
دانشگًاه تربيت دبير شهيد رجايى

منبع: www.laag.ir

Info@SoftCivil.ir	تليميل: اينسام:
30vil68@Gmail.com	

ETABS
. qra-rvo-. .1

اتجام يروزه هاي دستى ونرم افزارى
Concrete Projects
-9ra-rvo-. .1
يرویوزال
مهزندسى عمران
-9ra-rvo-. .1

تحليل استاتيكى غيرخطى
PushOver Analysis

$$
.9 r 9-r v o-\varepsilon . .1
$$

تر جمه متون و مقالات
مهندسى عمران

$$
.9 r q-r v o-\varepsilon \cdots 1
$$

$$
\begin{aligned}
& \text { تحليل تاريخحچه زمانى } \\
& \text { TIME HISTORY } \\
& \text {-9ra-rvo-を... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سمينارهاي اوشد } \\
& \text { مهندسى عمران } \\
& \text {.9ra-rvo- ... } 1
\end{aligned}
$$

$$
L \frac{d^{\prime} Q(t)}{\partial(t)}+R \frac{d Q(t)}{d t}+\frac{1}{C} Q(t)=R(t)
$$

先 (x-tas)

 درا (1) تمو:

$$
y^{\prime \prime}+t y^{\prime}+\varepsilon_{y}=0 \quad \Rightarrow \quad y^{\prime}=\frac{-t \pm \sqrt{t^{2}-1 y^{\prime}}}{r}=\left\langle{ }^{\text {cosent }}\right.
$$

\therefore S

$$
a_{0}(t) y^{(n)}+a_{1}(t) y^{(n-1)}+\cdots+a_{n}(t) y=g(t)
$$

$\checkmark \mathcal{O}^{\prime}{ }^{\prime}$,
in ju $\mathscr{P}_{(t)}^{\prime \prime}=f\left(t, Q(t), Q_{(t)}^{\prime}, \ldots, Q_{(0)}^{\prime \prime}\right)$, eo, $t \in(\alpha, \beta)$
$-\operatorname{cic} \mathrm{Jf}^{2}$

1) $t^{r} \frac{d y}{d t^{r}}+t \frac{d y}{d t}+r y=\sin t$
rind
r) $\frac{d y}{d t}+t y^{r}=0$

148

v) $y^{\prime \prime}-z=0 \quad z_{1}(t)=e^{t}, z_{p}(t)=\cosh (t) \quad, z_{5}(t)=\cos t$
\qquad
y) $z_{0}^{\prime}(t)=\sinh (t) \rightarrow z_{t}^{\prime \prime}=\cosh (t) \quad y^{\prime \prime}-z=\cosh (t)=\cosh (t)=\alpha$
\qquad
$\Leftrightarrow y_{N}^{\prime}(t)=-\sin t \rightarrow y_{N}^{\prime \prime}=-\cos t \quad y^{\prime \prime}-y^{\prime}=-\cos t-\cos t-r \cos t$
(2)

$$
z^{\prime}+P(t) y=q(t) \quad \mu(t)=e^{\int \rho(t) d t}
$$

dedans,
(ii) $\frac{d y}{d t}+r \nu=r$

$$
\mu(t)=e^{\int r d t}=e^{r t}
$$

$$
e^{i t t} \frac{d y}{d t}+e^{v t} y=r e^{v t}
$$

$$
\text { ب) } \frac{d y}{d t}+\frac{1}{1} 2 \neq t+t
$$

$$
e^{r t} \alpha=\frac{r}{r} e^{r t}+c \Rightarrow z=\underbrace{r+c}_{\sigma}+c e^{-r t}
$$

$$
\mu(t)=e^{\int \frac{1}{2} d t}=e^{\frac{1}{t} t} \quad e^{\frac{t}{t}} \frac{d y}{d t}+\frac{1}{r} e^{\frac{t t}{}} y=r^{r} e^{\frac{t}{v}}+t c^{\frac{t}{r}} \rightarrow \frac{d}{d t}\left(e^{e^{t t}} y\right)=\left({ }^{r}+t\right) e^{t}
$$

2) $t z^{\prime}+r y=\sin t \quad t>0 \quad 6 \quad e^{\frac{t}{t} t} z=\int(t+t) e^{\frac{t}{t}+t} e^{\frac{t^{t}}{2}}(x+t) e^{\frac{t}{t}}-\varepsilon e^{\frac{t}{t}}+c$

$$
c y=\mu t+c e^{-\frac{t}{r}}
$$

$$
\because y^{\prime}+\frac{r}{t} y=\frac{\sin t}{t} \quad \mu(t)=e^{\int \frac{1}{t}}=e^{r \ln t}=t^{\prime \prime}
$$

$t^{\prime} \times\left(y^{\prime}+\frac{\nu}{t} y=\frac{\sin t}{t}\right) \Rightarrow \frac{d}{d t}\left(t^{\nu} y\right)=t \sin t \xrightarrow{J^{\prime} / \sin } t^{\prime \prime} y=-t \cos t+t \sin t+c$

$$
y=\frac{-\cos t}{t}+\frac{\sin t}{t}+\frac{c}{t^{r}}
$$

- $6^{6} \mathrm{~N}_{2}$) Mindinclector
: Sj
(i1) $t^{\prime} y^{\prime}+r y=\varepsilon_{t} \quad, \quad y(1)=r \quad \mu_{(+)}=e^{\int \frac{r}{t} d t}=e^{r \ln t}=t^{r}$

$$
t^{\prime} Z=\frac{\varepsilon t^{c}}{r}+C \rightarrow z=\frac{\varepsilon t}{r}+\frac{C}{t^{r}} \xrightarrow{y(1)=r} \quad r=\frac{\varepsilon}{c}+C \Rightarrow C=\frac{r}{c}+
$$

$\underbrace{*}) t^{\circ} y^{\prime}+\delta t^{\gamma} y=c^{-t} \quad, \quad y(-1)=0 \quad \mu(t)=e^{\int \frac{\varepsilon}{t}}=e^{\varepsilon \ln t}=t^{\varepsilon}$
\qquad
$\xrightarrow{u^{\prime} / 4} t^{\prime} y=-t e^{-t} \cdot e^{-t}+C \rightarrow \quad y=-\frac{e^{-t}}{t^{v}}-\frac{e^{-t}}{t^{t}}+\frac{C}{t^{f}}$

$$
\xrightarrow{y^{(-1)}=} \quad=e^{\prime}-e^{\prime}-c \quad \Rightarrow c=0
$$

$$
\begin{aligned}
& x^{r}+y^{r}=c^{r} \rightarrow r x+r y y^{\prime}=0 \quad r x+r y\left(-\frac{1}{y}\right)=0 \rightarrow r x y^{\prime} \dot{y}^{r} z=0 \\
& z^{\prime}-\frac{y}{x}=\cdot \frac{d-\frac{1}{x}}{r}=e^{-\ln x}\left(\frac{1}{x} y\right) \Rightarrow \Rightarrow \frac{1}{x} y=c \Rightarrow y=c x
\end{aligned}
$$

$$
\begin{aligned}
& z=c x^{r} \quad y^{\prime}=c^{r} x \rightarrow c=\frac{z^{\prime}}{r x} \\
& \Rightarrow y=\frac{y^{\prime}}{r_{x}} \times x^{r} \Rightarrow y^{\prime}=\frac{y}{x} \Rightarrow z^{\prime}-\frac{x y}{x}=-\mu(x)=e^{\int-\frac{x}{2} d x}=e^{-r \ln x}=\frac{1}{x}
\end{aligned}
$$

$$
\frac{1}{x} \quad y=c \Rightarrow z=C x
$$

$$
\begin{aligned}
& y^{\prime}=c^{\omega} \cos \left(\omega x+c_{1}\right) \rightarrow z^{\prime \prime}=-c_{1} \omega^{\prime} \sin \left(\omega x+c_{r}\right) \rightarrow y^{\prime \prime}=-\omega^{2} y
\end{aligned}
$$

$$
\begin{aligned}
& z^{\prime}=c_{1}+c_{x} \cos x \rightarrow y^{\prime \prime}=-c_{x} \sin x \rightarrow c_{x}=\frac{-5 f^{\prime \prime}}{\sin x} A \\
& \text { *y } y^{\prime}=c_{1}+\frac{y^{\prime \prime}}{\sin x} \times \frac{\cos x}{\longrightarrow} \quad c_{1}=y^{\prime}+\frac{y^{\prime \prime} \cos x}{\sin x} \quad c_{1} \cdot \frac{z^{\prime}+y^{\prime}}{x} \text { y }
\end{aligned}
$$

$\Delta \Rightarrow y=y^{\prime} x+\frac{y^{\prime \prime} x}{\sin x} \cos x \times x$
$(x-c)^{\prime \prime}+z^{\prime}=1$

$\xrightarrow{\text { (s) }}$
$(c=c)^{r}+y^{r}=1 \longrightarrow z= \pm 1$

Conic

$$
\begin{aligned}
& r(x-c)=0 \Rightarrow x=c \quad(c-c)^{r}+z^{r}=1 \Rightarrow z=+1 \\
& y=c x+\frac{1}{\varepsilon} c^{s} \xrightarrow{c}
\end{aligned}
$$

\qquad

$$
y^{r}+(x-c)^{r}=c^{r}
$$

arlas notesook

$$
x^{r}+y^{r}=c^{\gamma} \rightarrow r x+r y y^{\prime}=0 \xrightarrow{y^{\prime} \rightarrow-\frac{1}{2}} \quad r x+\frac{r_{y}}{-y^{\prime}}=0 \rightarrow \quad v^{\prime \prime}
$$

$$
i x y^{\prime}=y \rightarrow x y^{\prime}=y \rightarrow \frac{\frac{d y}{d x}}{y}=\frac{1}{x} \rightarrow \frac{d y}{z}=\frac{d x}{x} \rightarrow \ln y=\ln x+\ln c \rightarrow y=c x
$$

$\therefore C^{-1} M(x) d x+N(y) d y=0$

$$
\begin{aligned}
& x^{r}=\varepsilon c(y+c) \rightarrow r x=\varepsilon c y^{\prime} \rightarrow c=\frac{r x}{\varepsilon y^{\prime}}=\frac{x}{r^{\prime} y^{\prime}} \\
& x^{r}=\frac{\varepsilon x}{r y^{\prime}}\left(z+\frac{x}{r y^{\prime}}\right) \xrightarrow{y^{\prime} \rightarrow \frac{-1}{y^{\prime}}} x^{r}=\frac{-r}{r} x y^{\prime}\left(z+\frac{-x z^{\prime}}{r}\right) \rightarrow \\
& x^{r}+r x y y^{\prime}-\frac{r x y^{\prime} x y^{\prime}}{y}=0 \rightarrow \quad x^{r}+r x y y^{\prime}-\left(x y^{\prime}\right)^{r}=, ~ \xrightarrow[i x]{ } x+r y y^{\prime}-x y^{\prime}=0
\end{aligned}
$$

$$
\begin{aligned}
& z^{r}=x^{r}+r y y^{\prime} \xrightarrow{y^{\prime} \rightarrow \frac{-1}{y^{\prime}}} z^{r}-r x y\left(-\frac{1}{y^{\prime}}\right)-x^{r}=0 \rightarrow y^{\prime} y^{r}+r x y-x^{r} y^{\prime}=\cdot
\end{aligned}
$$

