} - (\gamma + \alpha) n^{1+\alpha} \chi^{\gamma+\beta} - \gamma^{\gamma} (\alpha+1) n^{\alpha} \chi^{\beta}$ $Y = Y + \alpha \rightarrow \alpha = 0$ $Y(F_+\beta) = \rightarrow \beta = -F = 0$ $-(r+\alpha) = r(r+\beta) \xrightarrow{\Theta,\Theta} \mathcal{O}$ $(\beta_{+1}) = -C(\alpha_{+1}) \longrightarrow O$ $\left(\frac{nc'+\frac{n}{2}+\frac{1}{2}}{2}\right)dn+\left(\frac{n'c'}{2}-\frac{n'y'}{2}-\frac{ny'}{2}\right)dy=$ $\frac{\psi_n}{dn} = \frac{d\psi}{dn} + \frac{\psi_n}{dn} + \frac{1}{dn} = \frac{\int dn}{\psi(n,y)} = \frac{n'c' + \frac{n}{2}}{\frac{y''}{2}} + \frac{g(y)}{\frac{y''}{2}}$ $\frac{d\psi}{dy} = \frac{n'e'}{\chi'} - \frac{n'}{\chi'} - \frac{cn}{\chi'}$ $\frac{d\psi(x,y)}{dy} = \frac{\lambda^{\prime}c^{\prime}}{z} + \frac{n^{\prime}}{z} + \frac{\eta^{\prime}(y)}{z} = \frac{\lambda^{\prime}c^{\prime}}{z} - \frac{n^{\prime}}{z} - \frac{ch}{z^{\prime}} \rightarrow \frac{g^{\prime}(y)}{z} = c \rightarrow g(y) = c$ $\psi(n,y) = n'c' + \frac{n'}{y} + \frac{n}{y''} = C$ عال انتكن سارمعادله مطلوب اس

Date: www.SoftCivil.ir 'y' + +) y dn + (1 - 1 n'y') ndy =. · df M = Yny" Ma-Ny Kny (x'+ Kn') John Cuips Ny=Eny ⇒> $\frac{dn_{+}}{\chi(nr_{+}y^{r})}\frac{dy}{dy}=$ $\frac{d\psi}{dn} = \frac{n'y'+y'}{r'(y'+r')} \int dn$ dy + (rn'y) $\int \frac{n'y'}{n(y'+rn')} + \frac{y'}{n(y'+rn')} + \frac{y'}{n$ $\int \frac{1}{n(y^{2}+Yn^{2})} dn = \frac{1}{n(y^{2}+Yn^{2})} - \frac{A}{x^{2}+Yn^{2}} = \frac{A}{x^{2}+Yn^{2}} + \frac{Bn+C}{x^{2}+Yn^{2}} = \frac{Bn+C}{x^{2}+Yn^$ $\begin{array}{c} A_{\pm} \perp \\ \mathcal{L} \end{array} \xrightarrow{(\ (\ (\ A_{\pm} B) = - -) \xrightarrow{B_{\pm}} \xrightarrow{\mathcal{L}} \xrightarrow{$ Ay' rAn' + Bn'+ Cn = 1 $\int \frac{1}{n(y'+rn')} dn =$ $\int \frac{1}{ny^{*}} dn + \int \frac{-rn \times \tilde{\epsilon}}{y^{*}(y^{*} + rn^{*})} dn$ = lun - lu (yr 4(1,y) = y' Ln (y'+ rnr) + Lnn - 1 (n (y'+ rnr) + g(y) $\frac{d\psi}{dy} = \frac{1-\chi'y'}{\chi(\eta'+y')} \Rightarrow \psi(\eta_{\chi'}) = C$

()www.SoftCivil.ir Date: يلن من معيد $\chi = \mathcal{U} \xrightarrow{} \chi + n\chi' = \mathcal{U} \xrightarrow{} \chi + n \frac{dy}{dn} = \frac{du}{dn} \xrightarrow{} \chi dn_{+} n dy = du$ $\rightarrow ndy = du - \frac{u}{2}dn \quad 0$ $(u'+r) \frac{u}{n} dn + (r - ru') n dy = \frac{0}{r} (u'+r) \frac{u}{n} dn + (r - ru') (du - u dn) = .$ $\rightarrow \left(\frac{u'}{n} + \frac{ru}{n} - \frac{ru}{n} + \frac{ru'}{n}\right) dn + (r + rur) du = .$ $\frac{r'u'}{2}dn+r'(1-u')du=0$ $\frac{dn}{n} = \frac{-r}{r'} \frac{(1-ur)}{ur} \xrightarrow{s} \ln |n| + \ln c = \frac{r}{c} \left(\frac{-1}{rur} - \ln u \right)$ $C_{\mathcal{N}} = \frac{e^{-\frac{1}{p}u'}}{u^{\frac{1}{p}}} \Rightarrow c_{\mathcal{N}}u^{\frac{1}{p}} = e^{-\frac{1}{r}u'} \rightarrow c_{\mathcal{N}}(\frac{n}{y})^{\frac{1}{p}} = e^{-\frac{1}{r}(\frac{n}{y})}$ تر ١٩ ٢٠٠٠ ، بالستا واز تغير سفي دلده سد $\frac{dy}{dn} = \frac{(n+y)' - (n-y)}{(n-y) + (n+y)'} \begin{cases} u = n+y \\ v = n-y \end{cases}$ $\frac{du}{dn} = 1 + \frac{dy}{dn}$ $\frac{du}{dn} = \frac{1}{dn} = \frac{du}{dn} = \frac{1 + \frac{dy}{dn}}{dn} = \frac{1$ $\frac{du}{dv} = \frac{dy}{dv} \left(\frac{du}{dv} + 1 \right) \rightarrow \frac{dy}{dx} = \frac{du}{dv}$ LAS NOTEBOOK

C

www.SoftCivil.ir $= \frac{du}{dv} - 1 = \frac{u' \cdot v}{dv} \longrightarrow \left(\frac{du}{dv} - 1\right) \left(\frac{v \cdot u'}{dv}\right) = \left(\frac{du}{dv} \cdot 1\right) \left(\frac{u' \cdot v}{dv}\right) \longrightarrow$ $\frac{du}{dv}\left(v+u'-u'+v\right) = v+u'+u'-v \rightarrow vvdu = vu'dv \rightarrow dv$ $\frac{1}{\sqrt{2}} \frac{dv}{dv} = \frac{1}{\sqrt{2}} \frac{du}{dv} \xrightarrow{\int} \frac{1}{\sqrt{2}} \frac{1}$ $y' = \frac{n}{dx} - \frac{in' + e_y' - v}{e_n + e_y' - h} \qquad \begin{cases} u = n' \rightarrow \frac{du}{dn} = in \\ v = y' \rightarrow \frac{dv}{dx} = i \frac{dv}{dx} \end{cases}$ $\frac{du}{dn} = \frac{dn}{dn} = \frac{n}{dn} = \frac{dn}{dn} = \frac{dn}{dn} = \frac{dy}{dn} = \frac{x}{du}$ $\frac{dv}{dn} = \frac{dy}{dn} = \frac{x}{dv} = \frac{du}{dv}$ $\frac{\int u}{\nabla \nabla u} + \frac{\partial v}{\partial v} = \int \frac{\partial u}{\partial u} \xrightarrow{\sqrt{2}} u = \int \frac{u}{\nabla u} + \frac{\partial u}{\partial v} = \frac{\partial u}{\partial v}$ (ru'+ruv-nu)-Juv(ru+cv-v) du dv V(ru+YU-A)

 $\frac{Date:}{2m_{x}^{2}y' + 2m_{y}^{2} = \tan(m_{x}^{2}y')}, \quad u = n_{y}^{2}y' < \frac{du}{dn} = 2m_{x}^{2}y' \\ \frac{du}{dy} = 2m_{x}^{2}y' \\ \frac{du}{dy} = 2m_{x}^{2}y'$ www.SoftCivil.ir Contro u=n'y' -> du = Yny' + Yn'yy' => du = tan U => cot udu=dn n= Ln | sinu | + Lnc => c^= c | sinn | => c= c | sin (n'y') $\frac{dy}{dn} = (y - n - 1) + (n - y + t)^{-1}, u = n - y$ شري⁴۲. $\frac{1 - du}{dn} = (-u - 1) + (u + r)' \longrightarrow \frac{du}{dn} = 1 - \frac{1}{u + r} + u + 1 = u + r - \frac{1}{u + r} = \frac{(u + r)' - 1}{u + r} = 0$ $= \frac{u^{\prime} + \varepsilon u + v^{\prime}}{u + v} \rightarrow du \left(\frac{u + v}{u^{\prime} + \varepsilon u + v^{\prime}} \right) = dn \qquad \int \frac{u + v^{\prime}}{u^{\prime} + \varepsilon u + v^{\prime}} du = n + c \rightarrow$ $\frac{1}{7} \ln \left| u'_{+} \varepsilon u_{+} v' \right| = n + C \longrightarrow \ln \left[u'_{+} \varepsilon u_{+} v' \right] = n + C$ y'= (n+y)', ny=u ». 14.5 C $\frac{du}{dn} = \frac{dy}{dn} \rightarrow \frac{dy}{dn} = \frac{du}{dn} \rightarrow \frac{dy}{dn} \rightarrow \frac{dy$ $\frac{du}{dn} = u' \rightarrow du(\frac{1}{1+u'}) = dn \qquad \int tan'u = n+C \rightarrow tan'(n-y) = n+C$ $\chi' = (n - cy)' + U = n - cy \rightarrow \chi = \frac{n - u}{c}$ ·Cri $\frac{dy}{dn} = \frac{1}{r} - \frac{1}{r} \frac{du}{dn} \rightarrow \frac{1}{r} \left(1 - \frac{du}{dn} \right) = u^{r} \rightarrow \frac{du}{1 - ru^{r}} = da \rightarrow \frac{1}{r}$

www.SoftCivil.ir Date: (1. veu) (1+veu) A. AVEN B.VEBU A 1-Feu $\int \frac{1}{1-ru} du = n+c$ (1-Jeu) (1+1eu) (Jeu (A+B=1 => A=B=+ JEA-JEB = + = A=B $= \sum \int \frac{1}{1 - eu^{2}} du = \int \frac{1}{\sqrt{e}} \frac{1}{\sqrt{e}} \frac{1}{1 + \sqrt{e}} \frac{1}{\sqrt{e}} du = \frac{1}{\sqrt{e}} \ln \left| \frac{1 - \sqrt{e}}{\sqrt{e}} \frac{1}{1 + \sqrt{e}} \frac{1}{\sqrt{e}} \right|$ $\frac{U_{\mu\nu}}{2} = \frac{1}{\sqrt{e}} \left[\frac{1+\sqrt{e}u}{1-\sqrt{e}u} \right] = n+c \rightarrow \ln \left[\frac{1+\sqrt{e}(n-c_y)}{1-\sqrt{e}(n-c_y)} \right] = \sqrt{e} \left(\frac{n+c}{2} \right)$ (esinn) dx + (x-1) cosn esinn dn=1 "du du = dy (e sinn cosne sinn (y-1) x du = t u = (x-1)esinn (x-1)(esinn-1)= du = >> y=f(n, j) /200,0 مادلات مرئيراول قابل حل :25 س س بایستون کرد ب^ی p= y = f(n,y') Me (jush chest ومعادله اعل مجراب حاصل مى سود. y= y + n(y'-1) av. $y = P' + \mathcal{X}(p-1) \longrightarrow y' = 'PP' + P-1 + P'n \longrightarrow 'PP' = 1 - P'n \longrightarrow P = \frac{1}{PP} - \frac{n}{P}$ $P + \frac{n}{v} = \frac{1}{v} \times \frac{dn}{dp} \rightarrow YPP' + YPP' + nP' = 1 \rightarrow (YP+n)dp - dn = 0$ DTEBOOK (P+x)dP - 1 dn = T Pr (Pin)

www.SoftCivil.ir e = e Jidp = e Jidp c'(1pm) dp - c'da == $Q(p) = \frac{M_n - N_p}{N} = \frac{1 - \alpha}{1} = 1$ (4(n, p) = { N(n, p) dn = en go - en g(p) = en g(p) = en g $\chi = e^{\gamma}(\chi' - 1) \xrightarrow{\chi = P} \chi = e^{P}(P - 1)$ (3 g(p) = +) pep . 1(pep. e) O. NUI $\begin{array}{c} \lambda := \left(e^{P}(P-1) + e^{P}\right) \frac{dP}{dn} \\ \end{array}$ $= P = c^{P}(P-1+1) \frac{dP}{dn} \Rightarrow P = c^{P}(P) \frac{dP}{dn}$ dn=c^pdp $C_{+}n = e^{P} = \begin{cases} n = e^{P} - C & \xrightarrow{P_{\neq (C+n)}} \chi = (C_{+}n) \left[ln(C_{+}n) - l \right] \\ \chi = e^{P}(P_{-}l) & \chi = (C_{+}n) \left[ln(C_{+}n) - l \right] \end{cases}$ مادلات رزدادل تابل حل رجي n ((بر بر) ٤ = n) برای من با مشتق لیری از طریس نسبت بر به معادله ' , م + بر ا = ا با <u> 4 ا = ' می رسم</u> با مل اس $= \frac{P}{r} + \frac{P}{r} + \frac{Q}{r} + \frac{$ $\begin{array}{cccc} & P &= & YP^{'} \frac{dP}{dy} + P - \chi \frac{dP}{dy} \longrightarrow (YP^{'} - \chi) \frac$

{n=c'+ y (sub cup Q (YP - y) + => dP = => P=C => dy روش مادلات رتبه دوم درجالات خاص : العن) -= (ی مرا بر مراجل: داده در الم مراجل می سود (منت مرد) $\chi' - 4n = 0$ $\chi' - 4n' = \frac{1}{2}$ $\chi' = C_1 + C'n' \longrightarrow \chi = C_1 + n' + C_1$ ب) مادلات مرتب دوم خافت م (يو جاني : در مادر دو لي لي رتب لي (يو من ا = يو فاطلاري كر - " = عنه مادم مام مرتبه لول می رسم . هرگاه این مادند را متولن بنت به ت مل تعرف انتام مر را می توان با انترال کردن از ر <u>ى يىلە يەست) آورد.</u> مەلە $\frac{ty'' + tty' - 1 = 0}{ty'' + tty' - 1 = 0}$ ---اەش $\sum_{y'=U} \frac{y'=dy'=dU}{dt}$ $\frac{t' dv}{dt} + \frac{t' tv}{tv} = \frac{-t'}{dt} + \frac{t' v}{dt} +$ $\frac{d}{dt} \left(\begin{array}{c} t' \\ \end{array} \\ \end{array} \right) \xrightarrow{t'} U = t + C \qquad \Rightarrow \qquad \begin{array}{c} \chi' = 1 \\ t \\ \end{array} \xrightarrow{t'} \xrightarrow{t'} U = t + C \\ \end{array} \xrightarrow{t'} \xrightarrow$ **NOTEBOOK**

ع) ما دلات مرتبه درم جون متلي مستقل عد . y'' = f(y, y')مری مادلد دخراسل رتب دوم بنسل (بو بر) ا - بر مابند انا، قراری دهیم ' بر = ما در این مورت $y'' = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{dU}{dt} \cdot \frac{dy}{dt} = \frac{y}{dt} \cdot \frac{dy}{dt} = \frac{dU}{dt} = \frac{y}{dt} \cdot \frac{dy}{dt} = \frac{dU}{dt} = \frac{dU}{dt}$ سادله حادل مادله در جرارل است باط آن می وسیس کورل بابس · 10 00 22 + (2) = = = $\begin{array}{c} \chi' = J \\ \chi' = J \\ \chi' = J \\ d\chi \end{array} \end{array} \right\} \Longrightarrow \chi \cdot J \frac{dJ}{d\chi} + J' = 0 \\ \frac{dJ}{d\chi} \\ d\chi \end{array}$ $\begin{array}{c} G \xrightarrow{\int d+} \chi & \frac{d\chi}{dt} = C & \chi' = Ct + C, \\ & & & \\ & \\ &$ χ(·)=), χ'(·)= ¥¥"=* $\begin{array}{c} y' = V \\ y'' = V \frac{dV}{dy} \end{array} \right\} = \gamma V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \end{array} \xrightarrow{V' = V} V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \end{array} \xrightarrow{V' = V} V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \xrightarrow{V' = V} V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \xrightarrow{V' = V} V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \xrightarrow{V' = V} V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \xrightarrow{V' = V} V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \xrightarrow{V' = V} V \frac{dU}{dy} = \gamma \\ y'' = V \frac{dV}{dy} \xrightarrow{V' = V} V \frac{dU}{dy} \xrightarrow{V' = V} V \frac{dV}{dy} \xrightarrow{V' = V} V$ $y' = 4y + ic \xrightarrow{y'=P} p' = 4y + ic \xrightarrow{r} pp' = 4y' \xrightarrow{y'P} pp' = 4$ ATLAS NOTEBOOK

www.SoftCivil.ir PdP - Y -> PdP=Ydt 1 P - Yt + C, -> y'= Et , YC. د)مادلات مرتب درم د سب یم و در و و گر هلی هست الربق مادلم بين -= (" ير " ير مير مر) + سب ي متاري وير وي مل ربة درم باسد هي : $F(n, \lambda y, \lambda y', \lambda y'') = \lambda^{"} F(n, y, y', y'')$ " 'ny 'zo yy = x $F(n, \lambda y, \lambda y', \lambda y') = \lambda y \cdot \lambda y'' + \lambda' y' + \eta \lambda' y' = = =$ 2 F (n, y, z', z") jzdn jzdn jzdn jzdn jzdn jzdn jzdn alian Szan (z+z') eszan jszan gnesizan =0 $=) e^{\int \frac{y_2 dn}{z^2 + \frac{y'}{z} - \frac{y'}{z}} - \frac{y_1}{y_1} = 0} =) (z' + \frac{y'}{z}) = 0 \rightarrow$ Z=7n 2= ch

www.SoftCivil.ir y : c State - x = c Hica.c. *چاب عم*وی ويودو مكتاب جواب (مسأله مذارا وليرفل) جرگاه تدلیع ۶ د 9 ربار ۲ ۲ ۲ ۲ ۲ ش من نقط ۲۰ ۲ بیوسته بایسد ۲ مکا، تابع منصر مروق مساله مانند (act) = بن موجد است در مادله دنو (سیل) (۵۶ = بردیم + کو مدن می کند دهدیس بر دلها بر شکل مطلوب است بریسی مایز · کم پیلوں جواب مها دله { tx'+ xy - te' 2(1)= r $\lambda' + \frac{1}{t} \lambda' = \frac{t}{t}$ $D_{P} = 1R - \{\cdot\}$ $D_{q=R} \xrightarrow{d_{1}} C_{q+e}$ وج در ملبان مسأله هار اد تر عرض معن کسم (بر ۵) = کر وتوابع ۶ و کمله در سطیکی جن ۶ کالم یه ۶ کالم ۲ ۲ ۲ ۲ ۲ ۲ ۲ شیل نقط (برد. بی) بیوسته باستد در دین صورت بازه کی چن ۲۰۰۱ ۲ مد ۲ مستول ۲۵٬۷۶ ۲ (۲۰۰۰ مستول ۲۵٬۷۶ ۲ مجوب منص برزی است (ع) و در اساله متداراد لیر (۲۹۳) = لا کارد. در اسمال در (۹.۵) اس بر= (۵) برا $\chi' = \frac{c'n' + \ell n + l'}{l(\chi - 1)}$ 2. R-{1} neR 01 - + ((2-1) + in to the adjed In X me بارای معادار اداری والی ۲ ع (برد. +) می بیرس + مارین معادار اداری والی ۲ ع (برد. +) می بیرس + مرب بر می ایند و بال ۲ است ، متعمر برم ما مدد به ۲۰ ۲۰ ۲۰ NTIAS NOTEBOOK كرداسة (44 = بد زير موعد في (4 . يه) اسب

www.SoftCivil.ir Date: {-00 < n < + 00 dots (1,-1) B + t م امرار، جاب واست مار ماد قراص فرد کتر ALLA) مطل که عمر دی آن موسته است درایی حورست معادله دارای جرام کتر 82×28) مأرة وحود كليتكو سعادلار $y' + P(t) y = q(t) \qquad y(t') = y_{o}$ ن ابر عموم رور (به دعم) طرز حال سوتس بابستَه ا فاراب مرابي شعر مرد الأجوير ودراد { p(+) + P(+) (+) = q(+) ود - حواب (4, ۹ مان (۹, ۲) ایس -() = ×(1)= Y (+-r) y + Lnt y= Yt X + lnt x = Yt $\begin{array}{c} D_{P(t)} : t - \mathcal{C}_{\neq}, \Rightarrow t \neq \mathcal{C} \\ lnt: t > \circ \end{array} \end{array} = D_{p} = (\circ, \mathcal{C}) \cup (\mathcal{C}, + \infty)$ => ! E (. . C) ⇒Dg. R-{r} Dam كراز نعط (٢ ود) مي لذر ددار دار باز. (٢, ٥) است Wyleys $\frac{dx}{dn} = \frac{dn'}{(q-1)} \frac{\xi_n}{(1-\chi)} \frac{1}{(1-\chi)} \frac{1}{(1-\chi)}$ ACTEBOOK

www.SoftCivil.ir Date: dn (۲+ ٤n + ۲ ۲) = 2 ((- 2) ا دانش علمادر ا ص تلأ + $\chi' - \chi' = n' + \chi n' + \chi n + C \rightarrow C = C = C$ $\chi' \cdot \chi + 1 = n'(n+1) + \chi(n+1) \rightarrow (\chi - 1)' = (n+1)(n'+1)$ روی بازو (صور دیم ع م حولر) مکتا مالی در سر در در است. كل مطلوب لسب مريسي وجود ومكتل مسأله جلا مقدار اوليه : $\frac{d\chi}{dn} = \frac{e_{n'} + \epsilon_{n+1'}}{r(\chi - 1)}$ メ()=+) ا= بر المراجع $\frac{\partial f}{\partial y} = \begin{cases} (-\infty, +\infty) \times (-\infty, -1) & (-\infty, -1) \\ y & y \\ \end{pmatrix}$ جن هر مستعلی شامل تعاط (اد) مستی ارضط این رانامل است بنابراین شی دن سنطیل بنان ماین که عمر باقر دوی آن بیوسته مایشد درمن شامل تعط (اد) بایند. بر این که عمر درمی آن بیوسته مایشد درمن شامل تعط (اد) بایند. لذابا استفاد از تصبی جنبی مرحدد وجد در نکتابی ساله متدار ارام رسی قول گفت . با بد ساله رامل کرد تا در مورد بواب دمن بيبي أن جت تر $\chi' - \chi = n' + 1n' + 1n + C \longrightarrow 1 - 1 = - + C = -1$ $\chi' - \chi + 1 = n^{r} + \chi n + \eta = \chi = 1 + \sqrt{n^{r} + \eta + \eta}$

Scanned by CamScanner

SoftCivil.ir فلافل دوفواب وجرد دارد كم در حادله عدن مى كمد و سرط ١- د ماي را دارد شال: بریسی ملیتایی جراب ساله ار لوعن خلی : ۵ چن مرسند من شامل مقط (· . ·) خل <u>ه مع را شامل است نبا بهای نی توان مستطلی بیدا مرد که کور ان</u> روی آن بیر سته است در حتی اس که مشکل نعظ (دوه) با بیشتر. » لذا حبر بی در حرد ولاتابی ج^{ار} بنی تول تنت میں *باید سیند راحل کرد*. المي جلاب جدار مادله) ... بر است ت) مطلوب است بررم عجز و فرقر و مکتابی جاب در مادلات متدارا دلیم زمین - X'= X (0)=1 ملای در لای بای من مراز ۲۰ ۱۲۱

www.SoftCivil.ir سادله در الماسل فلى مراد لا x + p(+) x + q(+) x = g(+) وم المر اللي حرب مادله دخروس مدار مربع خلى همان كاسيده ف (ش) y"+P(t) y +q(t) y = . به تابع (۵) و تابع بار ما غر هار م) در ما دلات حکی که دران صرایب " مدین و بو اعدا د کامی هستندی برداریم. ay" + by' + cy =. روی می اید می مادله دخ اسل ای تشکیل می دهیم ایس او با دو رست معان و هیچ معادله با بستد در الى مورت Crit و rt ع = y وراب هاى ما دار ديز اسل هست (, y + C, y = C, y + C, y بكالم مطلوب است مل مادلات زم x" + "x' + "y = " $C_{x} = C_{x} c^{-t} + C_{x} c^{-t}$ y = c^{-t} y = c^{-t}t رون عن الرسادار مشخص الم مشخص من مناعث r دانشة مانيد دراي صورت رو بر ert , y = crt ATLAS AOTEBOOK

Scanned by CamScanner

www.SoftCivil.ir ى مادلىن $Y' + \xi - \chi = 0$ $Y' + \xi - \chi = 0$ y + Ey' + Ey = . مر من المر بل مربع جواب های سادله دخ ایس طل بایسد در ان مرد من طل ان ها نعن برج برج سرچاب معادله دورانس است . ص ١١٠ به وير درجاب مادله ٥٠ - ير ٢٥ + ير ٢٥ + ير باشد شار مي دهيم بريم دي - ير y = C, y' + C, y' + C, y' + C, y' + C, y'' + C, y'' = C, y'' = C, y'' + C, y'' = C $C_{,\chi''} + C_{,\chi''} + P(t)(C_{,\chi'} + C_{,\chi'}) + q(t)(C_{,\chi'} + C_{,\chi'}) =$ $C_{1}(\chi'' + P(t)\chi' + q(t)\chi) + C_{1}(\chi'' + P(t)\chi' + q(t)\chi) = C_{1}(\chi + C_{1}\chi) = C_{1$ رون کی کی ار سادله بیفتر دلرای دستیهای مفتل ۲۰۰۶ و ۲ ما بسند در این عورت ۲۰۲ و ۲۰۶ جاب های معادله دن اسل $ar'_{+}br_{+}C= \rightarrow \Delta \zeta \quad ; \quad r_{1,r=} - b \pm \sqrt{\Delta} - \delta x (-1)$ Ya $-b \pm \sqrt{-Dxi}$ $\chi_{i=} e^{(\alpha + \beta)t} = e^{\alpha t} e^{\alpha t} (\cos \beta t + i\sin \beta t)$ $\chi_{i=} e^{(\alpha - i\beta)t} = e^{\alpha t} e^{i\beta t} = e^{\alpha t} (\cos \beta t - i\sin \beta t)$

www.SoftCivil.ir Ye 1, r. ye'' , y. = e''t X,=er,t , Y,=tert 1. r., r. = a + B Y = e cos Date: XIE SINGE SINGE Zi+Y, = eat (1 cos Bt) $\frac{\chi_1 + \chi_2}{\chi} = C^2 \cos\beta t$ $Z_{1} = C^{dt} \cos \beta t$ C $Z_{y}=e^{\alpha t}\sin\beta t$ $\frac{\chi_i - \chi_i}{\chi_i} = \mathcal{O}^{dt} \sin \beta t$ $y_{c} = C_{1}Z_{1} + C_{2}Z_{4}$ عل ، مطلوب است ص معادله : y (.)= . ب <u>ب</u> + ^Ey' + ^Δy=. <u>، = ب</u>م م " کر (ان X(·)=1 $r'_{\pm}q = r'_{\pm}q \xrightarrow{q_i'} r_{\pm}q \xrightarrow$ y = et cos (1, y = et sinet r, r, ~ x=., B=" Y = C, cost + C, sin 4 $\Delta = 14 - 4 = -\frac{1}{2} = -\frac{1}{2$ -) r'+ Ey + Q =. $\begin{cases} \chi_{i} = e^{(i-r)t} \\ \chi_{i} = e^{(-i-r)t} \end{cases}$ Y = -Y + 10 r,=_1_1i $y' = C, (i-r) e^{(i-r)t} + C_r(-i-r) e^{(-i-r)i} = 0 = C, (i-r) + C_r(-i-r) = 0$ e 1(6,+6,) $\rightarrow c = l (C_{-}C_{+}) + (-YC_{+}-YC_{+}) \rightarrow l (C_{-}C_{+}) = Y \rightarrow -1 + YC_{+} = \frac{Y}{l}$ ATLAS NOTEBOOK

www.SoftCivil.ir $YC_{\tau} = \frac{Y}{L} + 1 = \frac{Y+L}{L} \frac{L}{L} = \frac{YL}{L}$ $C_{1} = \frac{1}{2} - \frac{1}{2}$ $C_{1} = \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$ $\chi_{\rho}=\left(+\frac{1}{2}-i\right)\chi_{1}+\left(\frac{1}{2}+i\right)\chi_{2}$ کل: مطلوب است تقیب نقطه الزمیم سنا*ر مقدار ادامی*: y"+y== y(.)=", y(.)=" $r'_+ l = \rightarrow r'_- l \rightarrow r_- + i \qquad z_- = cost, z_- = sint$ $\begin{array}{c} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \end{array}} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \end{array}$ \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & & \\ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \end{array} \begin{array}{c} & & \\ \end{array} \xrightarrow{ \end{array} \xrightarrow{ \end{array} \end{array} \xrightarrow{ \end{array} \end{array} \begin{array}{c} \end{array} \xrightarrow{ \end{array} \end{array} مر (۲۰۱۰ ، (۵) ؟ (۵) وی باز، I بیون با شد ر I کام در این صورت معادله د نبراس مقاراطه دارای جلب منفع به فرداست بادار ا $y''_{+} \frac{s_{int}}{t} y' + lnt y = 0$ مکل: مکل: د = (۱) کرد ا = (۱) کرد

100www.SoftCivil.ir () C (m + , +) = (m + , +) / (-) / (-) / (-) لاز به مفدها طه د مذاس دارای جاب متها ردی (۵۰ + ۰) است 0 مستم مقدار لولير تبدوك: يك مستكم مقدار اولد رتددو فطى عارد تاست ازميم مادر دين اسن بزم (٤) و= يرد + ير (٤) + " ي y(t.) = 2. هرا، بالم جن شرط، y(t.)= y. مثل معادلهی روبر و راحل کند. y"+ 0 y'+ 4 y =. y(.)= ~ y(.)=r $r'_{+} \bigcirc r_{+} \lor = \cdots \qquad (r_{+} \lor)(r_{+} \lor) = \cdots \rightarrow \begin{cases} r_{+} = -r' \rightarrow \chi_{+} = e^{-r' t} \\ r_{+} = -r' \rightarrow \chi_{+} = e^{-r' t} \end{cases}$ r = C, e + C, e = C, + C, $\land C_{r} = -V, C_{r} = 9$ " = 1C, TC, $= \chi = 9e^{-rt} - Ve^{-rt}$ × (-r)=1 × (-r)=1 €y"-y=• D $\{r' = l = a \rightarrow r = \pm \pm + a \neq f = e^{\pm t}$ Y = C e++ + C e++ L tlas notebook

www.SoftCivil.ir Date: $\begin{pmatrix} \chi_{e} = C, e^{+t} + c, e^{+t} & \chi(x) = 1 \\ \chi' = +C, e^{+t} + (-+C_{x})e^{+t} & \chi'(x) = -1 \\ \chi' = +C, e^{+t} + (-+C_{x})e^{+t} & \chi'(x) = -1 \\ \chi' = -1 = \frac{C_{1}}{2} - \frac{C_{2}e}{2} & 0 \\ \chi' = -1 = \frac{C_{1}}{2} - \frac{C_{2}e}{2} & 0 \\ \chi' = -1 = \frac{C_{1}}{2} - \frac{C_{2}e}{2} & 0 \\ \chi' = -1 = \frac{C_{1}}{2} - \frac{C_{2}e}{2} & 0 \\ \chi' = -1 = \frac{C_{2}e}{2} - \frac{C_{2}e}{2} & 0 \\ \chi' = -1 = \frac{C_{2}e}{2} - \frac{C_{2}e}{2} & 0 \\ \chi' = -1 = \frac{C_{2}e}{2} - \frac{C_{2}e}{2} & 0 \\ \chi' = -1 = \frac{C_{2}e}{2} - \frac{C_{2}e}{2}$ $\rightarrow - \overset{r}{=} - \overset{r}{+} C_{r} e^{-\frac{r}{2}t} = C_{r} = - \frac{1}{7}e^{-\frac{r}{2}t} + \frac{r}{7}e^{-\frac{1}{7}t}$ شکل ، مطلوب کست تقیین نقطری ماکزیم مسئله م*وار* ادلیه زیر: $y'' + \Theta y' + 4y = - y'(-) = y'(-) =$ $r' \cdot \Omega r + 4 = 0$ $\rightarrow Q = 2 = 2 = 4 e^{-\gamma t} V e^{-\gamma t}$ - Xp= Y,Y Max شال د معادله دور اسل .= بع + ربع + " م رول تسد. $\int \int C_{t} C_{t}$ $\chi'' - \chi' + \chi' \circ \chi = 0$ $\chi'(0) = \frac{1}{2}, \chi(0) = \chi'$ شكل : تقسي جراب سألمة ار اولديزير ? $\chi = e^{\pm t}, \chi = t e^{\pm t}$ $Y'_{-}Y + \frac{1}{\xi} = 0$ $\Delta = 1 - 1 = 0$ $Y_{+}, Y_{+} = \frac{1}{\xi}$

Scanned by CamScanner

www.SoftCivil.ir Ye= C, C + + C, tC + + $\rightarrow \chi_c = \frac{1}{7}C_1C^{\frac{1}{7}t} + C_2C^{\frac{1}{7}} + \frac{1}{7}C_1C^{\frac{1}{7}}$ فواب تموس × (.)= Y C,=Y $\chi'(0) = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{2} \chi' + C_{\chi} = 2 C_{\chi} = -\frac{1}{2}$ $\chi = \gamma c^{\dagger t} - \chi t e^{\dagger t}$ $y' = \frac{t - v}{t + 0y} \rightarrow \frac{dy}{dt} = \frac{t - v}{t + 0y} f(t, y)$ صابع تربي ٧ $Y_{t+0}y_{=-} \rightarrow 0y_{=-}Y_{t} \rightarrow \chi = \frac{-Y_{t}}{\alpha} \frac{\partial f}{\partial y}, f = \frac{1}{2}$ چن در هر مستطل بالا با باین این ط (بر +) ^۲ بیر مستداست ، پس هر مسلک مقدار اوليه كه روى ابي خط نباسد، تك دراب شفعر بغرد است. $\frac{\partial f}{\partial y} = \frac{-\Omega \times (t-V)}{(t+\Omega y)^{r}}$ $t(t-\varepsilon)y'+(t-\tau)y'+y=0$ 14 تملي ۲ ، بارو ويوديوان ؟ الما تملي ۲ ، بارو ويوديوان ؟ ×(r)=1 $\chi'' + \frac{t-1}{t(t-t)}\chi' + \frac{\chi}{t(t-t)} = 0$ $(j_{(t)}) = h(x) dx = h(g_{(t)}) \cdot g'(t) - h(f_{(t)}) \cdot f'(t)$ ص الما الما): $\chi' - \gamma t e t e^{-s} ds + e^{t} = 1 \rightarrow \chi' + e^{t} \gamma t e^{t} \int t e^{-s} ds = 1 = 0$ RTIAS NOTEBOOK

www.SoftCivil.ir $y' = Yt \cdot e^{t} \int_{0}^{t} e^{-s} ds + (c^{t} \times 1 - e^{t} \times \cdot) e^{t}$ $y' - Yty = 1 \rightarrow Yte^{t'} \int_{t}^{t} e^{s'} ds + 1 + Yte^{t'} - Yte^{t'} \int_{t}^{t} e^{s'} ds - Yte^{t'} = 1 \rightarrow Yte^{t'}$ نارای بر جاب مادله « نیم اس ، فی است من من مارات المراحدي تغيين لمبد تر ما دار داره سنه حراب هاي بصورت ⁴⁴ع يو دانشة بايستد. $\chi + \chi_{zo} \rightarrow re^{rt} + \chi e^{rt} = \rightarrow e^{rt} (r+\chi) = \rightarrow r+\chi_{zo} \rightarrow r=-\chi = \chi_{zo}$ $y' = rt^{r-1}$ $y'' = r(r-1)t^{r-1}$ $y = t' \cdot r : A_{r-1}$ $t'y' + t'y' + t'y = \cdot \qquad \longrightarrow t'(r(r-1)t'') + tt(rt'') + t't' = \cdot \longrightarrow$ $t'(r'-r+\xi r+\xi') = = r'+\xi' r+\xi' = = (r+\xi')(r+\xi) = \frac{r-\xi'}{r-\xi'} = \frac{\chi_1 = t'}{\chi_2 = t'}$ مراجع من اسم جامع معدار و هامی ن = 2 = 2 - 2) مرجع رابط بیر $\sum_{n \neq i} \frac{1}{2} n + \frac{1}{2} (y - c) + \frac{1}{2} \rightarrow n + (y - c) + \frac{1}{2} \rightarrow c = \frac{n + 2y'}{y'}$ $\frac{y'}{y'} = \frac{(n+\chi\chi'+\chi)}{\chi'} = \frac{(n+\chi\chi'+\chi)}{\chi'} \rightarrow \frac{(n+\chi\chi'+\chi)}{\chi'}$ $\frac{n'}{\chi'} = \frac{n'}{\chi'} + \frac{n \chi \chi'}{\chi'} + \frac{\chi'}{\chi'} \Longrightarrow \qquad n' - \frac{\chi'}{\chi'} - \frac{n \chi}{\chi'} = \frac{\chi' \to \frac{z'}{\chi'}}{\chi'}$ $n' - y' + 'ny y' = \longrightarrow (n' - y') dn + rny dy = .$ My= ty Na=ty ras actebook -