ردوز

(i1) $\frac{d y}{d x}=\frac{x^{r}}{1-y^{\prime \prime}}$

$$
x^{\prime} d x+\left(y^{4}-1\right) d y=0
$$

」会,

$$
\frac{x^{2}}{\mu}+\frac{y^{\mu}}{r^{\mu}}-z=C
$$

Rer
e) $y^{\prime}=\frac{x^{2}}{y\left(1+x^{2}\right)} \quad \frac{d y}{d x}=\frac{x^{2}}{y\left(1+x^{2}\right)} \rightarrow y d y=\frac{x^{2}}{1+x^{v}} d x$

$$
\frac{y^{r}}{r}=x-\tan ^{-1} x+C
$$

مك

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{r x^{r}+\varepsilon x+r}{r(y-1)} \quad y(0)=1 \\
& r(y-1) d y=\left(r x^{r}+\varepsilon x+r\right) d x
\end{aligned}
$$

$$
y^{v}-r y=\frac{r x^{2}}{y^{\prime}}+r x^{v}+r x+c \rightarrow y^{2}-r y+1=x^{v}+r x^{r}+r x+1+c
$$

$$
\left.y=1 \pm \sqrt{x^{2}+r n^{4}+r x+1+c} \quad y(\cdot)=1 \quad-\quad y=1 \pm \sqrt{1+c} \Rightarrow-r=\sqrt{1+c} \Rightarrow c-r\right)
$$

$$
\begin{aligned}
& y=1-\sqrt{x^{r}+r x^{r}+r x+1 r^{r}}=1-\sqrt{x^{r}(x+r)+r(x+r)} \rightarrow y=1-\sqrt{(x+r)\left(x^{r}+r\right)} \\
& x+r \geqslant 0 \Rightarrow \quad x \geqslant-r
\end{aligned}
$$

$$
\therefore \text { : }
$$

$$
\left(1+x^{p}\right)(d y-d x)=r x y d x
$$

$$
=\left(1+x^{v}\right)^{-1}\left(\frac{d y}{d x}-1\right)=\frac{r x}{1+x^{*}} y\left(1+x^{r}\right)^{-1} \rightarrow \frac{d y}{d x}\left(1+x^{x}\right)^{-1}-\frac{r x}{1+x^{r}}\left(1+x^{v}\right)^{-1} y=\left(1+x^{0}\right)
$$

$\xrightarrow{J^{\prime \prime} x^{\prime}} \frac{1}{1+x^{2}} y=\int \frac{d x x^{\tan ^{-1} x+c}}{1+x^{4}} \rightarrow y=\left(1+x^{2}\right)\left(\tan ^{-1} x+c\right)$

 $\frac{y^{\prime}}{y^{n}}+\frac{p(n) y}{y^{n}}=\frac{q(n) y^{n}}{z^{n}} \rightarrow \frac{y^{\prime}}{z^{n}}+p(n) y^{1-n}=q(n)$ $\frac{y^{1-n}}{y_{z}}=z / \xrightarrow{i \operatorname{in}}(1-n) y^{\prime} y^{-n}=z^{\prime} \rightarrow \frac{y^{\prime}}{y^{n}}=\frac{z^{\prime}}{1-n} \xrightarrow{\star}$

$$
\frac{Z^{\prime}}{1-n}+p(n) Z=q(n)
$$

$$
\xrightarrow{z^{\prime \prime}} \frac{z^{\prime}}{z^{*}}=\frac{1}{x y^{*}}=\frac{r}{x^{v}} \quad \rightarrow \quad z=z^{-r} \xrightarrow{\sim} \quad z^{\prime}=-r y^{-r} y^{\prime} \rightarrow \frac{y^{\prime}}{z^{*}}=\frac{z^{\prime}}{-r}
$$

$\xrightarrow{\left(\text { (1) } \mu^{\prime \prime} 0\right.}-\frac{+z^{\prime}}{-r}-\frac{1}{x} z=\frac{r}{x^{v}} \xrightarrow{x^{v}} z^{\prime}+\frac{r}{x} z=\frac{-\varepsilon}{x^{v}} \xrightarrow{e^{\frac{1}{x} d x}=c^{u v^{\prime}}, x^{r}}$

$$
x^{\prime} z^{\prime}+\frac{r x^{*}}{x} z=\frac{-\varepsilon}{x^{v_{0}}} x^{\prime \prime} \xrightarrow{J^{\prime \prime}} \quad x^{\prime} z=\int \frac{-\varepsilon}{x^{0}} \Rightarrow x^{\prime} z=x^{-\xi}+c
$$

$$
\Rightarrow y^{r}=\frac{x^{4}}{1+c x^{4}} \Rightarrow z= \pm \frac{x^{N}}{\sqrt{1+c x^{4}}}
$$

$$
z=x y^{\prime}+f\left(y^{\prime}\right)
$$

$p^{\prime}: y^{\prime}=p, \quad y=x p+f(p) \xrightarrow{x} \frac{d y}{d x}=p+x \frac{d p}{d x}+f^{\prime}(p) \cdot \frac{d p}{d x}$

$$
P=P+x \frac{d P}{d x}+f^{\prime}(P) \frac{d P}{d x} \rightarrow\left(x+f^{\prime}(P)\right) \frac{d P}{d x}=,
$$

(JNCi0) $\frac{d R}{d x}=0 \Rightarrow P=C \Rightarrow x=c x+f(c)$ Nosengos $1:$
(200)

$$
\begin{aligned}
& x+f^{\prime}(p)=\cdot \\
& \left\{\begin{array}{l}
x+f^{\prime}(p)=0 \\
y=x p+f(p) \quad 0
\end{array}\right.
\end{aligned}
$$

suburataiopotín
㔨
 (

$$
y=x y^{\prime}+\frac{f\left(z^{\prime}\right)}{z^{-x}+1}
$$

(G) $\quad y=c x+c^{\prime}+1$
(Quil $\cup^{\prime},=\left\{\left.\begin{array}{ll}x+r p=0 \Rightarrow p=\frac{-x}{r} \\ z=p x+p^{r}+1 & \downarrow \\ \longrightarrow & z=\frac{-x^{r}}{r}+\frac{x^{r}}{\varepsilon}+1\end{array} \right\rvert\, \Rightarrow z=\frac{-x^{r}}{r}+1\right.$

Ciolnc-

$$
\begin{aligned}
& \xrightarrow[y^{\prime}=p]{\rightarrow} \neq x \cdot g(p)+f(p) \rightarrow \frac{d y}{d x}=g(p)+x g^{\prime}(p) \frac{d p}{d x}+f^{\prime}(p) \frac{d p}{d x} \\
& \Rightarrow p=g(p)+\left(x g^{\prime}(p)+f^{\prime}(p)\right) \frac{d p}{d x}
\end{aligned}
$$

تو2.

$$
y=r x y^{\prime}+y^{\prime r} y^{\prime}=p \quad y=r x p+p^{r} \xrightarrow{x} \quad \frac{d y}{d x}=r p+\frac{r x p}{d x}+\frac{r p^{r} d p}{d x} \quad f^{\prime} \dot{c}
$$

$$
-p=\frac{d p}{d x}\left(r x+r p^{r}\right) \rightarrow-p \frac{d x}{d p}=\left(r x+c p^{r}\right) d p^{\prime} \xrightarrow{x-\frac{1}{p}} \frac{d x}{d p}=\frac{-r x}{p}-r p
$$

$$
\rightarrow \frac{d x}{d p}+\frac{r}{p} x=-v p \quad \times c^{\int \frac{r}{p} d x}=p^{\gamma} \quad p^{v} p^{\prime}+r p x=-r p^{r} \xrightarrow{J^{\prime \prime}} p_{x}^{r}=\frac{-c}{f} p^{\gamma}+c
$$

$$
\left\{\begin{array}{l}
x=\frac{-c}{\varepsilon} p^{2}+c \\
z=r x p+p^{n}
\end{array}\right.
$$

$$
\frac{d y}{d x}=\frac{x^{r}}{1+y^{r}} \xrightarrow{\sim} \xrightarrow{\left.1+y^{\prime}\right) d y=x^{\alpha} d x \xrightarrow{\int}\left(\underline{y^{2}}\right.} \frac{y^{r}}{r}=\frac{x^{r}}{r}+C
$$

$$
d y=r_{n}(z-1) d x \rightarrow \frac{d z}{d x}=r_{x}(z-1)
$$

$$
y \neq 1 \quad x^{x \cdot 1} \frac{d y}{2 \cdot 1}=\ln d x \Rightarrow \ln |y-1|=x^{2}+\left.c\right|^{\prime 3}
$$

$$
x=1 \Rightarrow y^{\prime}=1 \quad U^{\text {biol }},{ }^{\prime}, \text { ? }
$$

$$
z^{\prime}+p(x) y+q(x) y^{\prime}=R(x)
$$

(2)

$$
y^{\prime}=1-\frac{z^{\prime}}{z^{\prime \prime}}
$$

$$
y=x+\frac{1}{2} \quad<-1 ;
$$

Cocer

$$
\frac{d y}{d x}=x \frac{d t}{d x}+t
$$

$$
y^{\prime}=\frac{\frac{x-y}{x}}{\frac{r x+y}{x}}=\frac{1-\frac{y}{x}}{x+\frac{y}{x}}
$$

$$
\begin{aligned}
& \text { (2) } 10 \\
& \xrightarrow{\left(x^{\prime} \xrightarrow{\prime \mu}\right.} 1-\frac{z^{\prime}}{z^{\prime}}-\frac{1}{x}\left(x+\frac{1}{z}\right)+\left(x+\frac{1}{z}\right)^{r}-x^{r}=1-\frac{z^{\prime}}{z^{r}}-1^{\prime}-\frac{1}{x z}+x^{r}+\frac{r x}{z}+\frac{1}{z^{r}}-x^{r}=0 \\
& -\frac{z^{\prime}}{z^{+}} \cdot \frac{1}{z}\left(\frac{1}{x}=r n\right)+\frac{1}{z^{+}}=\cdot \xrightarrow{x-z^{+r}} z^{\prime}+z\left(\frac{1}{x}-r n\right)-1=0 \xrightarrow{0} \\
& e^{\int \frac{1}{x}-x x}=e^{\left(\ln x-x^{v}\right)}=\frac{e^{\ln x}}{e^{x^{v}}}=x e^{-x^{v}} \\
& \xrightarrow{\text { (1) }} \underset{u \rightarrow d u=-r e^{-e^{*}}}{\longrightarrow e^{*}} z^{\prime} x e^{-x_{z}^{v}}\left(\frac{1}{x}-r x\right)=x e^{-x^{v}} \xrightarrow{\int} z x e^{-x^{r}}=\int x e^{-x^{r}} \\
& \xrightarrow{\int x c^{-x^{r}}=\frac{1}{r} \int d u=\frac{1}{\sqrt{r}} u^{*}=\frac{1}{r} e^{-e^{r}}=-\frac{1}{r} e^{-n^{*}}+c} \quad z x e^{-x^{r}}=-\frac{1}{r} e^{-x^{r}}+C \rightarrow z=\frac{-1+r_{c} c^{x^{*}}}{r_{n}}+\frac{c}{x e^{-x^{r}}} \\
& \rightarrow z=x+\frac{r n}{-1+c e^{x^{2}}}
\end{aligned}
$$ (ix $\quad y^{\prime}=\frac{x+y}{x-y} \quad \operatorname{sen} y C$ othe ots

$$
\begin{aligned}
& y^{\prime}=\frac{\frac{x+y}{\lambda}}{\frac{\lambda-y}{\lambda}}=\frac{1+\frac{y}{x}}{1-\frac{y}{x}} \underset{y^{\prime}=x t^{\prime}+t}{\stackrel{y}{x}=t} \Rightarrow \frac{1+t}{1-t}=x t^{\prime}+t \rightarrow \quad x t^{\prime}=\frac{1+t^{\prime}-t\left(t^{\prime}-t\right)}{1-t}=\frac{1+t^{\prime}}{1-t} \\
& \frac{d t}{d x} x=\frac{1+t^{v}}{1-t} \rightarrow \frac{1}{x} d x=\frac{1-t}{1+t^{2}} d t \quad \int \ln x+c=\int \frac{1}{1+t^{2}} \frac{x^{2}}{\tan ^{-1} t} \int_{1+t^{+}}^{\frac{1}{y} \ln (1+t)} \rightarrow \\
& \ln x+c=\tan ^{-1} t-\frac{1}{p} \ln \left(1+t^{\prime}\right) \rightarrow \ln x+\ln c_{1}=\tan ^{-} t-\ln \sqrt{1+t^{\prime}} \rightarrow \\
& \tan ^{-1} t=\ln c x \sqrt{1+t^{2}} \rightarrow \quad \operatorname{cx} \sqrt{1+t^{2}}=e^{\tan ^{-1} t} \xrightarrow{t=\frac{y}{x}} \quad e x \sqrt{1+\frac{y^{\prime}}{x^{\prime}}}=e^{\tan ^{-1} \frac{y}{x}} \\
& \rightarrow e^{\tan ^{-1} \frac{y}{x}}=c \frac{x}{|x|} \sqrt{x^{2}+y^{\prime}} \\
& y^{\prime}=\frac{a x+b y+c}{a_{1} x+b \cdot y+c_{1}} \\
& \int \mathrm{~N}_{\mathrm{c}}
\end{aligned}
$$

$a b_{1}=a, b \xrightarrow{a_{1} b_{1}} \quad \frac{a}{a_{1}}=\frac{b}{b_{1}}=k \Rightarrow a=k a_{1}, b=k b_{1}: \int, c_{-},(1,2$,

$$
y^{\prime}=\frac{k\left(a, x+b_{1} y\right)+c}{a_{1} x+b_{1} y+c_{1}} \Rightarrow \frac{z^{\prime}-a_{1}}{b_{1}}=\frac{k z+c}{z+c_{1}} \Rightarrow z^{\prime}=b_{1}\left(\frac{k z+c}{z+c_{1}}\right)+c
$$

$x=m a \xrightarrow{\rightarrow} d n=d x \quad 0$

$$
\begin{aligned}
&\left\{\begin{array}{l}
n=x+\alpha \\
y=Y+\beta \Rightarrow \frac{d y}{d x}
\end{array}=\frac{d y}{d x} \times \frac{d X^{0}}{d n}\right. \\
& \frac{d y}{d x}=\frac{d(Y+\beta)}{d x}=\frac{d Y}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d Y}{d X}=\frac{a(X+\alpha)+b(Y Y+\beta)+c}{a(X+\alpha)+b_{1}(Y+\beta)+c_{1}} \rightarrow \frac{d Y}{d X}=\frac{a X+b X_{1}+(\alpha a+\beta b+c)}{a_{1} X+b_{1} Y+\left(\alpha a_{1}+\beta b+c_{1}\right)} \\
& \left\{\begin{array}{l}
\alpha a+\beta b+c=0 \quad \Rightarrow \quad \frac{d Y}{d X}=\frac{a X+b Y}{a_{1} X+b_{1} Y} \\
\alpha a_{1}+\beta b_{1}+c_{1}=0
\end{array}\right.
\end{aligned}
$$

虽 α, β

$$
y^{\prime}=\frac{r x+r y-\varepsilon}{x+y} \quad\left|\begin{array}{c}
r \\
1
\end{array}\right|=\sigma \quad x+y=z \rightarrow z^{\prime}=1+y^{\prime} \rightarrow y^{\prime}=z^{\prime}-1
$$

$$
y^{\prime}=\frac{r(x+z)-\varepsilon}{z}=\frac{r z-s}{z} \rightarrow z^{\prime}-1=\frac{r z-\varepsilon}{z} \rightarrow z^{\prime}=\frac{r z-r}{z}
$$

$$
\begin{aligned}
& \Rightarrow \int \frac{\varepsilon}{r}\left(\frac{1}{r z-\varepsilon}\right) d z+\int \frac{1}{v} d z=\int d x \Rightarrow \frac{\varepsilon}{9} \ln |r z-s|+\frac{1}{c} z=x+c \Rightarrow z=n+y \\
& \frac{\varepsilon}{9} \ln \left(\left|r^{r}(x+y) \varepsilon\right|+\frac{1}{c}(x+y)=x+c\right.
\end{aligned}
$$

$$
y^{\prime}=\frac{x+y-r}{x-y} \quad \text { reis } \quad \ln \rightarrow(x, B)
$$

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
x=x+\alpha \\
y=Y+\beta
\end{array} \quad \frac{d Y}{d x}=\frac{x+Y+\alpha+\beta-r}{x-Y+\alpha-\beta} \Rightarrow\left\{\begin{array}{l}
\alpha+\beta-r=0 \\
\alpha-\beta=0
\end{array} \Rightarrow \alpha=\beta=d\right.\right.
\end{array}\right] \begin{aligned}
& \frac{d Y}{d x}=\frac{x+Y}{x-Y} \stackrel{u^{\prime}}{\Rightarrow} e^{\tan ^{-1} \frac{Y}{x}}=C \frac{x}{|x|} \sqrt{X^{r}+Y^{r}} \Rightarrow \begin{array}{l}
Y=y^{-1} \\
x=n-1
\end{array} e^{\tan ^{-1} \frac{y-1}{x-1}}=C \frac{n-1}{|n-1|} \sqrt{(x-1)^{r}+(y-1)^{r}}
\end{aligned}
$$

$$
-(p+1) d x=(r x+r p) d p \rightarrow-(p+1) \frac{d x}{d p}-r x=r p \xrightarrow{\div(p+1)} \frac{d x}{d p}+\frac{r n}{+p+1}=\frac{r p}{-(p+1)}
$$

$$
\xrightarrow{e^{\int \frac{1}{p+1}}=(p+1)^{r}}(p+1)^{r} \frac{d x}{d p}+(p+1)^{r} \frac{r n}{p+1}=-r P(p+1) \xrightarrow{\int}
$$

$$
y^{\prime}=f(a x+b y+c)
$$

$$
\begin{aligned}
& \frac{d z}{d x}=a+b \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{\frac{d z}{d x}-a}{b} \\
& \frac{\frac{d z}{d x}-a}{b}=f(z) \Rightarrow \frac{d z}{d x}=b f(z)+a
\end{aligned}
$$

$$
a n+b z+c \text { (}
$$

$$
: \operatorname{lon} P C^{-} \text {, }
$$

$$
\dot{Z}^{\prime}=(x+y+r)^{r} \quad x+y+r=z \xrightarrow{v} 1+\frac{d y}{d x}=\frac{d z}{d x} \rightarrow \frac{d y}{d x}=\frac{d z}{d x}-1
$$

$$
\begin{aligned}
& \left(\frac{d z}{d x}-1=z^{r} \rightarrow d z=d n\left(z^{r}+1\right) \rightarrow \frac{d z}{z^{r}+1}=d x \rightarrow\right. \\
& \left.\tan ^{-1} z=n+c \rightarrow z=\tan (n+c)=n+y+r \rightarrow z=\tan (n+c)-n-r\right)
\end{aligned}
$$

1)

$$
\begin{aligned}
& \text { 1) } \left.r^{r} y^{\prime} y^{\prime}-a y^{r}-x-1=0 \quad r\right)(n+r y+1) d x-(r n-r) d y=0 \cdot C=\frac{r}{r} \quad \\
& e^{\frac{a}{4} x} z^{r}=\frac{1}{9}\left((x+1) \frac{9}{a} e^{\frac{a}{4} x}-\frac{11}{a^{r}} e^{\frac{a}{9} x}\right)+c
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=x y^{\prime}-\frac{1}{y^{-r}} \\
& y=\sqrt[r]{L^{-r}} x^{-\frac{z}{r}}
\end{aligned}
$$

$$
n(x, y) d x+N(x, y) d y
$$

©

$$
z=-\frac{\psi_{n}}{\psi_{y}}=-\frac{M(x, y)}{v(x, y)} \rightarrow M(x, y)+N(x, y) y^{\prime}=
$$

罗

1180°

1) $(\overbrace{x^{\cos x+r n e^{x}}}^{n(x, y)}+(\overbrace{\left(\sin x+x^{\prime} e^{y}-1\right) y^{\prime}=0}^{N(x, y}$

UOP

$$
\begin{aligned}
& N_{n}=\cos x+i n e^{y} \\
& M_{y}=\cos x+i n e^{y} \Rightarrow N_{x}=M_{y}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d \psi}{d x}=M(x, y) \quad, \frac{d \psi}{d y}=N(x, y) \\
& \frac{d \psi}{d x}=2 \cos x+r x e^{y} \Rightarrow \psi_{(-x)}^{d x}=y \sin x+x^{\prime} e^{y}+g(y) \text { (1) } \\
& \frac{d \psi}{d y}=\sin x+x^{\prime} e^{y}-1 \tag{e}
\end{align*}
$$

C

$$
\frac{d \psi}{d y}=\sin x+x^{\prime \prime} c^{y}+g^{\prime}(y) \Rightarrow \sin x+x^{\prime} e^{y}-1=\sin x+x^{r} e^{y}+g^{\prime}(y)
$$

Date:

$$
\begin{aligned}
& g^{\prime}(y)=1 \xrightarrow{\int d y} g(y)=-y \\
& \psi(x y)=y^{\sin x}+x^{r} e^{y}-y
\end{aligned}
$$

$$
y \sin x+x^{r} e^{y}-y=c
$$

Ges
,

$$
\begin{aligned}
& \text { r) }\left(r n y^{r}+r y\right)+\left(r n^{r} y+r n\right) y^{\prime}=0 \\
& M(n, y)=r n y^{\prime}+r y \rightarrow M_{y}=\varepsilon_{n y} y r \\
& N(x, y)=r n^{r} y+r n \rightarrow N_{n}=\varepsilon_{n} y+r
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \psi}{d x}=r_{x} y^{\prime}+r y \Rightarrow \psi(x, y)=n^{r} y^{r}+r_{n} y+g(y) \\
& \frac{d \psi}{d /}=r_{n} x^{\prime} y+r_{n} \\
& \frac{d \psi}{d y}=r_{n} n^{\prime} z+r n+g^{\prime}(y)
\end{aligned}
$$

$$
\text { Q.Q } \Rightarrow r n^{\prime} / z+x_{n}=r^{3} / y+r n+g^{\prime}(y) \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=0
$$

$$
\psi_{(x, y)}=n^{r} y^{r}+r_{n y}+\Rightarrow \quad n^{r} y r+r_{n y}=c
$$

Conce

$$
\left(r n y+z^{r}\right)+\left(n^{r}+n y\right) y^{\prime}=0 \quad m_{y}=r_{n+r} f_{v_{n}=r_{n+y}} \Rightarrow \sum_{0} \quad j^{\prime}
$$

atlas notemank \qquad
www.SoftCivilir
 تيبا
: ingleril :

$$
\left(\mathrm{c}_{n} y+y^{\prime}\right)+\left(x^{N^{\prime}+n y}\right) y^{\prime}=.
$$

$M_{2}=r_{n+}+r_{y} \quad N_{n}=r_{n+y} \Rightarrow M_{y} \neq N_{a} \quad$-ijúsin

$$
Q_{n}=\frac{M_{y}-N_{n}}{v_{n}(n+y)^{n^{r}+n y}}=\frac{n+y}{x}=\frac{1}{x} \Rightarrow \mu_{(a)}=e^{\int_{\frac{1}{n}}}=x
$$

$$
\xrightarrow{x_{x}(u)+u y \rho} n\left(\left(r^{r} z+y^{r}\right)+\left(n^{r} \cdot n y\right) y^{\prime}\right)=\cdot x n \Rightarrow c_{n}^{r} y+n y^{r}+x^{r} y^{\prime}+n^{\prime \prime} y^{\prime} y=0
$$

$$
\left\{\begin{array}{l}
\frac{d \psi}{d x}=r^{r} x^{r} y+x^{r} \Rightarrow \int_{d x} \psi(x, y)=x^{r} y+\frac{x^{r}}{r} y^{r}+g(y) \\
\frac{d \psi}{d y}=n^{r}+x^{r} y
\end{array} \begin{array}{l}
\frac{d \psi}{d z}=x^{r}+n^{r} y+g^{\prime}(y)=n^{r}+n^{r} y \Rightarrow g^{\prime}(y)=0
\end{array}\right.
$$

$$
\Rightarrow \varphi(x, y)=x^{r} y+\frac{x^{2} r^{r}}{r}+0=C
$$

$$
n y=c
$$

$F_{c}(x, c) \cdot 0$.