 $\frac{M_{\chi} - N_{\pi}}{N} = \frac{-Y_{\chi} - \frac{Y_{\chi}}{Y}}{n} = \frac{-Y}{n} = \Theta(n)$ www.SoftCivil.ir تاس از است . س على الله ال ار ومورت الم = ع مى الله $\frac{1}{n} e^{-\frac{1}{n}} e^{-\frac{1}$ $\psi_n = M \rightarrow \psi_n = 1 - \frac{\chi'}{\chi'} \xrightarrow{\int dn} \psi_{(n,\chi)} = n + \frac{\chi'}{n} + g(\chi) O$ $\psi(x,y) = C \rightarrow n + \frac{y'}{h} = C$ $y' + \frac{1}{2}y = 1\cos t$ $q = (-)y, \quad 1 = -(-)y, \quad 1 = -\frac{1}{2}y + \frac{1}{2}y +$ $e^{\frac{1}{2}}\chi + \chi e^{\frac{1}{2}} = Ye^{\frac{1}{2}}cost \longrightarrow \frac{d}{dt} \left(e^{\frac{1}{2}}\chi\right) = Ye^{\frac{1}{2}}cost \longrightarrow \Phi$ $\begin{array}{c} \mathbf{u}_{z} = \cos t \, dt \\ \mathbf{d} \mathbf{v}_{z} = \mathbf{e}^{\dagger} \, dt \\ \mathbf{d} \mathbf{v}_{z} = \mathbf{e}^{\dagger} \, dt \\ \mathbf{d} \mathbf{v}_{z} = \mathbf{v}_{z} \mathbf{v}_{z} \\ \end{array}$ -> "{ cost x ret fret sint de] e $a_{i} \neq \int c^{\frac{1}{2}} \sin t \, dt \rightarrow \begin{cases} u_{\pm} \sin t & \stackrel{i}{\rightarrow} & du_{\pm} \cos t \, dt \\ dv_{\pm} e^{\frac{1}{2}} dt & \stackrel{i}{\rightarrow} & v_{\pm} r e^{\frac{1}{2}} \end{cases}$ e $\rightarrow 1x \left[\text{sint}_{x} e^{\frac{1}{2}} \int r e^{\frac{1}{2}} \cos t dt \right]$ e $\int c^{\frac{1}{2}} \cot dt = i \cot c^{\frac{1}{2}} + \Lambda \sin t e^{\frac{1}{2}} - \Lambda \int c^{\frac{1}{2}} \cot dt \rightarrow \int c^{\frac{1}{2}} \cot dt = \frac{1}{2} \cot c^{\frac{1}{2}} - \frac{1}{2} \cot c^{\frac{1}{2}} - \frac{1}{2} \cot c^{\frac{1}{2}} + \frac{1}{2} \cot c^{\frac{1}{2}} - \frac{1}{2} \cot c^{\frac{1}{2}} + \frac{1}{2} \cot c^{\frac{1}{2}}$ e Ŀ. ATURS AOTEBOOK

www.SoftCivil.ir Date: $\chi(0) = -1 \qquad 1 = \frac{1}{2} + C e^{\frac{1}{2}} - C e^{\frac{1}{2}} = -\frac{1}{2} \Rightarrow C = -\frac{1}{2}$ $\Rightarrow \chi = \frac{1}{2} \cos t + \frac{\xi}{\sin t} - Ve^{-\frac{1}{\tau}}$ $(\dot{y}'_{e}) = \hat{y}'_{e} = \hat{$ f(.)= E+ ¥ >. $f(t) = -e^{\frac{1}{2}} \sin t - re^{\frac{1}{2}} \cos t + re^{\frac{1}{2}} \cos t - \varepsilon e^{\frac{1}{2}} \sin t - \Omega e^{\frac{1}{2}} \sin t - \Omega e^{\frac{1}{2}} \sin t < 0$ $f\left(\frac{A}{\gamma}\right) = -\gamma c^{\frac{2}{T}} + \epsilon e^{\frac{A}{T}} + \frac{\sqrt{\gamma}}{\gamma} < 0$ جن ۴ میں است ، بنا یہ فصبہ مقد کر منابی دارلی ملے رسنہ میں (لیچ وہ) است. لذا دارلی ملے ملازم میں وبلے ات $= \frac{y - \frac{y'n + tan'(ny')}{y - \frac{y' - \gamma}{y - \frac{y' - \gamma}{$ $(+ n^{r}p^{r}) \rightarrow p^{r} + rp^{r}n + p^{r} + rp^{r}n \rightarrow p^{r} + rp^{r}n + p^{r} + rp^{r}n \rightarrow p^{r} + rp^{r}n + p^{r} + rp^{r}n \rightarrow p^{r} + rp^{r}n + p^{r}n^{r} + rp^{r}n \rightarrow p^{r} + rp^{r}n + p^{r}n^{r} + rp^{r}n \rightarrow p^{r} + rp^{r}n + p^{r}n^{r} + rp^{r}n \rightarrow p^{r} + rp^{r}n \rightarrow p^{r}n \rightarrow p^{r} + rp^{r}n \rightarrow p^{$ $P\left(\frac{1}{n+1}+n^{t}p^{t}\right) + \left(P + \frac{p^{t}}{1+n^{t}p^{t}}\right) = o P\left(\frac{1}{n}\left(1+n^{t}p^{t}\right) + \frac{1}{p^{t}}\right) + \left(\frac{P(1+n^{t}p^{t}) + p^{t}}{1+n^{t}p^{t}}\right) = O\left(\frac{1}{n}\left(1+n^{t}p^{t}\right) + \frac{1}{p^{t}}\right) + O\left(\frac{1}{n}\left(1+n^{t}p^{t}\right) + \frac{1}{p^{t}}\right) + O\left(\frac{1}{n}\left(1+n^{t}p^{t}\right) + \frac{1}{p^{t}}\right) = O\left(\frac{1}{n}\left(1+n^{t}p^{t}\right) + O\left(\frac{$ $\frac{0 \quad M_{P} - N_{n}}{N} = \frac{1 + 0n^{*}p^{\epsilon} + tp - (t + 4p^{\epsilon}n^{*} + tp)}{1 + (1 + n^{*}p^{\epsilon} + P)} = \frac{-1 - p^{\epsilon}n^{*}}{tn(1 + n^{*}p^{\epsilon} + P)}$ يقط روس ٦ س

مدی با ۱,۱ ,۶ م ار ار المار (مدی

www.SoftCivil.ir

 $\mathcal{O} \xrightarrow{p(a+1)} p'(1) + \frac{1}{1+n'p'} + \frac{1}{1+n'p'} + \frac{1}{1+n'p'} + \frac{n^{\alpha}p^{(\beta+1)}}{1+n'p'} = 0$ $M_{p=}(B^{+1})n^{a}\rho^{B} + (B^{+0})n^{(a+1)}\rho^{(B+1)} + (B^{+1})n^{a}\rho^{(B+1)}$ $N_{n=} \uparrow (\alpha + 1) p^{\beta} n^{\alpha} + \uparrow (\alpha + 1) p^{(\beta + \ell)} n^{(\alpha + 1)} + \uparrow (\alpha + 1) n^{\alpha} p^{(\beta + 1)}$ B+1 = 1a+1 B. Q = Ya+4 ۲ کارگاه مانس ازار مثلل - مطلوب است جواب منصر مرد ساله : مثلل - مطلوب y" + P(0) x + q(+) x = . که در آن ... (. +) لا و ... (. +) لا و ۶ و در بازه I شکل . + پیوسته اند. ماقد و مصبه نیما جواب مسئله «علا است زبرا ۶ و ۶ روی کم بیوسته اند و من t eI است د تر سنان روسل یا روسکین : من کسم بر و بر دوجاب حادله دخراستن (+) g = بر (+) g + 'بر (+) g + "بر باسند، در این صورت مونسلین که دیکه در نقطی ما به حورت زیراست : $W = \omega (\chi_{1}, \chi_{2})(t_{0}) = \begin{vmatrix} \chi_{1}(t_{0}) & \chi_{2}(t_{0}) \\ \chi_{1}'(t_{0}) & \chi_{2}'(t_{0}) \end{vmatrix}$ (D) TLAS AOTEBOOK

www.SoftCivil.ir Date: ب است تغیین رونسکین حواب های هادله • = برا - بر + ر در • • • • • $\omega(\chi,\chi,\chi) = \begin{bmatrix} e^t & e^{-t} \\ e^t & e^{-t} \end{bmatrix} = \begin{bmatrix} e^t & e^{-t} \\ e^t & e^{-t} \end{bmatrix} = \begin{bmatrix} e^t & e^{-t} \\ e^t & e^{-t} \end{bmatrix}$ فصية فرين كتير بر ويرجاب على ما دله ٥٠ بر (٢٩ + كر ٢٩ + " بر باسدو ٥٧ يعن رو نسلين بر ويد در نقطهای مانند ۲۰ ناصر باسند در این صورت خاندا دوجواب های پر ۲۰ بر ۲۰ یا مراسب دلعداه ۲٫۰٫۰ م _____ فکت وقتی مدنسکی بر وربر هدم صریباشد ترکیب خوالی بر ۲۰۷۶ بر ۲٫۶ شال ه جراب های معادله 🕲 است د بهر بر راجراب های بایر می نامند شکل. فرض کسید بلا در موجواب های معادله ۵ = یو (یا q + کو (یا q + تو یا سند و اگر ۲۰ + ۲ نشان دهید $\frac{y_{i}}{y_{i}} e^{r_{i}t}, \quad \chi_{r} = e^{r_{i}t}$ $\frac{e^{r_{i}t}}{e^{r_{i}t}} = \frac{e^{r_{i}t}}{r_{i}e^{r_{i}t}} = \frac{e^{r_{i}t}}{r_{i$

www.SoftCivil.ir y = t + , y = t - 1 بليرو پر جاب ما مي يا بيري هستند w(x, , x,) + . والبسكي و استعلال على الوليم دوتاب او و مرجز الدوالية خل الد الردونات بار به المدهد عد واعم صفر نبستند (حد تل من نامغ است)، فيان رود دانست باشد الم بر ازار مر teI ، ترع بر k, toth + (ع) به + (ع) كر م و و بر از I سنتن طی اند اگر راسته طل باشند. مرای مکل ترابع sint (+ +) ده مربزه دلفاه I راسته طلی اند. 1xsint + (-1) cos (+ -t)=. نکت حرب دوتاس ۶ من ستن بند بر بازو ۲ باسند و بر ازای نظاری منذ Ese ، مدر (و بر) مد از آند Fe و بر I مستقل خلی هستند و مرب ۶ و و داسبته خلی باستد ۱ نک درازی هر ۲ ، ۰۰ = ۹ (و ۱) م م الله د وقق رونسلین ، لا در به هما عشر بناسد ترکیب طی بر ب² + ری شامل ه جواب های معادله مد بوده بوده بوده بو بود است و بود راداب های نادلی ی نامند. کاهتی مرتبه و من کنید دون برجانی از معادار و = بردان به از بردان با از کردان مرای بافتی

w.SoftCivil.ir جاب دلم ولرمى دهم بون ال- بر دوان مورت با داندارى 'بودنال - بر دن لا = 'بر و يُردون بو بون بد بون بي در مالد من بسادل فل مرتب لول بر حسب كل من سم كد باعل ال كا باست مي الله ر من وبالنفران ليري تورا مي يا بيم. شلل: فرج كنيد T= (+) بر جواب مادل I wey - y = . جاب مستعل خلي ديكر؟ $y(t) = V(t) y = \frac{V(t)}{t} + \frac{V(t)}{t} = \frac{V(t)}{t} + \frac{V(t)}{t}$ $\frac{y''(t)}{\alpha_{Y}} = \frac{v''(t)}{t} + \frac{v'(t)}{t} + \frac{v'(t)}{t}$ $\frac{U_{t}}{U_{t}}, \quad \frac{Vt'}{t} \left(\frac{U''}{t} - \frac{VU'}{t'} + \frac{VU}{t'} \right) + \frac{Vt}{t} \left(\frac{U'}{t} - \frac{U}{t} \right) - \frac{U(t)}{t} = \frac{VtU''}{t} + \frac{EU'}{t} + \frac{EU'}{t}$ $+ \frac{d}{t} \frac{d}{t} \frac{d}{t} \frac{d}{t} = \sqrt{(1t)} + \frac{d}{(-\xi+d)} + \frac{$ $\frac{U''=1}{V'} \xrightarrow{I} L_n U' = \frac{1}{V} L_n t \xrightarrow{V'=V} U' = \sqrt{t} \xrightarrow{V'=V} U' = \frac{1}{V} L_n t \xrightarrow{V'=V} U' = \sqrt{t} \xrightarrow{V'=V} U' = \sqrt$ $\frac{\chi}{(n)} = \sin n' - ny'' - y' + En'y = 0$

www.SoftCivil.ir $\left(\frac{nP}{XP}-\frac{NP}{XP}\right)\frac{3}{T}=\frac{3P}{XP}$ $\frac{1}{T} \times \frac{np}{\lambda p} = \frac{2p}{\lambda p} \left(1 \right)$ 7u7=n ← n2=7 ·= X + K + + K7 $\begin{array}{c} \begin{array}{c} & & \\$ $\frac{1}{1} = \frac{1}{1} = \frac{1}$ $\leftarrow \cdot = \lambda_3 - \frac{np}{xp} \rightarrow + \frac{np}{xp} \leftarrow \cdot = \lambda_3 - \frac{np}{xp} \rightarrow + \left(\frac{np}{xp} - \frac{np}{xp}\right) \leftarrow \frac{nn}{nn}$ $\left(\frac{nP}{\sqrt{P}},\frac{nP}{\sqrt{P}}\right)\frac{\sqrt{2}}{1} = \frac{nP}{\sqrt{P}} \times \frac{\sqrt{2}}{1} + \frac{2}{\sqrt{P}} \times \left(\frac{nP}{\sqrt{P}}\right)\frac{2}{\sqrt{P}} = \left(\frac{2}{\sqrt{P}},\frac{nP}{\sqrt{P}}\right)\frac{2}{\sqrt{P}} = \left(\frac{2}{\sqrt{P}}\right)\frac{2}{\sqrt{P}} = \frac{2}{\sqrt{P}}\left(\frac{2}{\sqrt{P}}\right)\frac{2}{\sqrt{P}} = \frac{2}{\sqrt{P}}\left(\frac{2}{\sqrt{P}}\right)\frac{2}{\sqrt{P}}$ $O = \frac{1}{T} * \frac{np}{\sqrt{p}} = \frac{np}{\sqrt{p}} * \frac{np}{\sqrt{p}} * \frac{np}{\sqrt{p}} = \frac{np}{\sqrt{p}} *$ 1)++ += K1 - K+1 + K+ المادر للات الم المراحة - - 7 + + 7 + بعدالا تسدلا المسالية ولوع بدار لم ·= 2g + 270 + 2,7 Jeles et: () 1,0

ww.SoftCivil.ir $(y'_{u}) \rightarrow (\frac{dx}{du}, \frac{dx}{du}) + i(\frac{dx}{du}) + \chi = 0 \rightarrow \frac{dx}{du} + \frac{dx}{du} + \chi = 0$ الله در در در در در در در در در مادله عرض (۵) و در ۲۵ و + رو بار با بسند، اندا ه منامل آر ما تعنی بر بر یک جواب ساطه های ساط (۱۷۰۰) است. ۲۰ - ۲۰ $\frac{y}{y} = \frac{y}{y} + \frac{y$ روی خاب ماسی درای روی راجب به شل علی جواب صفوی (م) ۲ واند مرف اولد می تسم ولی خاب ف مانک شعن در نظری کریم سیس علمت فرقی سده را در معادار (۵) و = یو (۵) و + یو (۲) و بالداری ارده و مراب را طوری حین ی کنیم که دران معادله صرفی کند. 1) حرك جد عني هلي (م) و مل تابع نمال جرف من من من مان مرم) ي $Y_{(t)} = A c^{\alpha t}$ Y(4)= Asinpt+Bcoppin () مركاه () () مركاه () () م) «مُنَا، (بي مَ صَبِحبال باسْد، (٢٠ را حد حبد از حال درج در نظر مي أسريم:

www.SoftCivil.ir المل المطلوب السب عل معادله راب ۲۵ - ۲<u>۳ - ۲۶ - ۲۶ - ۲۶ (الن</u> Y(1)= Ac" -> Y = YAe" -> Y = EAc"+ $\epsilon_{Ae^{tt}} = \epsilon_{Ae^{tt}} + \epsilon_{Ae^{tt}} = \epsilon_{Ae^{tt}} + \epsilon_{Ae^{tt}} +$ $\chi'' - \zeta' - \zeta' = \zeta' = \zeta' - \zeta' - \zeta = \cdots \rightarrow (r - \xi)(r + 1) = \cdots \xrightarrow{\chi_1 = e^{\xi_1}} \chi_{r = e^{\xi_1}}$ - + e't - C, e Et - C, e - t - Le't ب) x" - "x' - Ex = I sint Y(t) = A sint , B cost _ Y(t) = A cost _ B sint _ Y(t) = - A sint = B cost => - Asint Bcost _ "Acost + "Bsint _ EAsint - EBcost = ("B-OA) sint + (-^cA.OB) cost = l'sint \Longrightarrow $A = -\frac{0}{10} B = \frac{c}{10}$ - $OB_{-}CA = -\frac{0}{10} B = \frac{c}{10}$ Y(+) = - O sint + C cost C U y - "y - Ey = .