$$
\psi(x)=F(n, c(x)
$$

$$
z=\frac{c}{x} \Rightarrow \quad F_{c}(x, c)=\frac{1}{x} \neq 0 \Rightarrow c^{-} \cos _{0}\left(\sec y=\frac{c}{x}\right. \text {, }
$$

yc بس

$$
y d x+\left(r x y-e^{-r y}\right) d y=.
$$

$$
M_{y}=1, N_{x}=r_{y}=0 \Rightarrow M_{y} \neq N_{x}-\operatorname{cif}^{\prime} \cdot U_{2, k}
$$

$$
Q_{(x)}=\frac{1-r y}{r_{y} \cdot e^{-r y}} \quad \text { incw, } \quad Q_{(y)}=\frac{r y-1}{y} \quad \alpha
$$

$$
\text { Lobiisfr tyy } e^{\int \frac{y y-1}{y} y=\int r-\int \frac{1}{y} d y}=e^{x y-\ln y}=\frac{e^{x y}}{y}
$$

$$
\begin{aligned}
& \frac{e^{y}}{y} \times y d x+\frac{e^{x y}}{y}\left(r_{x} y-e^{-x y}\right) d y=0 \rightarrow e^{y y} d x+\left(e^{x y} r x-\frac{1}{y}\right)^{2} z=. \\
& \left\{\begin{array}{l}
\frac{d \psi}{d x}=e^{y y} \Rightarrow x e^{r y}+g(y)=\psi(x, y) \\
\frac{d \psi}{d y}=e^{r y} r x-\frac{1}{y} \xrightarrow{d y} \Rightarrow r x e^{r y}-\ln y
\end{array}\right. \\
& \frac{d \psi}{d y}=r_{x} e^{x_{y}}+g^{\prime}(y)=r_{n} e^{x_{y}}-\frac{1}{2} \Rightarrow g^{\prime}(y)=\frac{-1}{2^{y}} \Rightarrow g^{\prime}(y)=\frac{-1}{y} \Rightarrow g(y)=-\ln y \\
& \psi(x-y)=n e^{y y}-\ln y=c
\end{aligned}
$$

$$
\left(r x y^{\xi} e^{y}+r x y^{r}-\right) d x+\left(x^{r} y^{\varepsilon} e^{y}-x^{r} y^{r}-r_{x}\right) d y=0
$$

$M_{y} \neq N_{n} \quad \dot{i}\left(-0^{\prime} \quad \frac{M_{y}-N_{n}}{N} \neq Q_{(n)}, \frac{N_{n}-M_{y}}{M}+Q_{(n)}\right.$

$$
\begin{aligned}
& \left(r_{n}^{\alpha+1} y^{\varepsilon+\beta} e^{y}+r_{n}^{1+\alpha} y^{r+\beta}+x^{\gamma+\prime} d x+\left(x^{\alpha+\alpha} y^{\varepsilon+\beta} e^{y}-x^{r+\alpha} y^{\prime \prime}-r^{\prime+} y^{\prime \prime}\right) d y=.\right. \\
& M_{y}^{\prime}=\gamma_{x}^{\alpha+1}\left((\varepsilon+\beta) y^{\gamma+\beta} e^{y}+e^{y} z^{\varepsilon_{+} \beta}+(\tau+\beta) y^{\gamma+\beta}\right)+x^{\alpha}(\beta+1) y^{\beta} \\
& N_{x}^{\prime}=(r+\alpha) x^{\prime+\alpha} y^{\varepsilon+\beta} e^{y}-(r+\alpha) x^{1+\alpha} z^{\gamma+\beta}-r(\alpha+1) x^{\alpha} y^{\beta} \\
& r=r+\alpha \longrightarrow \alpha=0 \quad 0 \\
& r(\varepsilon+\beta)=0 \rightarrow \beta=-\varepsilon \quad \oplus \\
& -(r+\alpha)=r(r+\beta) \xrightarrow{\infty, \infty} \text { of } \\
& (\beta+1)=-c(\alpha+1) \rightarrow \sigma \\
& \left(r x e^{y}+\frac{r x}{y}+\frac{1}{y^{r}}\right) d x+\left(x^{r} e^{y}-x^{r} y^{-r}-r x y^{-r}\right) d y=\cdot \\
& \psi_{x}=\frac{d \psi}{d x}=r x e^{y}+\frac{r x}{y}+\frac{1}{y^{r}} \Rightarrow \int_{d x}^{\Rightarrow} \quad \psi(x, y)=x^{r} e^{y}+\frac{x^{r}}{y}+\frac{x}{y^{r}}+g(y) \\
& \frac{d \psi}{d y}=x^{r} e^{y}-\frac{x^{r}}{y^{r}}-\frac{c_{x}}{y^{r}} \\
& \frac{d \psi}{d y}(x+y)=x^{r} c^{y}+\frac{x^{r}}{z}+\frac{x}{y^{r}}+q^{\prime}\left(t=x^{r} e^{y}-\frac{x^{r}}{y^{r}}-\frac{c h}{y^{r}} \rightarrow g^{\prime}(y)=. \rightarrow g(y)=.\right. \\
& \psi(x, y)=x^{\prime} c^{y}+\frac{x^{r}}{y}+\frac{x}{y^{r}}+=C
\end{aligned}
$$

$$
\left(x^{r} y^{r}+r\right) y d x+\left(r-r x^{r} y^{r}\right) x d y=.
$$

Cinsर्तु)y

$$
A y^{r}+r A x^{r}+B x^{r}+C x=1 \Rightarrow A=\frac{1}{y^{r}} \quad,(r A+B)=\Rightarrow B=\frac{-r}{y^{r}}, C=0
$$

$$
\int \frac{1}{n\left(y^{+}+r x^{x}\right)} d x=\int \frac{1}{n Z^{r}} d x+\int \frac{-r n x}{Z^{r}\left(y^{r}+r x^{r}\right)} d x \rightarrow
$$

$$
=\frac{\ln x}{y^{r}}-\frac{1}{r y^{2}} \ln \left(z^{r}+r_{x^{r}}\right)+g(y) \Rightarrow
$$

$$
\psi(x, y)=\frac{y^{\gamma}}{\varepsilon} \ln \left(y^{r}+r x^{r}\right)+\frac{\ln x}{y^{r}}-\frac{1}{r y^{r}} \ln \left(y^{r}+r 2^{r}\right)+g(y)
$$

$$
\frac{d \psi}{d x y}=\cdots=\frac{1-x^{x} y^{x}}{z\left(r_{x}+y^{r}\right)} \Rightarrow \psi(x, y)=C
$$

$$
\begin{aligned}
& d x+\frac{1-x^{r} y^{r}}{y\left(r n+y^{r}\right)} d y=. \\
& \left\{\begin{array}{l}
\frac{d \psi}{d x}=\frac{x^{r} y^{r}+r}{r x\left(y^{r}+r x^{r}\right)} \\
\frac{d \psi}{d y}=\frac{1-x^{r} y^{r}}{z\left(r x^{r}+y^{r}\right)}
\end{array}\right. \\
& \int \frac{x^{r} y^{r}}{r_{n}\left(y^{r}+r_{n}^{r}\right)}+\frac{r}{r_{n}\left(y^{r}+r_{n}^{r}\right)}=\frac{y^{r}}{r} \int_{n\left(y^{r}+r x^{r}\right)}^{x^{r}}+\int \frac{1}{n\left(y^{r}+r_{n}^{r}\right)}=\frac{y^{r}}{r} \ln \left(z^{r}+r_{x^{r}}\right)+ \\
& \int \frac{1}{n\left(y^{p}+r_{n^{\gamma}}\right)} d x=\left[\frac{1}{n\left(y^{r}+r_{n^{*}}\right)}=\frac{A}{n}+\frac{B x+c}{z^{r}+r_{n} n^{r}} \Rightarrow\right.
\end{aligned}
$$

$$
\frac{d y}{d n}=\frac{(n+Z)^{r}-(n-y)}{(n-Z)+(n+y)^{r}} \quad\left\{\begin{array}{l}
u=n+Z \\
v=n-Z
\end{array}\right.
$$

$$
\left.\begin{array}{l}
\frac{d u}{d x}=1+\frac{d y}{d x} \\
\frac{d v}{d x}=1-\frac{d y}{d x}
\end{array}\right\} \Rightarrow \frac{d u}{d v}=\frac{1+\frac{d y}{d x}}{1-\frac{d y}{d x}} \Rightarrow\left(1-\frac{d y}{d x}\right) \frac{d u}{d v}=1+\frac{d y}{d x} \Rightarrow
$$

$$
\frac{d u}{d v}-1=\frac{d y}{d x}\left(\frac{d u}{d v}+1\right) \rightarrow \frac{d y}{d x}=\frac{\frac{d u}{d v}-1}{\frac{d u}{d v}+1} \Rightarrow
$$

「路

$$
\begin{align*}
& x y=u \rightarrow z+x y^{\prime}=u^{\prime} \rightarrow z+x \frac{d y}{d x}=\frac{d u}{d x} \xlongequal{y=\frac{u}{x}} y d x+x d y=d u \\
& \rightarrow x d y=d u-\frac{u}{x} d x \\
& \left(u^{r}+r\right) \frac{u}{x} d x+\left(r-r u^{r}\right) x d y=0 \quad 0 \quad\left(u^{r}+r\right) \frac{u}{2} d x+\left(r-r u^{r}\right)\left(d u-\frac{u}{x} d x\right)=0 \\
& \rightarrow\left(\frac{u^{r}}{n}+\frac{r u}{n}-\frac{r u^{\prime}}{n}+\frac{r u^{r}}{n}\right) d x+\left(r+r u^{r}\right) d u=. \\
& \frac{r u^{r}}{n} d n+r\left(1-u^{r}\right) d u=0 \\
& \frac{d n}{x}=\frac{-r}{r} \frac{\left(1-u^{r}\right)}{u^{r}} \xrightarrow{s} \ln |x|+\ln c=\frac{r}{c}\left(\frac{-1}{r u^{r}}-\ln u\right) \rightarrow \\
& c|x|=\frac{e^{-\frac{1}{2} u^{2}}}{u^{\frac{x}{c}}} \Rightarrow c(n) u^{\frac{r}{c}}=e^{-\frac{1}{c} u^{r}} \rightarrow c|n|\left(\frac{n}{z}\right)^{\frac{1}{c}}=e^{\frac{-1}{\bar{c}\left(\frac{x}{x}\right)^{r}}}
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\frac{d u}{d v}-1}{\frac{d u}{d v}+1}=\frac{u^{r}-v}{v+u^{r}} \rightarrow\left(\frac{d u}{d v}-1\right)\left(v+u^{r}\right)=\left(\frac{d u}{d v}+v\left(u^{r}-v\right) \rightarrow\right. \\
& \frac{d u}{d v}\left(v+u^{r}-u^{r}+v\right)=v+u^{r}+u^{r}-\not v \rightarrow r v d u=r u^{r} d v \rightarrow
\end{aligned}
$$

$$
y^{\prime}=\frac{x}{y}-\frac{r n^{r}+c^{\prime} y^{r}-v}{c_{n}^{r}+y^{r}-\Lambda} \quad\left\{\begin{array}{l}
u=x^{r} \rightarrow \frac{d u}{d x}=r x \\
v=y^{r} \rightarrow \frac{d v}{d x}=r y \frac{d y}{d x}
\end{array}\right.
$$

$$
\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{1 x}{\frac{1}{y} \frac{d y}{d x}}=\frac{x}{\check{L}} \times \frac{d x}{d y} \Rightarrow \frac{d y}{d x}=\frac{y}{x} \times \frac{d u}{d v} \rightarrow
$$

$$
\sqrt{\frac{u}{v}}-\frac{r u+\tau v-v}{r u+r v-\Lambda}=\sqrt{\frac{v}{u}} \frac{d u}{d v} \xrightarrow{\times \sqrt{u}} \frac{u}{v}-\frac{\sqrt{u}(r u+r v-v)}{\sqrt{v}(v u+r v-\wedge)}=\frac{d u}{d v} \longrightarrow
$$

$$
\frac{(r u+r u v-\Lambda u)-\sqrt{u v}(r u+r v-v)}{v(r u+r v-\Lambda)}=\frac{d u}{d v}
$$

$$
r n^{\prime} z y^{\prime}+r n y^{\prime}=\tan \left(x^{\prime} z^{\prime}\right) \quad, \quad u=x^{\prime} y^{\prime}<\begin{aligned}
& \frac{d u}{d x}=r n y^{\prime} \\
& \frac{d u}{d y}=r x^{\prime \prime} z^{\prime} y
\end{aligned}
$$