www.SoftCivil.ir 6) X- 4 - 4= 4 - 1 $Y_{(t)} = At' + bt + G' \longrightarrow Y_{(t)} = Y_{a,t} + a_{t} \longrightarrow Y_{(t)} = Y_{a,t}$ $a_{i} = a_{i}t - a_{i} = a_{i}t - a_{i}t - a_{i}t = a_{$ $-\epsilon a_{1}t' + (-4a_{1} - \epsilon a_{2})t + (4a_{1} - \epsilon a_{2} - \epsilon a_{2}) = \epsilon t' - 1$ $\int -\delta a_i = \delta \rightarrow a_i = -1$ $\chi = c^{t}$ $\chi = c^{t}$ $Y_{i}(t) = C_{i}e^{t} + C_{i}e^{-t} + (-t^{2} + \xi + -\frac{11}{7})$ م ب السيد (t) ب - (t) ب - (t) ب - (t) ج (t) ب رئيس واب حفوص معاد معدى (t) ب - و (t) ب + و (t) ب + و (t) ب + و و (٥) ٢٥ = ٢٥، ٢٥ - ٢٠ يد ٢٠ ٢٠ با يشد در اي صورت ٢٠٠٠ ٢٠ مي جاب تقوى سادله عرفه (-1 y"+p(+)y'+q(+)=g(+)

www.SoftCivil.ir Date: عوبى معادله عرمان شکل: مطلوب اس 9.(+) 9.(+) 9.t) y"- ey - Ey - e"+ + vsint - Act costt $\chi'' - c_{\chi'} - \epsilon_{\chi} = c_{c't} \implies Y_{1} = \frac{1}{2}c''$ ſ Z'- Cy - Ey = Ksint -> Y.= -O sint + Cost Yr(+) = et (Asinit + Bcosit) y"- cy - Ey = Act cost => Y-(+) = et (Asin 1+ + Bcos 1+) + et (Acoste - 1Bsint) $Y_{r}(t) = C^{t}((A-YB) \sin Yt + (B+YA) \cos Yt)$ $Y_{-}^{''}(t) = c^{t} \left((A - YB) \sin Yt + (B + YA) \cos Yt \right) + c^{t} \left((YA - EB) \cos Yt - (YB + EA) \sin Yt \right)$ $= e^{t} \left(\left(A_{1}B_{1}B_{1}E_{A} \right) \sin^{2}t + \left(B_{+}tA_{1}tA_{-}E_{B} \right) \cos^{2}t \right) \Rightarrow$ $Y_{r}(t) = c^{t} \left(\left(- (A - EB) \sin^{2} t + (-(B + EA)) \cos^{2} t \right) \right)$ $\xrightarrow{dividue} e^{t} \left[\left(-e^{A} - EB \right) \sin^{2}t + \left(-e^{B} + EA \right) \cos^{2}t \right] - e^{t} \left[\left(A - B \right) \sin^{2}t + \left(B + A \right) \cos^{2}t \right] \right]$ - Ect (Asin ++ Bcos ++) = - Act cos ++ Y(+) = Y + Y++ Y= = -1 et - Q sine + 5 cose $B = \frac{\xi_0}{0Y} = \frac{1}{1P} \left[A = \frac{Y}{1P} \right]$

www.SoftCivil.ir $g(t) = e^{\alpha t} \Rightarrow Y(t) = A e^{\alpha t}$ $y'' + |^{2}(t)y' + q(t)y = g(t) \longrightarrow g(t) = \sin \beta t = \sum Y(t) = A \cos \beta t + B \sin \beta t$ $\cos \beta t = Date$ Y(+)= A. + + A1+ + ... + A) + + An Date: > g(+) = a, t" a, t" + a, t + a, = $(+ c^{t} (+ sinte + + coste) + (t) - Gc^{t} Gc^{t} Gc^{t} Y(t) - Gc^{t} Y(t)$ شكل ظلوب الست ط معادلات : x" + Ey = " COS YZ Y(+) = t (A cost + B sint) $Y'_{(+)=(-!A sin!t + !B cos!t)t + (A cos!t + B sin!t) = (-!At+B) sin!t + (!Bt+A)$ $= Y''_{(t)} = \frac{\gamma A \sin t + \gamma \cos t + x(-\gamma A t + B)}{\gamma B \cos t - \gamma \sin t + (\gamma B t + A)} =$ -fAsinit EBcosit EAt cosit BESINY EA sin Yt + EB cost t EAt cost - EBt sin Yt + EAt cost + EBt sin Yt + EAt cost $\begin{array}{c} \epsilon B_{\pm} \epsilon \rightarrow B_{\pm} F \\ \hline \epsilon B_{\pm} F \\ \hline F \\$ Y(+) = = + + 5in 4 ay'' + by' + cy = ag(b)الرام (م) و مورت م من مدينة معرف الم معرف الم المار المال الملاح والجل المورت ،

سیل رم ۹۴٫۹٫۸ نام. ۹ کناب سار نازم برند) (فی افرار می) Date: () Yes www.SoftCivil.ir 1 (A.t + A,t + + , + An) C ی مابشد. أكر محق، (1) ۲ = (6) و مابشد مرابی اصلاح جواب را به صورت . $t^{s} (A_{s}t^{n} + A_{t}t^{n-1} + \dots + A_{n})e^{\alpha t}$ در نظری کرم ، دار یا xt (sin Bt) استر کری اصلاح جواب (۲۵ رابه مورت : در نظری کرم ، دار یا x x x x (t) (t) = (t) و با شد رایی اصلاح جواب (۲۵ رابه مورت : $t^{s}\left[\left(A,t^{n},A,t^{n},\ldots,A_{n}\right)e^{\alpha t}\cos\beta t\right]+\left(B,t^{n},B,t^{n'},\ldots,B_{n}\right)e^{\alpha t}\sin\beta t$ X + ey = "t" + t"e" + sinet 1) × + × = ++ $x' = t'e^{-t't}$ r) y"+ cy = sin ct ×t∉ -1) Y, L+) = t (A.t + A, t + A, t + A, t + A, t + A; Y, (+) = QA.t + EA.t + YA.t + YA.t + A.t + A. Y, (t) = Y.A.t" + IYA.t' + YA.t + YA. + . 2.A.t + 11 A, t + 4A, t + 10A.t + 10A.t + 14A, t + 4A, $\rightarrow 10A_{*}t^{t} + (Y_{*}A_{*})t^{*} + (IYA_{*}+9A_{*})t^{*} + (YA_{*}+9A_{*})t + (YA_{*}+9A_{*})t + (YA_{*}+9A_{*})t^{*} + (YA_{*}+9A_{*$ $A_{t} = \frac{1}{10} \qquad A_{t} = \frac{1}{9} \qquad A_{t} = \frac{1}{10} \qquad A_{t} = \frac{1}{10} \qquad A_{t} = \frac{1}{11}$ Ð $Y_{(t)} = \frac{1}{10}t^{0} - \frac{1}{4}t^{t} + \frac{1}{7}t^{t} - \frac{1}{7}t^{t} + \frac{19}{71}t^{t}$

 $((\$ www.SoftCivil.ir e - "+ Date: Y) Y. (+) = (A. t. A, e + A,) e - " 240' xt R. Y. (+) = ("A.t', YA, t, A,) e" "e" (A.t", A, t', A, t) 1 Y. (+)= (4A.t+YA,) e" + "e" ("A.t + YA,t+A,) + 9e" (A.t + A,t + A,t) - "e" ("A.t', "A.t , A,) Et (YA. t. VA, -9A. t. YA, t - CA, +9A. t. 9A, t. 9A, t. 9A, t. 9A, t. 4A, t. 4A, t. CA) + est (9A.t', 9A,t, CA, 9A.t', 9A,t', 9A,t) = t'est => A.=-1 A.--1 , $Y_{r}(t) = \left(\frac{1}{2}t^{r} - \frac{1}{4}t^{r} - \frac{1}{7}t\right)e^{-rt}$ Yelt) = A cost + Bsinte Y ... Mainet + CB cos "t Y = - 9A cost - 4B sindt - 9 A cos Ct _ 9B sin Ct _ 9A sin Ct + 9B cos Ct _ sin Ct => A == 1, B == 1 $Y_{e}(t) = -\frac{1}{10} \cos^{2} t - \frac{1}{10} \sin^{2} t$ Y = G + C, E V + Y + Y } دین بی قسر بار^اس هرگاه ج، چرو مرباز I میوسته با سند و <u>بر و په حباب حلی ستو</u>ل طلی معاد ترمن کرد، بود برد، بر ارم رام ر اسد اناه ما جوار حضوص حادله (ما و - بر (ما ج + بر مار - ب مار - ار - ار

Scanned by CamScanner

www.SoftCivil.ir

Date Ya) = - y, a) (+ (x, , x,) di + y, a) (+ (x, , y,) di + y, a) (x, , y,) di + (x, , y,) شك المريدة بروجو ولا جراب على على متناطر با مادله " مام = الما لوم " مريد المريد المريد المريد المريد الم تسي حاب صومي غبر خكن (u(y,y,)=|y,y'|=|n|n'|=(n'-n'-n'-1)n'' $Y(t) = -\lambda \int \frac{n^{r} \delta^{r} Y n^{r} e^{h}}{Y n^{r}} + n^{r} \int \frac{n x Y n^{r} c^{-}}{Y n^{r}}$ روین ص ها دلات موج مرتبه ۲ با فرایب خرامات $y' + P(x) \chi' + q(x) \chi = g(x)$ $Y(t) = -\chi(t) \int \frac{\chi_{v}(t)g(t)}{\omega(\chi_{v},\chi_{v})} dt + \chi_{v}(t) \int \frac{\chi_{i} eg(t)}{\omega(\chi_{v},\chi_{v})} dt$ $\omega(y, x, y) = \left| \frac{e^{y}}{e^{y}} + \frac{e^{y}}{e^{y}} \right|_{x} = \frac{e^{y}}{e^{y}} + \frac{e^{$ يحل طلور Ł $Y(n) = -e^{-tn} \int \frac{ne^{-tn}(e^{-tn}\ln n)}{e^{-tn}} + ne^{-tn} \int \frac{e^{-tn}e^{-tn}\ln n}{e^{-tn}}$ 1. V - Juda flanda = nlan - n u=n => du=dn $\int n \ln n \, dn = n' \ln n - n' - \int (n(nn-n) dn$ Q di standa => ntana = V Ð S AOTEROO

www.SoftCivil.ir $\int n \ln dn = n' \ln n - n' - \int n \ln n dn + \frac{n'}{r} = \sum \left(\int n \ln n dn = n' \ln n - \frac{n}{r} \right)$ $\int n \ln n \, dn = \frac{n'}{r} \left(\ln n - \frac{n'}{r} \right)$ ی ل مادلات حل ترشد دوم ، ما دلم روم رو را $P(n)\chi'' + q(n)\chi' + R(n)\chi = q(n)$ رای بی گذیم مرکاه سوال از اینسال دری = (بوده با به بوده) خدست کردران (۲۰۰۰ برصب (۲۰۱۹، در) G ر (۲۵۰ معرب می سرد ، معادله الفرای زلان مؤراً انتگریل کیری کرد ونک حادثه حول وزید اول بوست قوم: يك شط لازم بري كامل بود عبارت است ال دىن رطكانى بنى بايس P''(n) = Q'(n) + R(n) = 0y"+ ny+y=" $P(n) = 1 \rightarrow P'(n) = .$ $= P''(m) - Q'(m) + R(m) = 0 \quad (m) + Q(m) = 0$ Q(n)= n -, Q'(n)= 1 $\chi'' + n\chi' + \chi = (\chi' + k(n)\chi)' = (\chi' + n\chi)'$ $\chi'' + k'(n)\chi + kn(\chi) = 7 k(n) = n$ <u>x"+ny+y=-=>(y'+(ny))=="=> y'+ny=C,</u> => C (y'iny=C)

www.SoftCivil.ir $e^{\frac{\pi}{2}} (+ n e^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} c, \Rightarrow (e^{\frac{\pi}{2}} \chi) = e^{\frac{\pi}{2}} c_1 \Rightarrow e^{\frac{\pi}{2}} \chi = \int e^{\frac{\pi}{2}} c_1 + c_2$ $\Rightarrow \chi = C_1 C^{-\frac{\lambda'}{\gamma}} \int C^{\frac{\lambda'}{\gamma}}_{\alpha+1} C_{\gamma} C^{-\frac{\lambda'}{\gamma}}$ Mar MA n'y" + ny - y = . $P(n) = n' \longrightarrow P(n) = t'n \longrightarrow P(n) = t'$ $\frac{P(n) = h^{\prime} \longrightarrow P(n) = t^{\prime} \longrightarrow P(n) = t^{\prime}}{\Re(n) = n \longrightarrow \widehat{R}(n) = 1} \xrightarrow{P(n) = t^{\prime}}{\Re(n) = t^{\prime} =$ R(2) = -1 $\frac{n}{(r_{n}+k_{n})y'}$ $\frac{(r_{n}+k_{n})y'}{(r_{n}+k_{n})y' + k(r_{n})y' + k(r_{n}$ $(n'y' - ny) = \cdot =)$ $n'y' - ny = C, \qquad xe^{j}, \qquad \chi' - \frac{1}{n} \chi = \frac{C_{i}}{n} xe^{j}$ $\left(\frac{1}{n}\frac{\chi}{\chi}\right) = \frac{C_{1}}{nr} \implies \frac{1}{n}\frac{\chi}{\chi} = \frac{C_{1}}{rnr} + \frac{C_{r}}{r} \implies \chi = \frac{C_{1}}{rrn} + \frac{C_{r}}{r}$ 14) <u>y</u> + <u>eny</u> + <u>ny</u> = . (v) <u>ny</u> - <u>cos ny</u> + <u>sinny</u> . (v, is <u>trav</u> 1) n("-cosny'+sinny= (ny'+k(n)y) = y'+ ny"+k(n)y + k(n)y k(n) + 1 = -EOS n = - k(n) = - cosn - 1k(n) = sinn $\left(ny' + (-\cos n - 1)y\right) = 0$ $\int \frac{\int dn}{\partial y} + (-\cos n - 1)y = C$ AS NOTEBOOK

www.SoftCivil.ir ساطات حلى دليب ما لاتر ما خراب كاس er deter child a y (m) + a, y (m-1) + a, y + a, y = a مركن على معادلات م بايشه. y"" + y" - Vy" - y + Ey = . مال طلوب اس و معدي مراسب مغراست درتيدي ازريزها ا است r'+r'-Vr'-r+4=. -rtir r'+r' Vr'-r+9=(r-1)(r'+4r'-0r-4) 1Y Vr-14 د جروج می ات لدادان می ار رسیه 1r" +r' - Or'- r+4 مدر مراب دال بادر مرد با مربع مراب علات با ٢٠ - ٢٢ - ٢٢ Or Or r"+r"-Or 9 1-1 -4r+4 -4r+4

www.SoftCivil.ir () Date: => $(r_{-1})(r_{+1})(r_{-1})(r_{+2}) = - \left\{ \begin{array}{c} r_{-1} & -r_{-1} \\ r$ r + + + - Vr - + + 4 = . $\chi_{c} = C_{\chi_{c}} + C_{\chi_{c}} + C_{\chi_{c}} + C_{\chi_{c}} \rightarrow \chi_{c} = C_{c} C^{n} + C_{c} C^{n} + C_{c} e^{\ell n} +$ x + x = . مال مطلوب است مل معادله زير. $r^{\epsilon} + 1 = 0 \rightarrow r^{\epsilon} = -1 = i$ kto, 1, , , no $\frac{\Theta = \tan^{-1} y}{\chi(\mu - 1)\lambda} \qquad \chi(\mu - 1)\lambda \qquad$ $-|z_{-}|+\nu(z_{-})|-||=\sqrt{(-1)^{2}+\nu^{2}}=|\theta=H|$ $G_{i} = I\left(\cos\frac{M}{F} + i\sin\frac{M}{F}\right) = \frac{1}{VT} + \frac{i}{VT} = \frac{1+i}{VT}$ $W_{r} = I\left(\cos\left(\frac{M+YR}{F}\right) + i\sin\left(\frac{M+YR}{F}\right)\right) = \frac{1}{Yr} + \frac{i}{Yr}$ $\omega_{n} = 1\left(\cos\left(\frac{M+EM}{E}\right) + 1\sin\left(\frac{M+EM}{E}\right)\right) = \frac{1}{\sqrt{r}} - \frac{1}{$ $\omega_{\pm} = 1\left(\cos\left(\frac{\pi+4\pi}{\epsilon}\right) + i\sin\left(\frac{\pi+4\pi}{\epsilon}\right)\right) = \frac{1}{\sqrt{\tau}} - \frac{i}{\sqrt{\tau}}$ $V_{i,Y} = \alpha \pm i\beta \Rightarrow \begin{cases} \chi_{i} = c^{\alpha} \cos \beta n \\ \chi_{v} = c^{\alpha} \sin \beta n \end{cases}$ (X1= CT cos(m) (Le= e vr cos(n) $\chi_{i}: e^{\frac{n}{\sqrt{r}}} \sin\left(\frac{n}{\sqrt{r}}\right)$ Zi= e Tr sin(n) ATLAS NOTEBOOK

www.SoftCivil.ir Date: جادلات مراب بالاين y"= "y" + "y = tet YE-1990 ردیش فرایب کا سیس: 1 (+) = Atet Y' At'et At'ct Act (rt'+t") $Y'' = Ac^{t}(xt'+t') + Ac^{t}(4t+xt') = Ac^{t}(4t+4t'+t')$ $Y''_{-} A e^{t} (4t + 4t' + t') + A e^{t} (4 + 17t + 4t') = A e^{t} (t'_{+} 4t' + 1At + 4)$ Aet (t'+ 9t'+ 1At+ 9 - Ct - 1At + 9t'+ ct + et + ct = Eet = 4A C+ = E C+ => A = Y $Y(t) = \frac{1}{r} t^{r} e^{t} \qquad \chi = C_{r} e^{t} + C_{r} t e^{t} + C_{r} t^{r} e^{t} + \frac{1}{r} t^{r} e^{t}$ $y'' - \xi y' = t + cost 4 C''t$, + (12 19% $\chi''' - \xi \chi' = t \Rightarrow \chi(t) = A + Bt \xrightarrow{2^{10} + t} \chi(t) = At + Bt'$ y"- Ey = cost => Y(t) = C cost + Osint $\frac{\chi'-\xi_{\chi}'=e^{-t}}{\chi'-\xi_{\chi}'=e^{-t}} = \frac{Y_{e}(+)=\xi e^{-t}}{\xi} \frac{t'}{\xi} + \frac{\xi}{\xi} + \xi = \xi + \xi$

www.SoftCivil.ir Date: اكر مع ۲۰ روسادله @ و ۲۰ رادر سادله @ و ۲۰ را درسادله @ طبلد ارى كس $\mathcal{O} A = -\frac{1}{\lambda}, B = .$ + + e- 4 >> 2 = C + G e + C ett - 1 t - C sint 0 c .. , D = - < QE-1 مالات روت مالات (روش عام فرامت)) w(t)=W $Y_{(t)} = \sum_{k} \int \frac{g(s) W_{m}(s)}{W_{(s)}}$ $W(X_{1},Y_{2},y_$ $W_{m}(s) = \begin{cases} \chi_{1} \\ \chi_{2}' \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ (n-1) \end{cases}$ • ··· ½'u
1 ½ (n-1) AS NOTEBOOK

www.SoftCivil.ir سل مطلوب لست عل مادل ىتون مى ۋ y"-y"=y + y = g(t) $r''_r r'_r r_+ | = , \qquad (r-1)(r'-1) = , \qquad \Rightarrow \qquad r'_r(t) = 1 \rightarrow \forall_1 = e^t$ re-t - y -e-t $= e^{t} \left(e^{t} \times \cdot \cdot \cdot \cdot e^{t} \right) = t e^{t} \left(\cdot \times \cdot e^{t} \right) + e^{t} \left(\cdot \times \cdot e^{t} - \cdot \times e^{t} \right) = \cdot \cdot e^{t} e^{t}$ $\frac{\omega_{+}(\chi,\chi,\chi,\chi_{e})}{(\chi,\chi,\chi_{e})} = \begin{vmatrix} \circ & +e^{t} & e^{-t} \\ \circ & (++)e^{t} & -e^{-t} \\ -e^{-t} & -(-1)^{Y}x \circ x \\ (\chi+t)e^{t} & e^{t} \end{vmatrix}$ $+(-1)^{i}$ = -t - (1+t) = -t - 1 $\frac{\omega_{+}(\chi,\chi,\chi)}{\omega_{+}(\chi,\chi,\chi)} = \begin{bmatrix} e^{t} & e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} = \begin{bmatrix} e^{t} & e^{-t} \\ e^{t} & e^{-t} \end{bmatrix}$ $w_{e}(\chi,\chi,\chi_{e}) = = c^{rt}$ $Y(t) = \chi \int \frac{(-1-Y+)g(t)}{\varepsilon_e^t} dt + \chi \int \frac{(g(t))}{\varepsilon_e^t} + \chi \int \frac{\varepsilon_e^{(t)}g(t)}{\varepsilon_e^t}$ $\sum_{c} \frac{Y_{c}}{z_{c}} = C_{c} e^{t} + C_{c} t e^{t} + C_{c} e^{-t} + Y(t)$

www.SoftCivil.ir $\overline{()}$ Date: سری های قدلن (.... بی تح در اسری تولین حول . مری ناسم سری محدت 5= a,(n-n.) = a, $S_{1} = Q(n - n_{1})' + Q_{1}$ $S_{i} = Q_{i}(n-n_{i})^{i} + Q_{i}(n-n_{i}) + Q_{i}$ $(y_{U} - S_{n} - a_{n}(n-n) + \cdots + a_{n}(n-n) + a_{n}$ مرابع سری طن سری "(. ۳. ۵) ۵۰ تح همراست مرکا - دنبار سمی مای طوری آن عمر باشد 100 (Cin Lin Suil Lin Suil Cin Suil Cin Suil E a. (m. 54.) آزمن مرای (آزمن سب) $\frac{L}{n \to \infty} \left| \frac{q_{n+1}}{a_n} \right| = L$ الكر الم الم الم الم الم الراجا من وتراب الكراء الم ين فان ترب $\sum_{n=1}^{\infty} (-1)^n n(n-r)^n$ L | an lo como como con la la بر جری می دان دست h (-1)" (n+1) ((-1)" n

vww.SoftCivil.ir ورزى مريد الم < ۱ . ۹ . ۹ . ۳ . سرى داراس. برزیس مرجمه ب مرجمه این می تان کن مرعن مارون حرم مر باب المسالم مراس مدر اس ۱۷۰۰) (nse, nc1). Cullo " [n-1 1<+ " ا - ۲ - ۲۰ بندی می قدان کفت (۲ - ۹ د ۱ - ۹) A=1 → Ž (-1)", n(1-1)" Ž n سرد) در است زر احد مدی و مرس بی اس . . . و مد = شریک n= e → = (-1), n(e-r) = = (-1) → → (-1) $f(n) = \sum_{n=1}^{\infty} \frac{f^{(n)}(n,)}{(n-n,)^n}$ 60 (in) fin f(m) = f(m, 1) + f(m, 1)(m-m, 1) + f(m, 1)(m-m, 1)1'(~) sinn= 0

سرى وك مادلات يا مرايب حديدانى حل منطى عاس مرای ص ما دلات علی مرتب فرایت صبحارای از یک متنس مشکل است کامی است ارتدا هادار همان متاطرة أن رورتك م البريم ، روند مل ما در مراكل مشابد است. * P(n) d'y + Q(n) dx + R (n) y =. که درایی مادله ^Pم و R فیادلی هستند. تعريب ، نقاط عادي و معرد معا دله * در ما دلهی * نقط ۲۵ ، + ۱. ۹۲ مک نقط کادی الموریکا یا حولی ما دله * نا سومی شود. از طرف دلم اس د ساد بر بر سری در جاب هایی به شکل روم روهستیم $\chi = a_{1} + a_{1}(n_{1}n_{2}) + \dots + a_{n}(n_{n}n_{n})^{n} + \dots$ $\chi = \sum_{h=1}^{\infty} \alpha_{n} (n-n_{-})^{h}$ يكن بطلوب است من سادله روم رو بون سرى ما y =y =. (- ~ (n (+~) UNGEL R مرعددی جاندی الم مردان ال مواب را به مدرت مری مل نظر عادی ^{من ب}ر الرالی نیزا[:] PAPCO

Ì

í

þ

$$\begin{aligned} \chi : \tilde{\xi}_{n} = \alpha_{n} (n-1)^{n} := \tilde{\xi}_{n} = \alpha_{n} n^{n} = \alpha_{n} + \alpha_{n} + \alpha_{n} n^{n} = - \\ \chi' := \alpha_{n} + \alpha_{n} n + \alpha_{n} n^{n} + \cdots \to \chi' := \tilde{\xi}_{n} = n\alpha_{n} (n)^{n} \\ \chi'' := t\alpha_{n} + \alpha_{n} n \to \chi'' := \tilde{\xi}_{n} = n(n-1)\alpha_{n} n^{n'} \\ \chi'' := \chi'' := \cdot \frac{\varphi_{(2)}/\frac{1}{2}\mu}{\sum_{n=1}^{n} n(n-1)\alpha_{n} n^{n'}} := \tilde{\xi}_{n} = (n-1)\alpha_{n} n^{n'} = \cdot \\ \tilde{\xi}_{n} = (n+1)(n+1)\alpha_{n+1} n^{n} + \tilde{\xi}_{n} = \alpha_{n} (n)^{n} = \cdot \\ \tilde{\xi}_{n} = (n+1)(n+1)\alpha_{n+1} n^{n} + \tilde{\xi}_{n} = \alpha_{n} (n)^{n} = \cdot \\ \tilde{\xi}_{n} = (n+1)(n+1)\alpha_{n+1} + \alpha_{n} = \cdot \\ (n+1)(n+1)\alpha_{n+1} + \alpha_{n} = \cdot \\ \tilde{\xi}_{n} = \alpha_{n+1} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = \cdot \\ (n+1)(n+1)\alpha_{n+1} + \alpha_{n} = \cdot \\ \tilde{\xi}_{n} = \alpha_{n+1} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = \cdot \\ (n+1)(n+1)\alpha_{n+1} + \alpha_{n} = \cdot \\ \tilde{\xi}_{n} = \alpha_{n+1} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = \cdot \\ \tilde{\xi}_{n} = \alpha_{n+1} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = \cdot \\ \tilde{\xi}_{n} = \alpha_{n+1} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = \cdot \\ \tilde{\xi}_{n} = \alpha_{n} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = \cdot \\ \tilde{\xi}_{n} = \alpha_{n} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = -\frac{\alpha_{n}}{(n+1)(n+1)}\alpha_{n+1} + \alpha_{n} = -\frac{\alpha_{n}}{(n+1)(n+1)}$$

$$y'' - hy = \cdot \qquad (-n \langle h \langle u \rangle) \qquad h^{-1} \qquad (Ch^{2})$$

$$(y_{1}b_{1}i_{1}|R =) \quad h_{1}i_{1} \Rightarrow y_{2} = \sum_{n=1}^{\infty} G_{n}(h, y_{n}i_{n})^{h}$$

$$y_{2} = \sum_{n=1}^{\infty} a_{n}h^{n} - y_{2}' > \sum_{n=1}^{\infty} ha_{n}h^{n-1} \rightarrow y_{2}' = \sum_{n=1}^{\infty} h(h, 1) G_{n}h^{n-1} \qquad (u \in (u^{-1})) G_{n}h^{n-1}$$

$$\sum_{n=1}^{\infty} h(h, 1) G_{n}h^{n-1} - h\sum_{n=1}^{\infty} G_{n}h^{n} = \sum_{n=1}^{\infty} h(h, 1) G_{n}h^{n-1} - \sum_{n=1}^{\infty} G_{n}h^{n+1} \rightarrow$$

$$\sum_{n=1}^{\infty} h(h, 1) G_{n+1}h^{n} - \sum_{n=1}^{\infty} G_{n}h^{n} = \sum_{n=1}^{\infty} h(h, 1) G_{n}h^{n-1} - \sum_{n=1}^{\infty} G_{n}h^{n+1} \rightarrow$$

$$\sum_{n=1}^{\infty} h(h, 1) G_{n+1}h^{n} - \sum_{n=1}^{\infty} ha_{n-1}h^{n} = i \rightarrow f(h) f(h, 1) G_{n+1}h^{n} -$$

$$\sum_{n=1}^{\infty} h(h, 1) (h, 1) G_{n+1}h^{n} - \sum_{n=1}^{\infty} ha_{n-1}h^{n} = i \rightarrow f(h) f(h, 1) G_{n+1}h^{n} -$$

$$\sum_{n=1}^{\infty} h_{n-1}h^{n} = i \rightarrow f(h) + \sum_{n=1}^{\infty} ha_{n} + \sum_{n=1}^{\infty} h(h) f(h, 1) G_{n+1}h^{n} -$$

$$\sum_{n=1}^{\infty} h_{n-1}h^{n} = i \rightarrow f(h) + \sum_{n=1}^{\infty} ha_{n} + \sum_{n=1}^{\infty} h(h) f(h) + \sum_{n=1}^{\infty} h(h) + \sum_{n=1}$$

PAPCO_

www.SoftCivil.ir Date . Month. $\chi = \sum_{n=1}^{k} \alpha_n n^n = (\alpha_n + \alpha_n n^n + \alpha_n n^n + \dots + \alpha_k n^n + \dots) + (\alpha_n + \alpha_n n^n + \alpha_n n$ + (a, n' + a, n' + a, n' + - + a, + + -) = 2 $G = a_{0}\left(1+\frac{1}{\forall x^{p}}+\dots+\frac{1}{\forall k(\forall k-1)x\dots\times\forall x^{p}}n^{t}_{k}\right)+a_{1}\left(n+\frac{1}{\forall x^{p}}n^{t}_{k+1}+\frac{1}{(\forall k+1)^{2}k_{x}}n^{t}_{k}\right)$ = a. X. + a. X. یک مطلوب است عل معادلہ -= پر - " پر حول تعظ علامی ا = n $\frac{\tilde{z}}{n}(n-1)(n-1)^{n-1} - n\tilde{z} a_n(n-1)^n = s + \frac{\tilde{z}}{n}(n-1)(n-1)^{n-1} - (n-1)\tilde{z} a_n(n-1)^n + \tilde{z} a_n(n-1)^$ $\frac{z}{z} = \frac{n(n-1)(n-1)}{n-1} = \frac{z}{z} = \frac{a_n(n-1)}{n-1} = \frac{z}{n-1} = \frac{a_n(n-1)}{n-1} =$ $\frac{z}{z}$ $(n+1)(n+1)a_{n+1}(n-1)^{n-2}a_{n-1}($ 0 $(1 \times 1)a_{+} - a_{+} + \sum_{n=1}^{\infty} ((n+1)(n+1)a_{n+1} - a_{n-1} - a_{n})(n-1)^{n} = 0$ $(n+r)(n+1)a_{n+r} = a_n + a_{n-1} \quad n \ge 1$ $a_{n+r} = \frac{a_{n+} a_{n-1}}{(n+r)(n+1)}$ $a_{p} = \frac{a_{1+}a_{2}}{a_{p}} = \frac{a_{1}}{4} + \frac{a_{2}}{4}$

9

Subject :

Year	Month.	Date .	1.3

$Q_{g} = \frac{Q_{Y}^{2} + Q_{1}}{\Gamma_{X}E} = \frac{Q_{1}}{\Gamma_{X}E} + \frac{Q_{1}}{\Gamma_{X}E}$
$a_0 = \frac{a_{1+}a_{2}}{\epsilon_x 0} = \frac{a_{1+}a_{2}}{\epsilon_x 0} = \frac{a_1}{\frac{1}{2}} + \frac{a_2}{\frac{1}{2}} = \frac{a_1}{\frac{1}{2}} + \frac{\epsilon_0}{\frac{1}{2}}$
$\chi = \sum_{k=1}^{\infty} q_{n}(n-1)^{k} = q_{n-1} q_{n-1} + q_{n}(n-1)^{k} + q_{n$
$\left(\mathbf{Q}_{1},\mathbf{Q}_{1},\left(\mathbf{n}_{-1}\right)^{T}+\frac{\mathbf{Q}_{1}}{\gamma}\left(\mathbf{n}_{-1}\right)^{T}+\frac{\mathbf{Q}_{2}}{\mathcal{C}_{E}}\left(\mathbf{n}_{-1}\right)^{T}+\frac{\mathbf{Q}_{1}}{\mathcal{C}_{E}}\left(\mathbf{Q}_{1},\left(\mathbf{n}_{-1}\right)+\frac{\mathbf{Q}_{1}}{\varphi}\left(\mathbf{X}_{-1}\right)^{T}+\frac{\mathbf{Q}_{1}}{1\gamma}\left(\mathbf{X}_{-1}\right)^{T}+\frac{\mathbf{Q}_{1}}{1\gamma}\left(\mathbf{X}_{-1}\right)^{T}+\frac{\mathbf{Q}_{2}}{1\gamma}\left(\mathbf{X}_{-1}\right)^{T}+\frac{\mathbf{Q}_{1}}{1\gamma}\left(\mathbf{X}_{-1}\right)^{T}+\frac{\mathbf{Q}_{2$
$\chi = Q_{1}\left(1 + \frac{(n-1)^{2}}{2} + \frac{(n-1)^{2}}{4} + \frac{(n-1)^{2}}{2} + \frac{(n-1)^{2}}{$
$\chi' + n\chi' - \chi = 0$ $n_{i=1}$
$y = \sum_{n=1}^{\infty} Q_n (n-1)^n$
en a ser a ser O ser a s

PAPCO

Scanned by CamScanner

and the second se

www.SoftCivil.ir

Subject : Month. Date .