Ging

$$
y^{\prime}=(n+y)^{9}, \quad n+z=u
$$

$$
\frac{d u}{d x}=1+\frac{d y}{d x} \rightarrow \frac{d y}{d x}=\frac{d u}{d x}-1 \rightarrow d y
$$

$$
\frac{d u}{d x}-1=u^{r} \rightarrow d u\left(\frac{1}{1+u^{*}}\right)=d n \xrightarrow{\int} \tan ^{-1} u=n+c \rightarrow \tan ^{-1}(n+y)=n+c
$$

$$
y^{\prime}=\left(x-c^{\prime} y\right)^{\prime} * u=x-r y \rightarrow x=\frac{x-u}{r}
$$

$$
\frac{d y}{d x}=\frac{1}{r}-\frac{1}{\mu^{\prime}} \frac{d u}{d x} \xrightarrow{\Delta} \frac{1}{r}\left(1-\frac{d u}{d x}\right)=u^{r} \rightarrow \frac{d u}{1-\tau_{u}}=d x \xrightarrow{\int}
$$

aTLas пOTEBOOK

$$
\begin{aligned}
& u=x^{\prime} y^{\prime} \rightarrow \frac{d u}{d x}=r_{n} y^{r}+r^{\prime} x^{\prime} y y^{\prime} \stackrel{\theta}{\Rightarrow} \frac{d u}{d n}=\tan u \Rightarrow \cot u d u=d n \\
& n=\ln |\sin u|+\ln c \Rightarrow e^{n}=c|\sin x| \Rightarrow e^{n}=c\left|\sin \left(n^{\prime} y^{\prime}\right)\right| \\
& \frac{d y}{d n}=(z-n-1)+(n-z+r)^{-1}, u=n-y \\
& u=x-y \rightarrow \frac{d u}{d x}=1-\frac{d y}{d x} \rightarrow \frac{d y}{d x}=1-\frac{d u}{d x} \\
& 1-\frac{d u}{d x}=(-u-1)+(u+r)^{-1} \rightarrow \frac{d u}{d x}=1-\frac{1}{u+r}+u+1=u+r-\frac{1}{u+r}=\frac{(u+r)-1}{u+r}= \\
& =\frac{u^{r}+\varepsilon u+r}{u+r} \rightarrow d u\left(\frac{u+r}{u^{r}+\varepsilon u+r}\right)=d n \xrightarrow{\int} \frac{u+r}{u^{r}+\varepsilon u+r} d u=x+c \rightarrow \\
& \frac{1}{r} \ln \left|u^{*}+\varepsilon u+r\right|=n+c \rightarrow \ln \sqrt{\mid u^{\prime}+\{u+r \mid}=n+c
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{1-r u^{2}} d u=x+C \quad \frac{1}{(1-\sqrt{c} u)(1+\sqrt{c} u)}=\frac{A}{1-\sqrt{c} u}+\frac{B}{(+\sqrt{c} u}=\frac{A+A \sqrt{c} u+B \cdot \sqrt{c} B u}{} \\
& \left\{\begin{array}{l}
A+B=1 \Rightarrow A=B=\frac{1}{r} \\
\sqrt{c} A-\sqrt{c} B \Rightarrow A=B
\end{array}\right. \\
& \Rightarrow \int \frac{1}{1-c u^{+}} d u=\int \frac{\frac{1}{r}}{1-\sqrt{c} u} d u \int \frac{\frac{1}{r}}{1+\sqrt{c} u} d u=-\frac{1}{\sqrt{c}} \ln |1-\sqrt{r} u|+\frac{1}{\sqrt{c}} \ln |1+\sqrt{c} u|
\end{aligned}
$$

*)

$$
\Rightarrow \frac{1}{\sqrt{r}} \ln \left|\frac{1+\sqrt{c} u}{1-\sqrt{c} u}\right|=n+c \rightarrow \ln \left|\frac{1+\sqrt{r}(n-c y)}{1-\sqrt{x}(n-c y)}\right|=r \sqrt{c}(n+c)
$$

$$
\left(e^{\sin n}-1\right) d y+(y-1) \cos n e^{\sin x} d x=1
$$

$$
u=(z-1) e^{\sin x} \rightarrow \frac{d u}{d x}=\frac{d y}{d x}\left(e^{\sin x}-1\right)+\cos x e^{\sin x}(z-1) \xrightarrow{x d x} d u=\ldots \ldots .
$$

$$
\frac{d u}{d x}=0 \Rightarrow u=c \Rightarrow\left(z^{-1}\right)\left(e^{\sin x}-1\right)=.
$$

 .

$$
\begin{aligned}
& y={z^{\prime}}^{\prime \prime}+n\left(z^{\prime}-1\right) \\
& \text { - * } \\
& z=p^{r}+x(p-1) \xrightarrow{x}-y^{\prime}=r p p^{\prime}+p-1+p^{\prime} x \rightarrow r p p^{\prime}=1-p^{\prime} x \rightarrow p=\frac{1}{r p}-\frac{x}{r} \\
& P+\frac{x}{r}=\frac{1}{r} \times \frac{d x}{d P} \rightarrow r P P^{\prime}+r \frac{x}{r} P^{\prime}=1 \rightarrow r p P^{\prime}+x P^{\prime}=1 \rightarrow(r p+x) d p-d x . . \\
& \left(P+\frac{x}{r}\right) d P=\frac{1}{r} d n=\cdot \\
& \text { atias notesook }
\end{aligned}
$$

$Q(p)=\frac{M_{n}-N_{p}}{N}=\frac{1-\rho}{1}=1 \quad e^{\int 1 d p}=e^{p} \xrightarrow{\longrightarrow} \quad e^{p}\left(r_{p}, n\right) d p-e^{p} d x=-$ $\psi(x, p)=\int N(x, p) d x=e^{p} x \cdot y p e^{p} x+g^{\prime}(p)=e^{p} x+e^{p}$

$$
z=e^{y^{\prime}}\left(z^{\prime}-1\right) \quad \stackrel{y^{\prime}=p}{\Longrightarrow} z=e^{p}(p-1)
$$

\& $g(p)=+\int p e^{p}+r\left(r e^{p} \cdot e^{p}\right)$

$x=0$

$$
\begin{aligned}
& \rightarrow Z^{\prime}=\left(e^{p}(p-1)+e^{p}\right) \frac{d p}{d x} \\
& \Rightarrow P=e^{p}(p-1+1) \frac{d p}{d x} \Rightarrow P=e^{p}(p) \frac{d p}{d x}
\end{aligned}
$$

$d x=c^{p} d p$

$$
\begin{aligned}
& \rightarrow P=r P^{r} \frac{d p}{d y}+P-y \frac{d P}{d y} \rightarrow 0=\left(r P^{r}-y\right) \frac{d P}{d y} \Rightarrow\left(r P^{r}-y\right)=0 \rightarrow \\
& p^{\omega}=\frac{y}{r} \Rightarrow\left\{\begin{array}{l}
p=\sqrt[5]{\frac{y}{r}} \\
x=p^{2}+\frac{y}{p}
\end{array} \Rightarrow x=\sqrt[r]{\frac{y^{\alpha}}{\epsilon}}+\frac{y}{\sqrt{\frac{y}{y}}}\right.
\end{aligned}
$$

(1) $\left(r p^{0}-y\right) \neq \Rightarrow \frac{d p}{d y}=0 \Rightarrow P=c \Rightarrow\left\{x=c^{r}+\frac{y}{c}\right\} \Rightarrow c^{2}$

$$
z^{\prime \prime}-4 x=0 \quad \xrightarrow{\int} y^{\prime}-\frac{4 x^{\prime}}{r} \leq \stackrel{f}{\longrightarrow} y^{\prime}=c_{1}+r_{n}^{r} \xrightarrow{S} y=c_{1} x+x^{r}+c_{r}
$$

 $3, T=2 N \frac{d y}{d x}=v$
$t^{r} y^{\prime \prime}+r t y^{\prime}-1=0 \quad t>0$ Ogol-

$$
\begin{aligned}
& y^{\prime}=v \quad y^{\prime \prime}=\frac{d y^{\prime}}{d t}=\frac{d V}{d t} \\
& t^{\prime} \frac{d v}{d t}+r t v-1=0 \xrightarrow{-t^{r}} \frac{d v}{d t}+\frac{r}{t} v=\frac{1}{t^{r}} \xrightarrow{e^{f_{t}^{*}}=t^{r}} t^{r} \frac{d J}{d t}+r t v=1 \\
& \frac{d}{d t}\left(t^{\prime} \times v\right)=1 \rightarrow t^{r} v=t+C \rightarrow y^{\prime}=\frac{1}{t}+\frac{c}{t^{r}} \xrightarrow{\int \cdot d t} y=\ln t-\frac{c}{t}+c_{r}
\end{aligned}
$$

$$
y^{\prime \prime}=f\left(y \cdot z^{\prime}\right)
$$

-

$$
y^{\prime \prime}=\frac{d}{d t}\left(\frac{d y}{d t}\right)=\frac{d U}{d t}=\frac{d U}{d z} \cdot \frac{d y}{d t}=V \frac{d U}{d y} \quad \quad \text { No }
$$

$$
\begin{aligned}
& 2 z^{\prime \prime}+\left(y^{\prime}\right)^{\prime \prime}=0 \\
& z^{\prime}=v \\
& \left.\begin{array}{l}
z=v \\
z^{\prime \prime}=v \frac{d \cdot v}{d z}
\end{array}\right\} \Rightarrow z \cdot v \frac{d v}{d z}+v^{v}=0 \\
& v \frac{d v}{d y} \mp \frac{v^{x}}{z} \rightarrow u^{\prime \prime} \cdot v=\Rightarrow y^{\prime}=\cdot \Rightarrow y=c \\
& v_{\neq 0} \Rightarrow \frac{d v}{v}=-\frac{d y}{y} \Rightarrow \sin v=-\underset{\ln y}{-\ln y}+\ln c \Rightarrow v^{\prime}=\frac{c}{\partial} \Rightarrow \dot{Z}^{\prime}=\frac{c}{y} \\
& \Leftrightarrow \stackrel{\int d t}{\Rightarrow} \alpha \frac{d y}{d t}=c \quad \xrightarrow{\frac{x^{\prime}}{r}=c t+c_{1}} \quad \text { crs, t. } \\
& y^{\prime} y^{\prime \prime}=r \quad y(0)=1, z^{\prime}(0)=r \\
& \left.\begin{array}{l}
y^{\prime}=v \\
z^{\prime \prime}=v \frac{d v}{d y}
\end{array}\right\} \Rightarrow v^{\prime \prime} \frac{d v}{d y} \cdot r \rightarrow v^{\prime} d v=r d y \xrightarrow{\int} \frac{v^{v}}{r}-r z+c \xrightarrow{v, v^{\prime}} \\
& y^{\prime \prime}=4 y+r^{r} \xrightarrow{y^{\prime} p} p^{r}=4 y+r c \dot{C} p^{*} p_{p}^{\prime}=4 y^{\prime \prime} \xrightarrow{y^{\prime} \cdot p} p p^{\prime}=r
\end{aligned}
$$