6

10

(18)

(1+ n') y" - Eng + 7 =. ين صم ال 2 -1 -> y' = Enan (n-1) -> x'= = n(n-1)an(n-1)ⁿ⁻¹ x= 2 a. (n-1)" $\frac{(1+n^{2})}{(1+n^{2})}\left(\frac{\varepsilon}{\varepsilon}n(n-1)a_{n}(n-1)^{n-1}\right) - \varepsilon n\left(\frac{\varepsilon}{\varepsilon}na_{n}(n-1)^{n-1}\right) + 4\left(\frac{\varepsilon}{\varepsilon}a_{n}(n-1)^{n}\right)$ $\chi = \frac{1}{2} n(n-1) a_n (n-1)^{n-1} (n-1) = \frac{1}{2} a_n h(n-1) (n-1)^n = \xi = \frac{1}{2} n a_n (n-1)^n = \frac{1}{2} n a_$ 6 $(\xi = n q_n (n-1)^{-1} + 4 \xi^{\infty} q_n (n-1)^{-1} = 0$ 6 $t \in n(n-1)a_n(n-1)^{n-1} + \in a_n n(n-1)(n-1)^{n-1} + t \in a_n n(n-1)(n-1)^{n-1}$ $- E \sum_{n=1}^{\infty} na_n \left(\frac{n-1}{2} \right)^n - E \sum_{n=1}^{\infty} na_n \left(\frac{n-1}{2} \right)^n + E \sum_{n=1}^{\infty} a_n \left(\frac{n-1}{2} \right)^n = 0$ $-\xi \in n q_n(n-1)^n - \xi \in (n_{s1}) q_{n_{s1}}(n-1)^n + \xi \in q_n(n-1)^n = .$ $(Fa_{+}+1Ya_{+}(n-1)) + (Ea_{+}(n-1)) + (-Ea_{+}(n-1)) + (-Ea_{+}-Aa_{+}(n-1)) + (-Ea_{+}-Aa_{+}(n-1$ (4a,+9a,(n-1)) + E ((an+1)(n+1) + n(n-1) an + (n+1)an+1-10 Enan - E(n+1) an+1 + 9a,)(n-1)" =0 6 0 Ea. - Ea. + Ya. = = a. = a. = fa. Q Ø

Subject : Month . Date . Year

 $\frac{1}{1}a_{r} + fa_{r} - fa_{i} - Aa_{r} + fa_{i} = 0 = 2a_{r} = \frac{fa_{r} - fa_{i}}{1r} = \frac{a_{i}}{r} - \frac{a_{i}}{r} - \frac{a_{i}}{r} = \frac{a_{i}}{r} = \frac{a_{i}}{r} - \frac{a_{i}}{r} = \frac{a_{i}}{r} = \frac{a_{i}}{r} = \frac{a_{i}}{r} - \frac{a_{i}}{r} = \frac{a_{i}}{$ Yan++ (n+1) (n+1) + n (n-1)an + Yn (n+1) an+1 - t(n+1) an+1 + Yan = . an++ = - (n - On+4) an _ (+ + - +) an+ + (++ +) (++ +) n≥r $h=Y=7 \quad G_{F}=\frac{-G_{G_{F}X}}{Y_{F}F}=0$ $n=r = -\frac{a_{0}}{a_{0}} = -\frac{a_{1}}{a_{1}} = -\frac{a_$ n= E -> Qy = 0 $\alpha' = \sum_{n=0}^{\infty} \alpha_{+}(n-1)^{n} = \alpha_{+} + \alpha_{+}(n-1) + (\alpha_{+} - \frac{2}{7}\alpha_{-})(n-1)^{n} + (\frac{\alpha_{+}}{7} - \frac{\alpha_{+}}{7})(n-1)^{n} =$ $a_{n}\left[1-\frac{c}{r}\left(n-1\right)^{r}-\frac{1}{r}\left(n-1\right)^{r}\right]+a_{n}\left(\left(n-1\right)+\left(n-1\right)^{r}+\frac{1}{r}\left(n-1\right)^{r}\right)=a_{n}\chi_{n}+a_{n}\chi_{n}$ مر الله - هر ما خرمی تعلیم هدی علیمل مشترب P و Q حذف مده باشد آنگاه متاع حکم کی سرمی تولن Q حول نظر ۶ دست ما من بانامار بر تا نزدیکترین صغر ج است در تغیین این خاصار با بد به خاط داست که «= (۳) مکن کست رسیستای معتلط دان بابندو این رسیم ها بلد ر نظر رض سود.) معتلط دان بابندو این رسیم ها بلد ر نظر رض سود.) ا = R ح ا = (---) Uti: sinn = E f (+) (+->) (1+n)-1 = 1 1+nr $l+n^{\prime}= \longrightarrow n^{\prime}= l= i^{\prime} \longrightarrow n= t^{\prime}$ (n=-, n.i) del J(...)' = (--1)' = 1 شفاع مدري سرى تبور (زيموا) حل به برابرا ال (n= , n=-i) PAPCO

ينان مراي متاع عداني جراب هاي سادار ٥ = برايع + كريم + اير (١+١) كم سرى حل نظر = وحول فعظ لإ- = م كران فاس ساس برای بانتی مشاع هگرایی حراب مادله حل نقط ۲۰ ماریم $n'=-1 \rightarrow n=\pm i$ شاع حکر میں حواب حول ، = ہر را بر است با : ستاع حکر میں نابرای برازادی حرید ایم ایم آنگا ، سری جاب حکر ایت $| \mathbf{x} \cdot \mathbf{i} | = | \mathbf{i} | = \sqrt{\mathbf{i} \cdot \mathbf{i} \mathbf{i}} = | \mathbf{y}$ ساع مدين حل با (1+n')= → n=±i $|n.n.| = |i+| = \sqrt{(+)'+1'} = \sqrt{0}$ سری هُکْرایی واب = چَل $|n-n_{+}| = |-l_{+} = \sqrt{(+)'+l'} = \sqrt{0}$ مازای هر مدر چکر کرابله ۸ اسی جراب حول پاینده (" (بله ۱۰) ۵ تح و) مدراب حل ما دلمن لرايدر ما دلهن ٥٠ بر (١٠٨) ١١ + كرد ٢ - كر (٢٠٠٠) بر مادلمن لرايدر با ناب صحيح ماس ٣ مروب لست کل. مطلوب است حل هادلهی لژلور حول ۵۰ ۲۹ ۲ سری حواب به مورست ۲۴ ۵۰ هم ۲۶ است. $(1-n^{\prime}) \stackrel{\infty}{\underset{k=1}{\Sigma}} \mu(h-1) g n^{h-1} - \gamma n \stackrel{\infty}{\underset{k=1}{\Sigma}} \mu g n n^{h-1} + \eta(n+1) \stackrel{\sigma}{\underset{k=1}{\Sigma}} g n^{h-1} + \eta(n$ PAPCO

 $\sum_{k=r}^{k} h(k-1)a_k n^{k-r} - \sum_{k=r}^{k} k(k-1)a_k n^k - \sum_{k=r}^{k} rka_k n^k + \sum_{k=r}^{k} n(n+1)a_k n^k = 0$ E (k+1) (k+1) a nk - E K(k-1) a nk 1xa, + 1x1a, n - 1a, n + n(n+1) a. + n(n+1) a. n + E ((k+1)(k+1)) a + n(k+1) a. + n(n+1) a - 1kak + n(n+1) ak) nk =. $Y_{a_{\gamma}+n(n+1)}a_{\gamma}=\cdots=a_{\gamma}=-n(n+1)a_{\gamma}a_{\gamma}$ $(4a_p - 4a_1 + n(n+1)a_1) \rightarrow a_p = -(n+1)(n-1)a_1$ $(k+1)(k+1)a_{k+1} - k(k-1)a_{k} - ka_{k} + n(n+1)a_{k-1}$ $a_{k+1} = \frac{-k'-k+n'+h}{(k+1)(k+1)} a_{k} = \frac{(n-k)\left[(n+k)+1\right]}{(k+1)(k+1)} a_{k} = \frac{k}{k}$ $a_{f} = \frac{(n-1)(n+1)}{E_{x}r} a_{r} = \frac{(n-1)n(n+1)(n+1)}{E_{x}r}$ $a_{0} = \frac{(n-c)(n+\ell)}{G \times f} \quad a_{c} = -\frac{(n-c)(n-1)(n+\ell)(n+\ell)}{O \times \ell \times \ell \times \ell}$ a, ? a, ? $Y = \sum_{n=1}^{\infty} \alpha_n n^n = \alpha_n + \alpha_n n + \alpha_n n^n + \dots = \alpha_n \left(\frac{1 - n(n+1)}{2!} n^n - \frac{(n-1)n(n+1)(n+1)n^n}{5!} n^n + \dots \right)$ + $a_{1}\left(n - \frac{(n+r)(n-1)}{r!}n^{r} - \frac{(n-r)(n-1)(n+r)(n+r)}{6!}n^{r} + \dots\right)$ Ľ د المرابع المروح عابد فا مرد خراب بل المرجواب های بوظ بو الزقابی اوجد صراب ادا بو ما بو فسر مدان £. PAPCO

0

0

6

6

6

6

6

(

Û

9

0

ی مدد به حوالی کر چه حدالی است. خدوارای از الدر کوس نة لا تكون سلم. حرب، تداس <u>6</u>= م و <u>9= 8</u> در •= يود A(-) + يود + يود + يود + م در سل . * تعليل با سند (ىينى سرى ئىلورىن موج دابىند) ، كو سم ماد خط عادى معادلىنى د يغراب مۇر است درىغرايى مورت مكي تغط مغرداست . نستانکون سلم، تغطی ۲۰۰۸ رایک تعلی سلم سادله ۵۰ بود ۲۹+ کرد. ۹۲+ کرد. ۲۹ کوم مرکا در تام ۱۹۹۰ (۲۰۰۰) استانکون سلم، تغطی ۲۰۰۸ رایک تعلی سلم سادله ۵۰ برد. ۲۹۰۹ + کرد. ۹۲+ کوم مرکا در تام ۱۹۰۰ (۲۰۰۰) و <u>روی ۲</u> (۲۰۰۸) در ۲۰ ۲۰ تعلی ماینند، دینی دارای سری تیکور هکرا حول ۲۰۰۶ مایند (-)P منه، برای حالق د. P , D , R خد حارای هستند . و مک نظری تکس منظر معادات : برده جم نوره P + توره P $\lim_{n\to\infty} \frac{Q(n)}{P(n)} = \frac{Q(n)}{P(n)} = \frac{Q(n)}{P(n)} = \frac{Q(n)}{P(n)} = \frac{Q(n)}{P(n)} = \frac{Q(n)}{P(n)}$ شال. تقاطعلى ما دلهى تراشر را ردوبندى كنيد. (1-n') y - Yny + x (x+1) y = 0 ا±=n (... ۲ ... تعاط تلبین منال. نقاط المين ٥٠ + y + sinny + y (٢٠٠٠) را تعيين ليد وبعورت سلم ما عربتكم رده بيدي لليد. $(n - \frac{1}{2})^{r} = \mathbf{x} \quad \text{ind} \quad \mathbf{y} = \mathbf{y} \quad \text{ind} \quad \mathbf{y} = \mathbf{x} \quad \mathbf{y} \quad \mathbf{y} = \mathbf{x} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} = \mathbf{x} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} = \mathbf{x} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} = \mathbf{y} \quad \mathbf{y}$ $\int_{n \to \frac{\pi}{2}} \frac{\cos n}{(n - \frac{\pi}{2})} \frac{\cos n}{n - \frac{\pi}{2}} = \frac{\cos n}{n - \frac{\pi}{2}} = \frac{\sin n}{(n - \frac{\pi}{2})} \frac{\sin n}{(n - \frac{\pi}{2})^{2}} = \sin n$ $\sum_{n=1}^{n} \frac{f^{(n)}(\#)}{n!} = \cos(\#) + \frac{(-1)x(n-\#)'}{1!} + \frac{(-1)x(n-\#)'}{n!} + \frac{(-1)x(n-$ لا <u>۲۰۰۳</u> , با ۲۰۰۳ تحلیلی اس ۲۰۰۳ با ۲۰۰۰ PCO ۲۰۰ (۲۰۱۰) بر در ۲۹۰۴ تعلق اس (زمرا دارای سری) تیکور همگرا در ۲۵۰۴ است)، کرا تعطی ۲۰۰۴ تکوم تظهراند ۲۰۰۰ بر وصوح ۲۰۰۱ معلق دست (زمرا دلرای سری) تیکور همگرا در ۲۵۰۴ است)، کرا تعطی ۲۰۰۴ تکوم تظهراند い 一 (~ - デ) ・ ス-ハ

يوس مد بسوس مراي ط حادله in b F(r)=r(r-1) + Pr+9 in Jala G = = P(m) = P/A = nt q(m) = q. @ در صورت همبتی تبون ^۲ر ۲۰ ۲۰ ۲^۲ ۲^۰ جاب تبصورت زیر است : X1= 121" (1+ E a. (r,)n") O حرب بر معن باجدد صفح شبب نابست جواب درم بصربت زیمایی :
 z
 $\chi_{\gamma} \cdot |n|^{r_{\gamma}} (1 + \sum_{h=1}^{r_{\alpha}} a_{h}(r_{\gamma}) n^{n})$ @ وك ۲ = ۲ = ۲ ولس درم بصور-2 (m) = 2, bajal + 12 m = ba (n) nm . Wi r, -r, = N. J. D x (m) - ay (m) ln/n/+ /n/" (1+ 2 Cn (r,)n") روط مارکشتی برای حالت ا F(n+r)an+ E (P-k(r+k)+qn-k)=., n>1 PAPCO

intgeet 'ear Month Date

C

6

6

6

0

6

6

6

6

6

بکل معادله دفرانس روم راحل کسد. Yny sny + Llengy == ص و تعلا مده خلائيس وروشد $\begin{pmatrix} R_{n} & n & \frac{-n}{1+n} & x - \frac{1}{2} & P_{n} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{1+n}{2} & \frac{1}{2} & \frac{R_{n}}{2} & \frac{1}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{1+n}{2} & \frac{1}{2} & \frac{R_{n}}{2} & \frac{1}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{1+n}{2} & \frac{1}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} & \frac{R_{n}}{2} \\ \frac{R_{n}}{2} & \frac{R_{$ $nP(n) = \underline{m(-n)} = \frac{1}{7} \longrightarrow P_{-} = \frac{1}{7} , P_{1} = 0, \dots, P_{n} = 0, \dots, P_{n} = 0, \dots$ $a_{q(a)} = n' \frac{1}{r_{a}} = \frac{1}{r} + \frac{n}{r} = 2. = \frac{1}{r}, \quad q_{1} = \frac{1}{r}, \quad q_{1} = \frac{1}{r}, \quad q_{2} = \frac{1}{r}, \quad q_{1} = \frac{1}{r}, \quad q_{2} = \frac{1}{r}, \quad q_{1} = \frac{1}{r}, \quad q_{2} = \frac{1}{r}, \quad q_{2} = \frac{1}{r}, \quad q_{2} = \frac{1}{r}, \quad q_{3} = \frac{1}{r}, \quad q_{4} = \frac{1}{r}, \quad q_{5} = \frac{1}{r}, \quad q_{5$ F(n+r)an+ Zak(Pn.k(r+k)+9n-k)=" + (((n+r) - 1) (n+r-1) x an + an (P, (r+n-1) + q,) + an + (P, (r+n-r) + q, + ...+ a.(P. (r+.) + 9.)=. 121 a1= - a1 = - a. $r_{i+1} \Rightarrow q_{n} = \frac{-q_{n-1}}{(r_{n-1})_{x'n}} \qquad q_{y} = \frac{-q_{1}}{Q_{y'}} = \frac{q_{n-1}}{Q_{x'x'}}$ $a_{r=} \frac{-a_{r}}{V_{x}r'} = \frac{-a_{r}}{V_{x}O_{x}r'_{$ $a_{E} = \frac{-a_{F}}{9 \star F} = \frac{a_{0}}{9 \star V \star 0 \star C} \star F \star F \star F \star f \star f$

 $y = |n| \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{(t_{n-1})(t_{n-1})(t_{n-1})} \times n^n \right)$ $a_1 = \frac{-a_1}{1 \times 1}$ $\begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf$ $a_1 = \frac{-a_1}{1 \times n} = \frac{a_1}{1 \times n}$ ar = - ar - - a. Trease $\alpha_{\ell} = -\frac{\alpha_{\ell}}{\xi_{X}V} = \frac{\alpha_{\star}}{\xi_{X}C_{X}\xi_{X}V_{X}\delta_{X}C}$ an= (-1) " a. " $\chi = \frac{1}{2} + \frac{1}{1 + \frac{2}{5}} + \frac{(-1)^{2}}{n + (1 - 1) - n} + \frac{1}{2}$ تبديلات لايلاس. تبديد انتران. در انتران ومورت to dt (f(5,1) } = f(5) كدران (tob a du chenich) است مرتام هستد تسل وجدو وعدد ونظرال فرو) ما يسد ، را تد بل انتر الى فاس ته بن لايلاس. فرم السو (£ برازان - روا داره شد مايند و ۶ درجة شرط (ركم مع معن مي مدى الله درايي صور تىپەل لاپلاس كۈكۈ ((fut) ما ما (sub تاسطەن سۈد بىھوت the (the fut) = (Fut) ما توپ سود. يكن من كسم ع= (م) كم مراب مور ... $(5>c) = \int_{0}^{\infty} e^{-st} e^{ct} dt = \int_{0}^{\infty} e^{(c-s)t} dt = \frac{e^{(c-s)t}}{(c-s)} \int_{0}^{\infty} = \frac{1}{c-s} - \frac{1}{c-s} = \frac{1}{c-s} - \frac{1}{c-s} = \frac{$ $L(c^{Cr}) = \frac{1}{5-C}$ PAPCO

 $F(s) = L(\{i\}) = \int_{c}^{\infty} e^{-st} dt = \int_{c}^{\infty} e^{-st} dt = \frac{e^{-st}}{-s} \int_{c}^{\infty} \frac{e^{-st}}{-s} \frac{dt}{-s} \left(\{i\}\right) = \int_{c}^{\infty} e^{-st} dt = \frac{e^{-st}}{-s} \int_{c}^{\infty} \frac{e^{-st}}{-s} \frac{dt}{-s} \left(\{i\}\right) = \int_{c}^{\infty} \frac{e^{-st}}{-s} \left(\{i\}\right) = \int_{c}^{\infty} \frac{dt}{-s} \left(\{i\}\right) = \int_{c}^{\infty} \frac{dt}{-s}$ to of istuberture تابع تلدتك ببوست کویہ تابع کو مرماز وطبع ہے تک بیر ستراست الکر مارز راہتران بر تعداد متنامی نفط سط طریرے کر ہے کر ۔۔ ک ۵۷۹ فإن لفراز كردكم 1) ع بر حرزب طين طار , 2> +> ان ميرست است ۲) وقتی از طل حرز برطاره به نقاط الترای نزدیک می مشوم ، ۶ دمیک حد متنامی نزینک سود . تفید از من متابس، مرَّناه ۶ برازای . (به تله نام بیریسته با بیکه دومتی بازای ناب شبق جون ۸ و هر ۸ «۲ م کل (ک) و سر الر باسد مل (4) می دالر اس شرط وهود تبديل فابلاس مرین کمبید : D ۶ بر ماز: A کا ۲ بر از ای هر A است دلفاه که کله کله کله به سد با @ دمتی M رح t ، " تي A & (٥) ا که ٨ ، ۵ M ناب های طبق بود و ٨ و M لزد ما منت الله در این حورت تبول لابلاس (د) = (دور بال) ما بارادهای مهلی (۲) تو تا از این ۲۵ ۲۵ مرج طاست.