$$
\begin{aligned}
& P \frac{d P}{d t}=r \rightarrow P d P=r d t \xrightarrow{\int} \frac{p^{r}}{r}=r_{t}+C \rightarrow y^{\prime \prime}=E t+r C . \\
& z^{\prime}=r \sqrt{t+\frac{6}{x}} \xrightarrow{\int \cdot d t} y=r \int \sqrt{t+\frac{c_{t}}{r}} d t \xrightarrow[d t=c_{r} \tan ^{2}\left(1, \tan ^{\prime} t\right)]{t=\frac{c_{1}+\tan ^{\prime} t}{}}
\end{aligned}
$$

$$
F\left(x, \lambda y, \lambda y^{\prime}, \lambda y^{\prime \prime}\right)=\lambda^{n} F\left(x, y \cdot y^{\prime} \cdot y^{\prime \prime}\right)
$$

$$
\begin{aligned}
& \underbrace{f\left(1, y, y, y^{2} z^{*}\right)} \\
& 2 y^{\prime \prime} \cdot z^{\prime \prime}-4 x y^{\prime}=0 \\
& \text {, } 3,49 \text { C } \\
& F\left(x, \lambda y, \lambda y^{\prime}, \lambda y^{\prime \prime}\right)=\lambda y \cdot \lambda y^{\prime \prime}+\lambda^{\prime} y^{\prime r}+4 n \lambda^{\mu} y^{\prime}=0=\lambda^{r}\left(2 y^{\prime \prime}+y^{\prime r}-S_{2} y^{\prime}\right) \\
& \lambda^{\prime} F\left(x, y \cdot y^{\prime} \cdot y^{\prime \prime}\right) \\
& \text { find }^{\prime} ; z=e^{\int z d x} \rightarrow z^{\prime}=z e^{\int z d x} \rightarrow z^{\prime \prime}=z^{\prime} e^{\int z d x}+z^{\prime} e^{\int z d x}=\left(z^{\prime}+z^{\prime}\right) e^{\int z d x}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow e^{\int y_{z} d x}\left(z^{\prime}+z^{x}-z^{x}-4 x\right)=0 \quad e^{\int r_{2} d x} z_{0}\left(z^{\prime} \pm z^{4} x\right)=0 \Rightarrow z^{\prime}=4 n \xrightarrow{\int} z=z^{\prime \prime}
\end{aligned}
$$

$$
y \cdot e^{\int \omega_{1}, t} \rightarrow y+e^{x+c x+c}
$$

\%

: دto

$$
R, \gamma<y<\delta, \alpha<t<\beta \text { ن }
$$

 $D^{2}(1)=1$

$$
\begin{aligned}
& z^{\prime}=\frac{\sigma_{n} r}{r+\varepsilon_{n}+r} \\
& r(z-1)
\end{aligned} n \in R \quad \dot{z}: R-\{1\}
$$

$$
\tau_{x}^{x} z=1 \operatorname{lopes} \frac{\partial f}{\partial z}, f(x
$$

$$
\left\{\begin{array}{l}
-\infty<n<+\infty \\
-\infty<z<\frac{1}{r}
\end{array}\right.
$$

$$
z^{\prime}+p(t) z=q(t) \quad z(t!)=z_{0}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varphi^{\prime}(t)+\rho_{1}^{(t)} \varphi(t)=q(t) \\
q(t)=x .
\end{array}\right. \\
& (t-r) y^{\prime}+\ln t z=r t \quad z(1)=r
\end{aligned}
$$

$$
y^{\prime}+\frac{\ln t}{t-r} y=\frac{r t}{t-r}
$$

$$
\left.\begin{array}{l}
\left.D_{\rho(t, 1}: \begin{array}{l}
t-r \neq: \Rightarrow t \neq \mu \\
\ln t: t>0
\end{array}\right\} \Rightarrow D_{p}=(\cdot, \mu) \cup(c,+\infty) \\
D_{q_{(0,}}: t-\tau \neq 0 \Rightarrow t \neq r \Rightarrow D_{q} \cdot \mathbb{R}-\{\mu\}
\end{array}\right\} \Rightarrow 1 \in(0, r)
$$

$C^{-}(0, c) ; \because \mathcal{U}^{\prime}$

, sing: $\left(y^{\prime / 2} \quad{ }^{1}(y-1) d y=\left(r_{n}+\varepsilon_{n}+r\right) d n\right.$
b

$$
y^{r}-r y^{-1}=x^{r}+r n^{*}+r n+c \rightarrow \quad y(\cdot,-1 \quad 1-(-r)=\cdots+\cdots+c \rightarrow c=r
$$

${ }^{1} \downarrow$

$$
y^{r}-r y+1=x^{r}(x+r)+r(x+r) \rightarrow(x-1)^{r}=(x+r)\left(x^{r}+r\right)
$$

$$
\begin{aligned}
& y=1 \approx \sqrt{(n+r)\left(n^{r}+r\right)},
\end{aligned}
$$

$$
\frac{d z}{d n}=\frac{r_{n} r}{r(z-1)} \quad y(0)=+1
$$

aP, :

$$
\text { 尘 } \frac{\partial f}{\partial y}, f \Rightarrow\{(-\infty,+\infty) \times[(-\infty, 1) \cup(1,+\infty)]
$$

$$
\begin{aligned}
& z^{r}-r y=n^{r}+r x^{r}+r n+c \quad y(\cdot)=1 \quad i^{r}-r=0+c \Rightarrow c=-1 \\
& x^{r}-r^{r} z+1=x^{r}+r n^{r}+r n \Rightarrow y=1 \pm \sqrt{n^{r}+r_{n}+r_{n}}
\end{aligned}
$$

$$
n^{r}+i n^{r}+r n \geqslant 0 \quad n\left(n^{r}+r n+r\right) \geqslant 0 \Rightarrow n \geqslant 0 \quad(-\infty)[-+\infty), 0 m
$$

畀

$$
z^{\prime}=z^{\frac{1}{c}} \rightarrow \frac{d z}{z^{\frac{1}{r}}}=d n \rightarrow \frac{\tau}{r} z^{\frac{1}{c}}=n+c \quad y(0)=0 \rightarrow c=0 \quad Z= \pm \sqrt{\left(\frac{r}{e^{2}} n\right)^{c}}
$$

$$
y^{\prime}=y^{\prime} \quad y(0)=1
$$

$$
1 x^{2}-1 \operatorname{ck}^{4} \rho \cos ^{6} G^{\prime \prime \prime} \text { isjo }
$$

$$
\begin{aligned}
& y^{\prime}=z^{\frac{1}{\omega}} \quad z(\cdot)=.
\end{aligned}
$$

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=\cdot \quad\left(\infty^{\infty}\right)
$$

$)^{0}\left(5 c^{0}\right.$

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

$$
G_{1,0}=c_{1} Z_{1}+c_{+} Z_{1}
$$

: مزی-

$$
\begin{array}{ll}
Z^{\prime \prime}+r^{\prime} z^{\prime}+r y=0 & r^{r}+y^{\prime}+r=0 \rightarrow(r+r)(r+1)=\left\langle_{r=-1}^{r=-r}\right. \\
y_{1}=e^{-t} \quad y_{r}=e^{-r t} & \text { vere: } z_{r}=c_{1} e^{-t}+c_{r} e^{-r t}
\end{array}
$$

Q $2 z_{2}+t, e^{r t}, y_{1}=e^{r t} \quad$ -
$y^{\prime}+\varepsilon y^{\prime}+z^{\xi} z=0$
WiNherrererer

$$
r^{r}+\varepsilon_{r}+\varepsilon=. \longrightarrow\left(r_{+}\right)^{r}=0 \rightarrow r=-r<y_{1}=e^{-r_{t}} \quad y_{r}=t e^{-r_{t}} \Rightarrow Z_{r}=c_{1} e^{-r_{t}}+c_{r}
$$

$$
\begin{aligned}
& c_{1} y_{1}^{\prime \prime}+c_{2} y_{1}^{\prime \prime}+p(t)\left(c_{1} y_{1}^{\prime}+c_{2} y_{0}^{\prime}\right)+q(t)\left(c_{1} y_{1}+c_{2} y_{0}\right)= \\
& c_{1}\left(\widehat{z_{1}^{\prime \prime}+p(t) z_{1}^{\prime}+q(t) y_{1}}\right)+c_{1}\left(\overline{y_{2}^{\prime \prime}+p(t) y_{0}^{\prime}+q(t) y_{0}}\right)=c_{1} \times 0+c_{2} x_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& a r^{r}+b r+c=-\rightarrow \Delta<\cdot ; \quad r_{1, r}=\frac{-b \pm \sqrt{\Delta}^{-\Delta x a} i^{-(-1)}}{r a}=\frac{-b \pm \sqrt{-\Delta \times i}}{r a}= \\
& y_{1}=e^{(\alpha i \beta) t}=e^{\alpha t} e^{i \beta t}=e^{\alpha t}\left(\cos \beta_{t}+i \sin \beta_{t}\right) \\
& z_{v}=e^{(\alpha-i \beta) t}=e^{\alpha t} e^{-i \beta t}=e^{\alpha t}\left(\cos \beta t-i \sin \beta_{t}\right)
\end{aligned}
$$

ORe？

$$
\mathscr{Z}_{c}=c_{1} z_{r}+c_{r} z_{r}
$$

\qquad
（il）$y^{\prime \prime}+9 y=$
c）$y^{\prime \prime}+\varepsilon y^{\prime}+\Delta y=0 \quad y(\cdot)=1$
（il）$r^{\prime}+9=0 \rightarrow r^{2}=-9^{=9 i^{r}} \rightarrow r= \pm \sqrt{-9}= \pm r i$

$$
\begin{aligned}
r_{1}, r_{1} \leadsto \alpha=\cdot, \beta=r \quad & y_{1}=e^{-t} \cos C_{1}, y_{0}=e^{-t} \sin c_{t} \\
y_{1} & =C_{1} \cos c_{t}+C_{1} \sin C_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \text {-) } r^{r}+\varepsilon y+\Delta=0 \rightarrow \Delta=14-r=-\varepsilon \quad r_{1} r_{1}=\frac{-\varepsilon \pm \sqrt{-\varepsilon r}}{r} \\
& r_{1}=-r+r i \\
& r_{1}=-r-r i
\end{aligned}\left\{\begin{array}{l}
z_{1}=e^{(i-r) t} \\
z_{0}=e^{(-i-r) t}
\end{array}\right] .
$$

以心， 以ul
公

$$
z=c_{1} e^{(i-r) t}+c_{r} c^{(-i-) t} \stackrel{\iota}{\leftrightharpoons} c_{r} e^{-r t} \cos t+c_{r} c^{-r t} \sin t \xrightarrow{\stackrel{y(1)}{\square})=1} \nsim(\cdot)=c_{1}+c_{r}=1
$$

$$
y^{\prime}=C_{1}(i, r) e^{(i-r) t}+C_{r}(-i-r) e^{(-i-r) i} \Rightarrow y^{\prime}(\cdot)=0.0=C_{1}(i-r)+C_{r}(-i-r)=\rightarrow
$$

$$
\operatorname{lu}_{-r\left(c_{1}+c_{1}\right)}
$$

$$
\rightarrow=l\left(C_{1}-C_{r}\right)+\left(-r c_{1}-r C_{r}\right) \rightarrow \quad\left(\left(C_{1}-c_{*}\right)=r \rightarrow-1+r C_{1}=\frac{r}{i}\right.
$$

mTLAs notesook

$$
\begin{aligned}
& y_{1}+y_{0}=e^{\alpha t}(r \cos \beta t) \rightarrow \\
& \left.\rightarrow \quad \frac{y_{1}-y_{i}}{r i}=e^{\alpha t} \sin \beta_{t}\right\} \rightarrow z_{r}=e^{\alpha t} \sin \beta_{t}
\end{aligned}
$$

$$
\begin{aligned}
& r C_{1}=\frac{r}{i}+1=\frac{r}{r}+i \\
& i \\
& \frac{i}{l}=\frac{r i-1}{-1} \\
& C_{1}=\frac{+1}{r}-i \\
& c_{r}=1-C_{1}=\frac{1}{r}+i \\
& z_{p}=\left(+\frac{1}{r}-i\right) y_{1}+\left(\frac{1}{r}+i\right) z_{1}
\end{aligned}
$$

$$
y^{\prime \prime}+y=0 \quad y^{\prime}(\cdot)=r, y(0)=r
$$

$$
r^{1}+1=\rightarrow r^{r}=-1 \rightarrow r= \pm i \quad z_{1}=\cos t, z_{r}=\sin t
$$

$$
y_{c}=c_{1} \cos t+c_{r} \sin t \quad y(\cdot)=r \rightarrow c_{1}=r
$$

30

$$
z_{p}=r \cos t+r \sin t
$$

$$
z_{c}^{\prime}=-c_{1} \sin t+c_{1} \cos t \quad z^{\prime}(0)=r \rightarrow c_{t}=r
$$

\qquad

$$
y^{\prime}=-r \sin t+r \cos t=. \quad \rightarrow \quad \tan t=\frac{r}{r} \quad t=\tan ^{-1} \frac{r}{r}
$$

$$
z^{\prime \prime}+\frac{2 \sin t}{t} y^{\prime}+\ln t y=0 \quad y^{\prime}(1)=1, y(1)=0
$$

$$
\left.\mathcal{V}^{V}=R_{-\infty}, R_{-}\right\} \cup(\cdots, \infty)=(\cdot,+\infty)
$$

عurex

$$
\left\{\begin{array}{l}
y\left(t_{0}\right)=y \\
y^{\prime}\left(t_{0}\right)=y^{\prime}
\end{array}\right.
$$

: binconcurols
.

$$
\begin{array}{ll}
y^{\prime \prime}+\Delta y^{\prime}+4 y=0 & y^{\prime}(\cdot)=r \quad z(0)=r \\
r^{\prime}+\Delta r+4= & (r+r)(r+r)=\rightarrow\left\{\begin{array}{l}
r_{1}=-r \rightarrow z_{1}=e^{-r t} \\
r_{r}=-r \rightarrow z_{v}=e^{-r t}
\end{array}\right.
\end{array}
$$

$$
\begin{aligned}
& y_{c}=C_{1} e^{-r t}+C_{r} e^{-r t} \xrightarrow{y(\cdot)=r} \quad r=C_{1} e^{e}+C_{r} e^{e}=C_{1}+C_{r} \\
& y^{\prime}=-r C_{1} e^{-r t}-r C_{r} e^{-r t} \xrightarrow[y^{\prime}(\cdot)=r]{ } \quad r=-r C_{1}-r C_{r} \quad C_{1}=9
\end{aligned}
$$

$$
\Rightarrow z=9 e^{-r t}-v e^{-r t}
$$

$$
\xi^{\prime \prime}-z=0 \quad y(-r)=1 \quad z^{\prime}(-r)=1
$$

$$
\left\{r^{\prime}-1=\rightarrow \quad r= \pm \frac{1}{r} \rightarrow\left\{\begin{array}{l}
y_{1}=e^{\frac{1}{r} t} \\
y_{r}=e^{-\frac{1}{r} t}
\end{array} \quad y_{c}=C_{1} e^{\frac{1}{t} t}+C_{v} e^{-\frac{t}{r} t}\right.\right.
$$

$$
y^{\prime \prime}+0 y^{\prime}+4 y=0 \quad z^{\prime}(\cdot)=r \quad y(0)=r
$$

$$
\left.r^{*}+a r+4=. \quad J_{0} \sin \right)^{\prime} \rightarrow \text { gions: } y=9 e^{-r t}, v e^{-r t}
$$

$$
y^{\prime}=-1 \Lambda e^{-r t}+r 1 e^{-r t} \xrightarrow{y^{\prime}=0} N e^{-r t}=r 1 e^{-r t} \rightarrow e^{t}=\frac{\gamma 1}{1 \lambda} \xrightarrow{\ln } t=\ln \left(\frac{\gamma 1}{1 \pi}\right) \approx_{0,10}
$$

$\rightarrow z_{p}=r, r \quad$ Max lin^{2}

$$
\left.r^{\prime} \dot{\delta} r+\varepsilon=0 \rightarrow(r+r)^{r}=. \rightarrow r=-r\right)\left(\cos \div ⿻, \quad \neq e^{-r t} \quad y=e^{-r t}\right.
$$

$$
y_{0}=C_{1} e^{-r t}+C \cdot e^{-r t}
$$

$$
y^{\prime \prime}-y^{\prime}+r^{r 0} 0 y=0 \quad \cdot y^{\prime}(1)=\frac{1}{r}, y(0)=r
$$

$?$

$$
r^{v}-r+\frac{1}{r}=v \quad \Delta=1-1=\quad r_{1}, r_{r}=\frac{1}{r} \quad y_{1}=e^{\frac{1}{r} t}, y_{0}=t e^{\frac{1}{r} t}
$$

$$
\begin{aligned}
& y^{\prime}+\frac{1}{r} C_{1} e^{f t}+\left(-\frac{1}{r} C_{r}\right) e^{f t} \xrightarrow{y^{\prime}(\cdot) \cdot-1}-1=\frac{C_{1}}{r e}-\frac{C_{r} c}{r} \xrightarrow{(1)}-r=1-C_{r} c-C_{r} e=1, r c_{1} e \\
& \rightarrow-r=-r C_{r} e \rightarrow C_{r}=\frac{r}{r e} \left\lvert\, \quad C_{1}=-\frac{1}{r} e \int \quad y=-\frac{1}{r} e^{\frac{r}{r} t}+\frac{r}{r e} e^{-\frac{1}{r} t}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.y_{c}=c_{1} c^{f^{t}}+c_{v} t e^{f^{t}}\right] \quad \mathcal{G}^{\prime} \varphi^{\prime 2} \rightarrow y_{c}^{\prime}=\frac{1}{r} c_{1} e^{\frac{1}{r} t}+c_{r} e^{\frac{1}{r}}+\frac{1}{r} c_{1} t e^{\text {. }} \\
& \left.\left.\xrightarrow{y(0)=r} \quad C_{1}=r\right) \quad \xrightarrow{y^{\prime}(0)=\frac{1}{r}} \quad \frac{1}{r}=\frac{1}{r} x^{r}+C_{r} \Rightarrow C_{r}=\frac{-r}{r}\right] \\
& z=r e^{\frac{1}{r} t}-\frac{r}{r} t e^{\frac{1}{r} t} \\
& \left.y^{\prime}=\frac{t-v}{r t+0 y} \rightarrow \frac{d y}{d t}=\frac{t-v}{r_{t}+\Delta y} f^{f(t} y\right) \quad \cup v \operatorname{cis}^{4 r} \\
& r_{t}+\partial_{y}=\cdot \rightarrow \partial_{z}=-r_{t} \rightarrow \mathcal{L}=\frac{-r_{t}}{\Delta} \quad \frac{\partial f}{\partial y}, f(f)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=\frac{-\Delta x(t-v)}{(r t+\Delta y)^{r}} \\
& t(t-\varepsilon) y^{\prime}+(t-r) y^{\prime}+y=0 \quad y(r)=1 \\
& y^{\prime \prime}+\frac{t-r}{t(1-\xi)} y^{\prime}+\frac{y}{t(t-\varepsilon)}=0 \\
& \text { Sce }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Crو'دL: } \int_{f(t)}^{g(t)} h(x) d x=h(g(t)) \cdot g^{\prime}(t)-h(f(t)) \cdot f^{\prime}(t) \\
& z^{\prime}-r+e^{t^{\prime}} \int_{0}^{t} e^{-s^{\prime \prime}} d s+e^{t^{\prime}}=1 \rightarrow y^{\prime}+e^{t^{v}}-r t e^{t^{v}} \int_{0}^{t} e^{-s^{r}} d s-1=0
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=r t e^{t^{r}} \int_{0}^{t} e^{-s^{r}} d s+\left(e^{-t^{r}} \times 1-e^{e^{r}} x\right) e^{t^{r}} \\
& y^{\prime}-r_{t} y=1 \Rightarrow r t e^{t^{r}} \int_{0}^{t} e^{-s^{r}} d s+1+r t e^{t^{r}}-r+e^{t^{r}} \int^{t} e^{-s^{r}} d s-r t e^{-t^{r}}=1 \Rightarrow
\end{aligned}
$$

$-\cos ^{\prime}$
首

$$
\begin{aligned}
& y^{\prime}+r z=0 \rightarrow r e^{r t}+r e^{r t}=0 \rightarrow e^{i r t}(r+r)=0 \Rightarrow r+r=0 \rightarrow r=-r \Rightarrow y=e^{-r t} \\
& y^{\prime}=r t^{r-1} \quad z^{\prime \prime}=r(r-1) t^{r-r} \\
& z=t^{r}, r: A r \text { rr }
\end{aligned}
$$

$$
\begin{aligned}
& t^{r} y^{\prime \prime}+r t y^{\prime}+r y=-\quad \forall t^{r}\left(r(r-1) t^{r-r}\right)+\varepsilon t\left(r t^{r-1}\right)+r t^{r}=0 \longrightarrow \\
& t^{r}\left(r^{\prime}-r+\varepsilon r+r\right)=0 \Rightarrow r^{r}+r r+r=0 \Rightarrow(r+r)(r+1)=0 \nearrow_{r=-1}^{r=-r} \Rightarrow\left\{\begin{array}{l}
z_{1}=t^{-1} \\
z_{r}=t^{-r}
\end{array}\right.
\end{aligned}
$$

$x \in x+r(y-c) y^{\prime}=0 \rightarrow x+(y-c) y^{\prime}=\rightarrow c=\frac{x+y y^{\prime}}{y^{\prime}}$
$\underset{()^{\prime \prime N}}{\text { Nom }} x^{\prime}+\left(-\frac{x+z y^{\prime}}{y^{\prime}}+y\right)^{r}=\left(\frac{x+y y^{\prime}}{y^{\prime}}\right)^{r} \rightarrow$
$x^{*}+\frac{x^{*}}{y^{\prime \prime}}=\frac{x^{\prime}}{y^{\prime \prime}}+\frac{i n y y^{\prime}}{y^{\prime \prime}}+y^{\prime} \Rightarrow x^{r}-y^{\prime}-\frac{\operatorname{rn} y}{y^{\prime}}=0 \quad y^{\prime} \rightarrow \frac{-1}{y^{\prime}}$
$x^{\prime}-y^{\prime \prime}+{ }^{r} n y y^{\prime}=0 \longrightarrow\left(x^{\prime}-y^{\prime}\right) d x+r x y d y=0$
$M_{y}=-x_{y} \quad N_{x}=r_{y}$

$$
\operatorname{con}^{\prime} \operatorname{lin}^{\prime} f \cdot 6: e^{\int \frac{1}{r} d t}=e^{\frac{t}{v}}
$$

$$
e^{\frac{t}{*}} y^{\prime}+\frac{1}{r} z e^{\frac{t}{r}}=r e^{\frac{t}{r}} \cos t \rightarrow \frac{d}{d t}\left(e^{\frac{t}{r}} y\right)=r e^{\frac{t}{r}} \cos t \xrightarrow{\int d t} \theta
$$

$$
* v \int e^{\frac{t}{t}} \cos t d t \rightarrow\left\{\begin{array}{l}
u=\cos t \rightarrow d u=-\sin t d t \\
d v=e^{\frac{t}{j} d t} \xrightarrow{\int} v=r e^{\frac{t}{t}}
\end{array} \rightarrow P_{x}^{x}\left[\cos t \times r e^{\frac{t}{r}}+\int r e^{\frac{t}{v}} \sin t d t\right]\right.
$$