نکل: ملاب است بریسی وجه دلایلاس قابع زیز to ke at to M" sya =-1) feer ---- $|\operatorname{Sint}| \leq 10^{4} t_{20} 5_{20}$ t) fees - mat 1 | e^{c+} | { 1 + e^{et} «) f(+)+ e^{ct} ---sx لى مطلوب است تىدىل لايلاس تواجع راب Ol(smar) the Ol(cosat) and Ol(cosh bt) + et = O L(sinhbt) = et = bt = bt U(e^{at} cos bt) (0¹) (e^{at} sinbt) (1-a); b^t (1-a); b O L(eat with bt) 1) L(sinat) = $\int_{1}^{\infty} e^{-st} \cdot sinat dt = \frac{\alpha}{\alpha' s'}$ $\int_{0}^{\infty} e^{-yt} \operatorname{sinat} dt : \longrightarrow_{d' + y - at + dt} = e^{-st} \underbrace{-\cos at}_{r} \int_{0}^{\infty} - \int \frac{-\cos at}{q} (-se^{-st}) dt$ = - (- $\frac{1}{a}$) - $\frac{5}{a}$ $\int_{-\frac{1}{a}}^{\infty} e^{3t} \cos at dt = \frac{1}{a} - \frac{5}{a} \left(\frac{e^{-5t} x \sin at}{a} \right)_{+\frac{5}{a}}^{\infty} + \frac{5}{a} \int_{0}^{\infty} e^{-5t} \sin at dt$ $F(s) = \underbrace{1}_{a} \cdot \underbrace{\frac{s}{a}}_{a} \cdot \cdot \cdot \cdot \cdot \underbrace{\frac{s'}{a}}_{q} F(s) \longrightarrow F(s) = \underbrace{\frac{1}{a}}_{a} \cdot \cdot \cdot \cdot \cdot \underbrace{\frac{a}{a}}_{a' + s'} \cdot \cdot \underbrace{\frac{a}{a' + s'}}_{a' + s'}$ $f) = could be e^{bt} e^{-bt} = 57b - l(could t) = \int e^{2t} (e^{bt} + e^{-bt}) dt =$ $\int_{-\infty}^{\infty} \frac{e^{-(s-b)t}}{t} \frac{e^{-(s-b)t}}{t} dt = \frac{1}{t} \left[\frac{e^{-(s-b)t}}{e^{-(s-b)}} + \frac{e^{-(s-b)t}}{e^{-(s-b)}} \right]_{-\infty}^{\infty} = \frac{1}{t} \left[\left(-\frac{1}{(s-b)} \right) + \left(-\frac{1}{(s-b)} \right) \right]_{-\infty}^{\infty}$ $PaPCO = \frac{1}{7} \left(\frac{1}{5 \cdot b}, \frac{1}{5 \cdot b} \right) = \frac{1}{7} \frac{r_5}{5' \cdot b'} = \frac{5}{5' \cdot b'}$

نكة .. تىبەن لايلانى كى كىكر طل است . $L(c,f,+C,f,r) = \int_{-\infty}^{\infty} e^{-st} (c,f,r) + C_r f_r(r) dt = e \int_{-\infty}^{\infty} e^{-st} f_r(t) - C_r \int_{-\infty}^{\infty} e^{-st} f_r(t) = c$ $C_{1}L(f_{1}(t)) + C_{1}L(f_{2}(t))$ di. L(Ysint) = Yx 1/+5r تا يعرك ١٠ $\mu(p) = \left(e^{-n} n^{p-1} dn \quad (p>0) \right)$ $\mu(1) = \int_{-\infty}^{\infty} e^{-n} n^{\circ} dn = e^{n} \int_{-\infty}^{\infty} e^{-n} (\frac{1}{-1}) = 1$ $\mathcal{M}(p) = \int_{-\infty}^{\infty} e^{-n} n^{p-1} dn = e^{-n} \frac{n^{p}}{p} \int_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{n^{p}}{p} e^{-n} dn = \frac{\Gamma(p_{+}1)}{p} \int_{-\infty}^{\infty} \frac{n^{p}}{p} e^{-n} dn$ $\int^{T}(P) = \frac{\mathcal{T}(P+1)}{P} \implies \mathcal{T}(P+1) = \mathcal{P}\mathcal{T}(P)$ $\frac{e^{-n}x^{p}}{p} = \frac{e^{-n}x^{p}}{p} - \frac{e^{-x}x^{p}}{p} = \frac{h}{100} \frac{n^{p}}{p} \frac{h^{p-1}}{p} \frac{$ * /2 (n+1) = n/2 (n) * (1)=1/2(1)= 11 * /2 (4)= 81. # M (1)= 1 x/(n+1)=h! $* /^{\tau} (1) = 1 /^{\tau} (1) = 1!$ $\Gamma(\frac{1}{7}) = \int_{0}^{\infty} e^{\frac{1}{7}e^{\frac{1}{7}}} dx = \int_{0}^{\infty} \frac{e^{\frac{1}{7}}}{\sqrt{2}} dx = \int_{0}^{\infty} \frac{e^{-\frac{1}{7}}}{\sqrt{2}} du = \frac{1}{7} \int_{0}^{\infty} \frac{e^{-\frac{1}{7}}}{\sqrt{2}} du$ PAPCO

Subject: Year. Month. Date. () $(/r(+))' = v \int_{0}^{\infty} e^{-u'} du + v \int_{0}^{\infty} e^{-u'} dv = r \int_{0}^{\infty} \int_{0}^{\infty} e^{-u'} dv dv = r \int_{0}^{\infty} \int_{0}^{\infty} e^{-v'} dv dv$ $= \{x \neq \{ e^{-r} \mid d\theta dr = \theta \neq e^{-r} \}^{\infty} = -\kappa(\cdot - 1) = \mu = \sum \Gamma(\frac{1}{r}) = \sqrt{\kappa}$ + /2(n+1) = n! $f^{\alpha} dt = \int_{\alpha}^{\infty} e^{-n} \left(\frac{n}{s}\right)^{\alpha} \frac{dn}{ds} = \int_{\alpha}^{\infty} e^{-n} n^{\alpha} \frac{dn}{s^{\alpha+1}} = \frac{1}{s^{\alpha+1}} \int_{\alpha}^{\infty} e^{-n} n^{\alpha} dn$ $*L(t^{\circ}) = \int_{t}^{\infty} c^{-st}$ $\Rightarrow \mathcal{L}(t^{\alpha}) = \frac{\mathcal{L}(\alpha+1)}{5^{\alpha+1}}$ $+ l(t') = \frac{r(r)}{s'} = \frac{1}{s'}$ $A(t^{+}) = \frac{7(n+1)}{5^{n+1}} = \frac{n!}{5^{n+1}}$ قصب ميدىل لابلاس مشتق ، مین کسد F مربازی دلفاه A کا که و بیوسته باست و F نکه که بیوسته بابینه هین کانت های A ، B و M ک مرجود با بتند به ازامی M (t ، ⁴ ، ⁴) { (t) } (درانی صورت به از کی ۵ (5 ، ((t) }) کا وجرد دارد و دارم ((f(t)) = 5 l (f(t)) - f()) . مد: الماللين منتقات ارتب درم والاش مع كنيد كور كور مدين كو برفاز ٢٠ ٢٠ كالم و بيوسترو ٢٠ كو براي فار مد تكه بيوسته بايند و كارت هاي PAPCO

ا مرجود ما شدند بدارای M (+) = (+ رس بند (در (۲ ()) مرج در ست و دارس $L(f^{(n)}(t)) = 5^{n}L(f(t)) - 5^{n-1}f(t) - 5^{n-1}f(t) - f^{(n-1)}(t)$ دد **بسیار**م، حل سائل ستدار (دليه عكى سوى لايلاس تعيي تام (top - يو تغير تبديل (د) قرر سام عكى تبديل لايلاس كوسم ، (1) لاپلای مکوی نظیر ۲۰۱۶ است. که حمدلاً آزایا نیاد (۴٫۵) = f (۶٫۱) که خابش می دهند. , (-'(1/3)= e' =) $l^{-1}(\frac{1}{5}) = e^{t}$ y"-y'- 1y=. y(.)=1, y'(.)=. يى ھلوپ لسر ل مسئله مقدار ادليه رزمر، L(1)-L(1)- 1/2) =. ص الايون لرطرمين -> (5' (y)_ 5 x() - x (0)) - (5 (12) - x (0)) - 1 (y) =. Y(5)(S'-5-Y) + (-5+1) = . $= \frac{A}{S_{1}} + \frac{B}{S_{1}} = 7 \begin{pmatrix} A & -\frac{1}{c} \\ B & = \frac{c}{c} \end{pmatrix}$ $Y_{(s)} = \frac{S_{-1}}{S_{-s}} = \frac{S_{-1}}{(s_{-s})(s_{+1})}$ ((Y(5)) = x(+) = + e'+ + + e^+

and Veria Avor www.SoftCivil.ir Subject : Date . () Year. Month . $L^{-}(F(s)) = L^{-}(F_{1}(s)) + L^{-}(F_{2}(s)) + \dots + L^{-}(F_{n}(s)) + F_{2}(s) + F_{$, Jû x"+y= sintt, x(.)=1, x(.)=" $l(\underline{x}') \perp l(\underline{y}) = l(sint) \longrightarrow (\underline{s}' L(\underline{y}) - \underline{s} \underline{x}(\cdot) - \underline{x} \underline{y}(\cdot)) + l(\underline{y}) = \frac{1}{\underline{s}' + \overline{c}}$ $- Y(s)(s'+1) = \frac{t}{s'+t} + t's+1 - Y(s) = \frac{t}{(s'+t)(s'+1)} + \frac{t's}{s'+1} + \frac{1}{s'+1} =)$ $\chi(t) = \left(\frac{1}{(s_{4}^{\prime} \epsilon)(s_{4}^{\prime})}\right) + \frac{1}{2} \cos t_{+} \sin t_{+}$ $\frac{1}{(s'+\epsilon)(s'+1)} = \frac{A_{s+\alpha}}{s'+1} + \frac{B_{s+b}}{s'+\epsilon} = \frac{A_{s'+}\epsilon_{A_s}}{s'+\epsilon}$ $\begin{pmatrix}
A+B=& \rightarrow A=-D \\
a+b=& & & & \\
A+B=& & & & \\
A+B=& & & & & \\
A+B=& & & &$ $= \frac{s'(A+B) + s'(a+b) + s(EA+B) + Ea+b}{(s'+1)(s'+E)}$ $L^{-1}\left(\frac{Y}{(s'+1)(s'+\epsilon)}\right) = L^{-1}\left(\frac{Y}{s'+1} - \frac{Y}{s'+\epsilon}\right) = \frac{Y}{c'}\sin \epsilon - \frac{1}{c}\sin \epsilon$ $F(s) = \int_{0}^{\infty} e^{-st} f(s) dt = \frac{dF}{ds}(s) = F(s) = ?$ $F(s) = \int_{0}^{\infty} -t e^{-st} x f(t) dt = ((-t F(t)))$ $L(-t \ sint) = \left(\frac{1}{s'+1}\right)' = \frac{-4s}{(s'+1)'}$ $L(t \ sint) = \frac{4s}{(s'+1)'}$ F(1) = L(1-t)"F(t)) Ĩ. $L((1+t)^{r}e^{rt}) = ? 4(s-t)^{-t}$ F(s) = $L(e^{rt}) = \frac{1}{s-r}$ ترين ٥٠ - ٥٠ مرم $P_{A}PCO \xrightarrow{} F'(s) = -(s-t)^{-t} \xrightarrow{} F''(s) = t(s-t)^{-t} \xrightarrow{} F''(s) = -4(s-t)^{-t} \xrightarrow{} L(t,t)^{-t} \xrightarrow{} F''(s) = -4(s-t)^{-t} \xrightarrow{} L(t,t)^{-t} \xrightarrow{} F''(s) = -4(s-t)^{-t} \xrightarrow{} F''(s) \xrightarrow{} F''(s) = -4(s-t)^{-t} \xrightarrow{} F''(s) \xrightarrow{$

یں، فراب سادلری دعر اسل .= بر- ^{(ما}کر y(.)= ., y'(.)= , x''(.)= . , y''(.)=. -, 5' L(y) - 5' 2(1) - 5' 2'(1) - 5 2"(1) - 1 2"(1) - L(y) = 1 L(x) - L(y) = . حل: $Y_{(5)} \notin 5^{(-1)} = 5^{(-1)} = Y_{(5)} = \frac{5^{(-1)}}{5^{(-1)}}$ $\frac{5}{5^{5}-1} = \frac{A}{5-1} + \frac{B}{5+1} + \frac{C_{5+D}}{5^{7}+1} \longrightarrow \frac{5^{7}}{5^{5}-1} = \frac{A_{5}^{7}+A_{5}^{4}+A_{5}+A_{+}B_{5}^{7}-B_{5}^{7}+B_{5}-B_{+}C_{5}^{4}-C_{3}+D_{5}^{4}-D_$ A+ B+ C = . $\frac{5}{5^{-1}} = \frac{5(A+B+C) + 5(A+B+C) + 5(A+B-D) + A-B-D}{5^{-1}}$ D-+ A=+ B:-+ 4-B+D=1 A+B-C = . A.B.D = . $Y_{(s)} = \frac{1}{5} - \frac{1}{5} + \frac{1}$ 12 $U_{c}(t) = \begin{cases} t < c \\ t < c \end{cases}$ ئام كبركري (هوي سائد) θĹ $h(t) = U_{\kappa}(t) - U_{*\kappa}(t)$ t > . $h(t) = \begin{cases} \circ t \leq H \\ 1 \\ 1 \\ t \end{pmatrix} H \end{cases} \begin{pmatrix} \circ t \leq H \\ 1 \\ t \end{pmatrix} \begin{pmatrix} \circ t$ $l(u_{c}\omega) = \int_{c}^{\infty} e^{-\frac{5t}{2}} \frac{dt}{dt} = \int_{c}^{c} e^{-\frac{5t}{2}} \frac{dt}{dc} \frac{dt}{dt} = \int_{c}^{\infty} e^{-\frac{5t}{2}} \frac{dt}{dt} \frac{dt}{dt} \frac{dt}{dt} = \int_{c}^{\infty} e^{-\frac{5t}{2}} \frac{dt}{dt} \frac{dt}{dt} \frac{dt}{dt} \frac{dt}{dt} \frac{dt}{dt} = \int_{c}^{\infty} e^{-\frac{5t}{2}} \frac{dt}{dt} \frac{dt}{$ $\int L(u, v) = \frac{e^{2}}{5}$ $= \int_{c}^{\infty} e^{-5t} u_{e}(t) dt = \frac{e^{-5t}}{-5} \int_{c}^{\infty} = \frac{e^{-5t}}{-5} = \frac{e^{-5t}}{-5} \int_{c}^{\infty} \frac{e^$ سې لابلامي ا<u>سلرال</u>: مَعْنَ كُنْيُكُور، أَكْرَ وَمَاحَ وَ وَمَاحَ وَ وَمَاحَ مُعَالًا مِنْ الْمَالِينَ وَلَيْ أَلَى وَمَا أَلَى وَمَا G(s) = F(s)

یں الملاس است تعین لاہلاس reardr کے اور ا $L(c^{\alpha r}) = \frac{1}{5-\alpha} \qquad L(-rc^{\alpha r}) = \left(\frac{1}{5-\alpha}\right)^{r} = \frac{-1}{(5-\alpha)^{r}} \rightarrow L(rc^{\alpha r}) = \frac{1}{(5-\alpha)^{r}}$ $G(s) = \frac{1}{(s-a)^{2}} = \frac{1}{s(s-a)^{2}}$ $g(t) = u_{c}(t) \cdot f(t-c) \cdot u_{1}^{t} = g(t) = \begin{cases} \cdot \cdot \cdot c & \cdot \cdot c \\ f(t-c) & t \\ c & t$ $g(t) = f(t-c) * \begin{cases} t(c) = f(t-c)u_{c}(t) \\ t \neq c \end{cases}$ قصير أسفال اول: مرباه (ده f(s) = L(for) مردندی . (۵۶ ۶ مرحبه دمایشه و عمل عدد شب مایشد الملاه: $l(u_{c}(t)f(t-c)) = e^{-cs}F_{cs} = c^{-cs}l(f_{u-cs})$ L'(e - cs F(s)) = Ue(t) f(t-c) الكر المايد الله على المايد الماي $= \frac{1}{1+s^{r}} + \frac{e^{-\frac{H}{2}s}}{1+s^{r}} = \frac{1+e^{-\frac{H}{2}s}}{1+s^{r}}$ PAPCO

 $F_{(4)} = \frac{1}{2} = \frac{e^{-12}}{4} = 2 L'(F_{(3)}) = f_{(4)} = t - U_{+}(t)(t-1)$ مصير تسمال درم : حرك (در 4) ٤ = (٤٠٦ برلزلن ، ﴿ ٥٢ ٢ موجود مايند و ٢ عدد شبق مايند أكماه . $l(e^{c^{*}}f(t)) = f(s-c)$ 5) 0+0 ب على مرف (Fros)] = د د ا ب آلك . $e^{Ct} f(t) = L'(f(s-c))$ الى، مفلوست ئىسى لايلى كمكوس ، L'(Gus) = et sint $G_{(5)} = \frac{1}{5^{7} - \xi 5 + 0} = \frac{1}{(5-7)^{7} + 1}$ مَنْ مَنْ أَلَالِ سَكُوس مُدارِين $F(s) = \frac{e_1}{(s-1)^4}$ $L^{-1}(F(s)) = e^{t_1} x t^{e_1}$ $f(s) = \frac{e^{-ts}}{s_{s}} = \frac{G(s)}{L(e^{ts}f(s))} = F(s-c), \quad L(u_{2}(t)f(t-c)) = e^{cs}F(s), \quad ds = \frac{1}{s_{s}} = \frac{1}{s_{s}}$ $G_{(J)} = \frac{1}{S_{+}^{*}(S_{-}^{*})} = \frac{1}{(S_{+}^{*}Y(S_{-}))} = \frac{A}{S_{+}} = \frac{B}{S_{-}} \implies A_{-} = \frac{1}{P}, B_{-} = \frac{1}{P}$ ((- 's G ()) = ((t) , g(t-r) = (, (+) (- + e - (t-r)) + + e + e +)

$$F(s) = \frac{f(s-1)}{s^{1} + s + v} = \frac{f(s-1)e^{-s}}{(s-1)^{1} + 1} \qquad G(s) = \frac{f(s-1)}{(s-1)^{1} + 1} \qquad G(s) = \frac{f(s-1)e^{-s}}{(s-1)^{1} + 1} \qquad G(s) = \frac{f(s-1)e^{-s}}{$$

 $F(s) = \frac{\gamma^{n-1} h!}{s^{n+1}} = \frac{h!}{(5)^{n-1}} \longrightarrow L'(F(s)) = \frac{1}{5} \left(\frac{t}{5}\right)^n = r(r+1)^n t^n + \frac{t}{5} \frac{t}{5} \frac{t}{5}$ $F(s) = \frac{Y s_{-1}}{\xi s_{-1}^{+} \xi s_{+} 0} = \frac{Y s_{+} 1}{(Y s_{+} 1) \frac{Y}{-} f} \rightarrow \frac{C'(F(s))}{(F(s))} = \frac{1}{T} C \frac{f}{T} \cos\left(\frac{Y f}{T}\right)$ "cú $F(s) = \underbrace{e^{t}e^{-ts}}_{ts-1} = \underbrace{e^{t-ts}}_{ts-1} = \underbrace{e^{-t(-1+ts)}}_{ts-1} \longrightarrow C^{-1}(F_{cs1}) = \frac{1}{t}e^{\frac{t}{2}}u_{ts}(\frac{t}{2})$ 1500 متدى نمرى مطلوب (ست لايلاني) قدابعرز من r) f(s) = Ln <u>stats+r</u> + <u>e</u>-rs 1) $F(s) = \frac{s+t}{s(st+ts+1)} + \frac{s}{(s-t)^{t}}$ ξ) $F(s) = tan^{-1}(\frac{1}{5})$ +) F(s)= 5+ 4 20-5 9) $F(s) = \frac{s'+1}{s(s+0)} + \frac{t(s-1)e^{1s}}{s'-1s+1}$ 0) F(s)= (n 5 + Y 1) $f(t) = e^{-t}u(t) \cos^{2}t$

Subject:
Year: Month: Date: (1)

$$\begin{aligned}
U^{1}(u^{1}; s + (u, v; s + (v, e))) &= c & WVW.SoftCivil.ir \\
(L(c^{1}f_{10}) = F(v-2)) &= c & WVW.SoftCivil.ir \\
U(c^{1}f_{10}) = F(v-2) &= (1)$$

BARA

caugect www.SoftCivil.ir Month: Date . Year . . The - せくも-も・く せ 8 (t-t.) = { TT t-t.) t & t-t. < - t $\left(\left(6(t-t.)\right) = c^{-st} \right)$. كمد $\int_{-1}^{1} \left(\frac{e^{-cs}}{s}\right) = \mathcal{U}_{e}(t)$ $\int_{-1}^{1} \left(\mathcal{U}_{e}(t)\right) = \frac{e^{-cs}}{s}$ $\begin{cases} L^{-1}(e^{-st}) = \delta(t-t) \\ L(\delta(t-t)) = e^{-st}. \end{cases}$ انكرى يعيى ، $F(s) G(s) = L(h(o)) \quad (s)a)$ كمدران $h(t) = \int_{0}^{t} f(t-t) g(t) dt = \int_{0}^{t} f(t) g(t-t) dt$ تابع الم يعين 7 و مروف است النفرال مد كورور شامي رايز النكرال يبعيني بي نامد. شكل جواب سنك متدار اركم زمر رابابد. $y' + \xi y = g(t) \quad y(t) = \zeta \quad y'(t) = -1$ 5 Y(s) - 5 y(o) - y (o) + EY(s) = L(g(o)) => Y(s)(s',E) = G(s)+ c's -1=> $\begin{cases} f(t) = \frac{1}{2} \sin t \\ g(t) \end{cases} = \int L^{-1} \left(\frac{G(s)}{s^{T} \cdot t} \right) =$ $Y(s) = \frac{G(s) + Cs - 1}{s^{2} + E} = \frac{G(s)}{s^{2} + E} + \frac{G(s)}{s^{2} + E}$

Subject :

= $\int_{0}^{t} \frac{1}{t} \sin t (t-r) g(r) dr = \int_{0}^{t} \frac{1}{t} \sin t r g(t-r) dr = \sum_{r} \chi(t) = h(t) + \tau \cos t t - \frac{1}{t} \sin t r$ $L\left(\frac{f(s)}{b}\right) = \int_{S}^{\infty} F_{cs} ds : \cdot U = L\left(\frac{f(s)}{b}\right) = F_{cs}$ $\frac{l(c^{t}-c^{-t^{t}})}{t} = \int_{s}^{\infty} (\frac{1}{s-1} - \frac{1}{s+t}) ds = ln(s-1) - ln(s+t) \int_{s}^{\infty} = ln \frac{s-1}{s+t} \int_{s}^{\infty} = \sqrt{c}$ $-Ln \left| \frac{s-1}{s+r} \right| = Ln \left| \frac{s+r}{s-1} \right|$ یکل د $(1) = \frac{1}{5} + \frac{1}{5}$ $Y(s) = \frac{s'+1}{s'(s-1)} = \frac{A}{s-1} + \frac{B}{s} + \frac{C}{s'} + \frac{D}{s''} = \begin{pmatrix} A+B = \cdot & A=1 \\ -B+C=1 = \cdot & B=-1 \\ -C+D=- & C=-1 \\ -D=-1 & D=-1 \end{pmatrix}$ $\chi(t) = ie^{t} - i - t - f t'$ $(f) = \{(s, y_{(s)}) - y_{(s)} + \{(s, y_{(s)}) - (s, y_{(s)}) - y_{(s)} \} = \{(s, y_{$ Y(s) (s+1-Y) = 1 - 4 - 4 + 4 + 4 = 1 => Y(s) = 1 => x(s) = et PAPCO

()

Ø

www.SoftCivil.ir

 $\mathcal{O}(t) = \cosh 6 \int_{0}^{t} \frac{e^{t} - \theta^{t}}{t} dr$ \mathcal{Q} f(o). sinh $t \int_{1}^{t} \frac{e^{t} - e^{t}}{r} dr$ $(f(t)) = e^{et} \int_{0}^{t} e^{-tr} \left(\frac{1 - e^{er}}{r} \right) dr$ $\mathcal{D}: e^{t} \int_{-\infty}^{t} e^{-tr} \left(\frac{1 - e^{-tr}}{r} \right) dr \longrightarrow f(t) = \int_{-\infty}^{t} e^{-tr} \left(\frac{1 - e^{-tr}}{r} \right) dr = \int_{-\infty}^{t} e^{-tr} dr = \int_{-\infty}^{$ (<u>e-e</u> $L(f(r)) = \frac{1}{s_{-r'}} \times \int_{x_{-s_{-1}}^{+\infty} - \frac{1}{s_{+1}} ds \rightarrow F(s) = \frac{1}{s_{-r'}} \times (n | \frac{s_{+1}}{s_{-1}} |$ (D' + P' + P')(D' + D) = 0 $= \begin{cases} r_1 = -1 + i \\ r_2 = -1 - i \end{cases}$ y= C, (en cosn)+ C, cn sinn+ C, 1, (r'+ +r++)(r'+r) == r.=. CECOS n+ Gsinn UL F(s)= 6an-1 (1) $\rightarrow (-t)' f(t) = C'(F(s)) = -sint \rightarrow -tf(t) = -sint$ $f(r) = \frac{-1}{5r} = \frac{-1}{1+5r}$ = $f(t) = \frac{\sin t}{t}$

w.SoftCivil.ir

Year. Month. Date . دستگا • مارلات طی ۵ طنوی روس مای طل ۲۵ روش وترینی (حرایب ملکری) ۱۹ روش طبی لابلاس ۱ @: رویش طنون : شا به باعل دستگها - عایی از معادلات جبری ، دستگا • راحل می کنیم ۵۰ دینگاه طی رامل کند. • = برم - ۲۰ کی کند. ۵۰ - برم - ۲۰ کی ا $-D_{\chi}^{\prime} + \frac{\gamma_{\chi}}{\gamma_{\chi}} = - \Rightarrow D_{\chi}^{\prime} - \frac{\gamma_{\chi}}{\gamma_{\chi}} = - \Rightarrow r^{\prime} - 4 = - \Rightarrow r = \pm \sqrt{4} \Rightarrow \chi_{\tau} = e^{\pi t}$ X= C, eff + C, e 140 $\mathcal{M} = C_{e} e^{\overline{V_{4}} t} + C_{e} e^{-\overline{V_{4}} t}$ (د) ۲۹۰ - ۲۹۲ - ۲۹ $e^{\int \overline{q} \cdot \epsilon} (1C_{\mu} - \sqrt{\overline{q}} \cdot C_{\mu}) + e^{\int \overline{q} \cdot \epsilon} (1C_{\epsilon} + \sqrt{\overline{q}} \cdot C_{\mu}) = \cdot = \Rightarrow C_{\epsilon} = \frac{\sqrt{\overline{q}}}{\overline{q}} \cdot c_{\mu} = \left\{ \begin{array}{c} n_{\pm} \sqrt{\overline{q}} \cdot c_{\mu} e^{\int \overline{q} \cdot \epsilon} \\ - \sqrt{\overline{q}} \cdot c_{\mu} e^{\int \overline{q} \cdot \epsilon} \\ - \sqrt{\overline{q}} \cdot c_{\mu} e^{\int \overline{q} \cdot \epsilon} \\ + C_{\mu} e^{\int \overline{q} \cdot \epsilon} \end{array} \right\} \left\{ \begin{array}{c} n_{\pm} \sqrt{\overline{q}} \cdot c_{\mu} e^{\int \overline{q} \cdot \epsilon} \\ + C_{\mu} e^{\int \overline{q} \cdot \epsilon} \\ + C_{\mu} e^{\int \overline{q} \cdot \epsilon} \end{array} \right\}$ PAPC

 $\begin{cases} n' \cdot \xi n \cdot y' = \xi' \\ n' \cdot \eta \cdot y' = \xi' \\ n' \cdot \eta \cdot y' = \cdot \\ p_n \quad 0_j \end{cases} \xrightarrow{(D-1)n \cdot D_j = \cdot} (D \cdot i)n \cdot D_j = \cdot \\ (D \cdot i)n \cdot D_j = \cdot \end{cases}$ rk $(\mathcal{O}^{-t})n - \mathcal{O}(\mathcal{O}^{-t})n = t' \rightarrow (\mathcal{O}^{-t} - \mathcal{O}^{-t})n = t' \rightarrow (\mathcal{O}^{-t})n = t' \rightarrow (\mathcal{O}^{-t})n = t' = t'$ A. = Costt , n. = sinte nc= C, coste + C, sin to mp = At'+Bt+C => 'A+ EAt'+ EBt+ tc=-t' -> EAt'+ EBt+ rA+EC=-t' - - + + + B $\Rightarrow \begin{cases} \epsilon A = -1 \Rightarrow A = -\frac{1}{2} \\ B = \cdot \\ \epsilon A = \frac{1}{2} \end{cases}$ *"p: 1A n= C, costt + C, sinte - + t'+ + (0,1) (D-E) = + 0 = + (0-1) (0+1) n + Ox = 0 (D.D) X- (D- ED) X= "++t" $(O'_{\pm}ED)\chi = Y + t' \rightarrow r'_{\pm}Er = o \rightarrow r(r'_{\pm}E) = o \rightarrow \left[-r_{\mp} = 1L \rightarrow \chi_{\mp} = \cos Rt - r_{\mp} = 1L \rightarrow \chi_{\mp} = \cos Rt - r_{\mp} = 1L \rightarrow \chi_{\mp} = \sin Rt$ Xp= (At+Bt+C)t = At+Bt+Ct Le= C++CECOSYE + CosiMt $\begin{cases} \chi'_{p} = \langle A \varepsilon' + i B \varepsilon + C \\ \chi''_{p} = 4A\varepsilon + i B \\ \chi''_{p} = 4A\varepsilon + i B \\ \chi''_{p} = 4A\varepsilon + i B \end{cases} \qquad (A \cdot I \rightarrow A = \frac{1}{14} \\ AB = i \rightarrow B = \frac{1}{2} \\ AA \cdot \varepsilon = A \\$ 20 4A + 11At' + ABC+FC = Yt+t'

 $\chi = C_r + C_F \cos tt + C_O \sin tt + \frac{1}{1r}t'' + \frac{1}{2}t' - \frac{1}{7}t$ =- 4,+ 4 = 4 = 6, = 6, ما الذاري اور ورقم الم معادلات دونا از بارامت ما المرجع المراب سوتان دمكر مدست مي اوريم. - YC, sin Yt + YC, cos Yt - + + C, cos Yt + C, sin Yt - + + - YC, sin Yt + YC, cos Yt + $(C_1 + C_1 + C_0) = 0 = C_0 = -\frac{1}{7}C_1 - C_1$ $\begin{pmatrix} -YC_{1}+C_{1}-YC_{2}=0 \implies C_{2}=\frac{YC_{1}-C_{1}}{-Y} \end{pmatrix}$ لازوین دنرسان : برای حل درتیا . لازوین دنرسان : برای حل درتیا . (t) و برای جا درتیا . (t) و برای حل درتیا . (t) و برای حل درتیا . $\begin{array}{c|c} L_{i} & L_{i} \\ L_{e} & L_{e} \end{array} = \begin{array}{c|c} g_{i} & L_{i} \\ g_{i} & L_{e} \end{array} \end{array} , \begin{array}{c|c} L_{i} & L_{i} \\ L_{e} & L_{e} \end{array} \end{array} , \begin{array}{c|c} L_{i} & L_{i} \\ L_{e} & L_{e} \end{array} = \begin{array}{c|c} L_{i} & g_{i} \\ L_{e} & L_{e} \end{array}$ بال الملوب است مل دستك زير $\begin{cases} \chi' = \pi - \chi - 1 \\ \chi' = \pi + \chi + \varepsilon e^t \end{cases}$ $\rightarrow \begin{cases} (D-r')n + y = -1r' \\ (D-1)y - \lambda = \xi e^t \end{cases} \rightarrow \begin{vmatrix} D-r' & 1 \\ -1 & D-1 \end{vmatrix} = \begin{vmatrix} -1r' & 1 \\ \xi e^t & D-1 \end{vmatrix} = >$ -> D' ED, E= 11- Ect $(O^{r} \in O_{+} (+1) n = ((O_{-1})(-1) - \epsilon e^{t})$ $r' = \ell r + \ell = . =) (r - r)' = .$ $\begin{pmatrix} (D' - ED + E) \\ n = 1' & \Longrightarrow \end{pmatrix} EA = 1' \Rightarrow A = " \rightarrow np = " \\ \begin{pmatrix} (D' - ED + E) \\ n = -Ee^{t} \end{pmatrix} Be^{t} = Be^{t} + EBe^{t} = Ee^{t} \Rightarrow B = -E \rightarrow np = -Ee^{t}$ PAPCO

Nethers :

I, in you

- $\frac{Y_{(5)}}{y_{(5-1)(5+1)}} = \frac{-0.5Y_{-}V_{5-}A}{y_{(5-1)(5+1)}} = \frac{-1}{5} + \frac{-1}{5-1} + \frac{-1}{5+1}$
- Hore 1 Let rett

Imle

1.1

يل : مطلوب لسب مل دستكا ملى زب :

1)
$$\begin{cases} \frac{di_{i}}{dt} + \Omega_{i} i_{i} = 4 \\ \frac{di_{i}}{dt} + U_{i} = U_{i} = 0 \\ (i_{i}(i)) = U_{i}(i) = 0 \\ (i_{i}(i)) = U_{i}(i) = 0 \\ \frac{di_{i}}{dt} + U_{i} = U_{i} = 0 \\ \frac{di_$$

$$r' = \begin{cases} \lambda'' + \lambda' + \lambda + \xi'' + \chi - c' \\ \lambda'' + \lambda' + \xi'' = c^{-1} \end{cases}$$

PAPCO