$$
\star, \quad \int e^{\frac{t}{r}} \sin t d t \rightarrow\left\{\begin{array}{l}
u=\sin t \rightarrow d u=\cos t d t \\
d v=e^{t} d t \rightarrow v=r e^{\frac{t}{r}}
\end{array} \rightarrow r \times\left[\sin t \times r e^{\frac{t}{r}}-\int r e^{\frac{t}{r}} \cos t d t\right]\right.
$$

$$
\int e^{\frac{t}{v}} \cos t d t=\left\{\cos t e^{\frac{t}{v}}+\Lambda \sin t e^{\frac{t}{r}}-\Lambda \int e^{\frac{t}{r}} \cos t d t \rightarrow \int e^{\frac{t}{r}} \cos t d t=\frac{+r}{0} \cos t e^{\frac{t}{r}}\right.
$$

$$
\frac{\xi}{0} \sin t e^{\frac{t}{f}}+c
$$

$$
\begin{aligned}
& \frac{M_{y}-N_{x}}{N}=\frac{-r_{y}-r_{y}}{r_{x y}}=\frac{-r}{x}=Q(x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{x^{+}} \text {, drax } \\
& \psi_{n}=M \rightarrow \psi_{n}=1-\frac{y^{2}}{x^{2}} \xrightarrow{\int d x} \psi_{(n, y)}=x+\frac{y^{2}}{x}+g(z) \text { © } \\
& \psi_{z}=N \rightarrow \psi_{z}=\frac{r y}{x} \\
& \stackrel{Q}{\Rightarrow} \psi_{z}=0+\frac{r_{y}}{x}+g^{\prime}(y)
\end{aligned}
$$

$$
f(0)=\varepsilon+\frac{v}{r}>0
$$

$$
f^{\prime}(t)=-e^{\frac{t}{r}} \sin t-r e^{\frac{t}{7}} / \cos t+r e^{\frac{t}{r}} / \cos t-\varepsilon e^{\frac{t}{r}} \sin t=-0 e^{\frac{t}{r}} \sin t \xrightarrow{\cdot\left\langle t<\frac{t}{r}\right.}-0 e^{\frac{t}{\sin } t}<0
$$

$$
f\left(\frac{\mu}{r}\right)=-r e^{\frac{\mu}{r}}+r e^{\frac{\mu}{x}}+\frac{v}{r}<0
$$

$y=r y^{\prime} x+\tan ^{-1}\left(x y^{\prime 2}\right) \xrightarrow{y^{\prime}=p} \quad z=r p x+\tan ^{-1}\left(x p^{\prime}\right) \quad$ z
$\xrightarrow{x} \mathcal{Z}^{\prime \prime}=r p+r p^{\prime} x+\frac{p^{r}+r p p^{\prime} x}{1+x^{r} p^{r}} \Rightarrow 0=p+r p^{\prime} x+\frac{p^{r}+r p p_{x}^{\prime}}{1+x^{\prime} p^{r}} \rightarrow$ $\left.p^{\prime}\left(r x+\frac{r p x}{1+x^{v} p^{k}}\right)+\left(p+\frac{p^{k}}{1+x^{r} p^{t}}\right)=0 \rightarrow \frac{P^{\prime}\left(i n\left(1+x^{v} p^{t}\right)+r p x\right)}{N(x, p)}+\frac{\left(p\left(1+x^{v} p^{t}\right)+p^{v}\right)}{M(x, p)}\right)=$

(6) $\frac{N_{n}-M_{p}}{n}=\frac{+1+P^{\varepsilon} n^{r}}{P\left(1+n^{r} p^{\varepsilon}\right)+P^{r}}-z^{2}$

$$
\begin{aligned}
& \xrightarrow{y(0)=-1} \quad-1=\frac{+r}{0}+c e^{-\frac{t}{r}} \rightarrow c e^{-\frac{t}{r}}=-\frac{v}{\Delta} \Rightarrow c=-\frac{v}{0} \\
& \Rightarrow \tilde{L}=\frac{r \cos t+\varepsilon \sin t-V e^{-\frac{t}{r}}}{0}
\end{aligned}
$$

$$
\beta+1=r a+r
$$

$$
\beta+\theta=r \alpha+4
$$

β

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=\cdot \quad: \text {, , 台 }
$$

C الترمب,
: (ر)

$$
W=w\left(y_{1}, y_{p}\right)\left(t_{0}\right)=\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & z_{1}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & z_{0}^{\prime}\left(t_{0}\right)
\end{array}\right|
$$

$$
\begin{aligned}
& M_{\rho}=\left(\beta^{+1}\right) x^{\alpha} \rho^{\beta}+(\beta+0) x^{(\alpha+1)} p^{(\beta+\epsilon)}+(\beta+\gamma) x^{\alpha} p^{(\beta+1)} \\
& N_{n}=\gamma(\alpha+1) p^{\beta} x^{\alpha}+\gamma(\alpha+r) p^{(\beta+\varepsilon)} x^{(\alpha+\gamma)}+\gamma(\alpha+1) x^{\alpha} p^{(\beta+1)}
\end{aligned}
$$

$$
\begin{aligned}
& r^{\prime}+r-r=\rightarrow(r-1)(r+r)=\rightarrow \begin{array}{l}
y_{1}=e^{t} \\
z_{1}=e^{-r t}
\end{array} \\
& \omega\left(x_{1}, y_{r}\right)(\cdot)=\left|\begin{array}{cc}
e^{t} & e^{-r t} \\
e^{t} & -r e^{-r t}
\end{array}\right|=-r e^{-t}-e^{-t}=-r e^{-t}=-r
\end{aligned}
$$

$ر y_{0} y_{0} \cdot \cos ^{\prime}$

(i) ر央gloc

$$
y=e^{r_{1} t}, y_{2}=e^{r_{r} t}
$$

$$
w\left(y_{1}, y_{1}\right)(t)=\left|\begin{array}{ll}
e^{r_{1} t} & e^{r_{1} t} \\
r_{1} e^{r_{1} t} & r_{1} e^{r_{1} t}
\end{array}\right|=r_{1} e^{\left(r_{1} r_{0}\right) t}-r_{1} e^{\left(r_{1}+r_{1}\right) t}=\left(r_{1}-r_{1}\right) e^{\left(r_{1} r_{1}\right) t} \neq 0
$$

Date:

$$
\begin{aligned}
& y_{1}=t^{t}, y_{2}=t^{-1} \\
& \omega=\left|\begin{array}{cc}
t^{\frac{1}{r}} & t^{-1} \\
\frac{1}{\sqrt{t}} & \frac{-1}{t^{\prime}}
\end{array}\right|=-t^{\frac{-\frac{v}{r}}{r}}-\frac{1}{r} t^{\frac{. v}{r}}=t^{-\frac{v}{r}}\left(-1-\frac{1}{r}\right)=\frac{c^{\prime}}{r} t^{\frac{\sigma}{r}} \text {. }
\end{aligned}
$$

,
 f

$1 x \sin t+(-1) \cos \left(\frac{x}{x}-t\right)=$.
,f(馆 1) 1 $\omega(f, g) \in=0$, tر \mathcal{J}

, $y^{\prime}=\dot{v}_{(3)} x_{1}+v_{(t) x_{1}^{\prime}}$ (נ)

$$
\begin{aligned}
& z_{1}(t)=v(t) y_{1}=\frac{v(t)}{t} \quad \quad y_{1}^{\prime}(t)=\frac{v^{\prime}(t)}{t}-\frac{v(t)}{t^{\prime}} \\
& \left.z_{v}^{\prime \prime}(t)=\frac{v^{\prime \prime}(t)}{t} \cdot \frac{\gamma v_{(t)}^{\prime}}{t^{r}} \cdot \frac{\left\langle v_{(t)}\right.}{t^{\prime \prime}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +r v^{\prime}-\frac{r}{t} v-\frac{v}{t}=v^{\prime \prime}(r t)+v^{\prime}\left(-\xi^{-1}+r^{\prime}\right)+v\left(\frac{-e}{t}-\frac{1}{t}+\frac{\xi}{t}\right)=r_{t} v^{\prime \prime}-v^{\prime}=0 \\
& \rightarrow \frac{v^{\prime \prime}}{V^{\prime}}=\frac{1}{r t} \xrightarrow{1} \ln v^{\prime}=\frac{1}{r} \ln t \rightarrow V^{\prime}=\sqrt{t} \xrightarrow{\int \partial t} \quad v=\frac{r}{r} t^{\frac{r}{r}} \\
& y_{r}(t)=\frac{1}{r} t^{\frac{\rho}{r}} \times t^{-1}=\frac{r}{r} \sqrt{t} \quad y_{c}=c_{1} t^{-1}+c_{r} \times \frac{r}{c} \sqrt{t}
\end{aligned}
$$

$y_{1}(x)=\sin x^{r} \quad x y^{\prime \prime}-y^{\prime}+\varepsilon n^{\prime \prime} y=0$ NJ0

$$
\text { (1) } \frac{7}{T} \times \frac{n p}{\pi p}=\frac{7 p}{n p} \times \frac{n p}{x p}=\frac{2 p}{2 p}(1 \quad z u y=n * n \partial=7: n ?
$$

$$
\stackrel{n_{n}+7}{\check{N}}=Z_{1}-x_{71}+K_{1}
$$

TR armimd ner:

$$
=X_{v}-X_{79}+X_{v} x_{7}
$$

$$
=X_{9}+X_{70}+X_{17}
$$

$$
\begin{aligned}
& 7 u_{7}=n \leftarrow n_{n}=7 \quad=X+K_{7 \lambda}+R_{2} \\
& \begin{array}{rlrl}
747^{2} & =x & & n^{2} \\
+47 \\
+47_{3}-2 & =x & +4 y^{\prime}=n & n_{3}-x
\end{array} \\
& \begin{array}{l}
3^{-}=1 \\
1=1
\end{array}<\cdot=(3+1)(1-1) \leftarrow=\frac{3}{3}+1 \omega+1
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{\left(s^{r} u 0\right.}\left(\frac{d^{x} y}{d u^{r}}-\frac{d y}{d u}\right)+Y\left(\frac{d y}{d u}\right)+z=0 \rightarrow \frac{d^{x} y}{d u^{r}}+\frac{d y}{d u}+z=0 \\
& r^{v}+r+1=0(r+1)^{r}=\cdot \quad \begin{array}{l}
y_{1}=e^{-u} \\
y_{r}=u e^{u} \xrightarrow{u \ln t} \quad \begin{array}{l}
z_{1}=e^{-\ln t}=\frac{1}{t} \\
y_{v}=\ln t e^{-\ln t}=\frac{\ln t}{t}
\end{array}
\end{array}
\end{aligned}
$$

 r_{1}, r_{1}

$r_{1}-r_{r}$

$$
y_{1}-y_{r}=c_{1} y_{1}+c_{r} y_{r} \quad \Rightarrow \quad y_{1}=c_{1} y_{1}+c_{r} y_{r}+y_{r}
$$

-

. itjonsacos

:
(1) $y^{\prime \prime}=e^{\prime \prime}-\varepsilon y=r e^{r t}$

$$
\begin{aligned}
& Y^{\prime}(t)=A e^{r_{t}} \rightarrow Y^{\prime}=r A e^{r t} \rightarrow Y^{\prime \prime}=\left\{A e^{r t}\right.
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}-z^{\prime}-\varepsilon y=0 \rightarrow r^{*}-r r-\varepsilon=\rightarrow \quad \rightarrow \quad(r-\varepsilon)(r+1)=0<\begin{array}{l}
z_{1}=e^{\varepsilon t} \\
z_{4}=e^{-t}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ب) } y^{\prime \prime}-{ }^{r} y^{\prime}-\varepsilon^{\prime} y=r \sin t \\
& Y(t)=A \sin t+B \cos t \rightarrow Y^{\prime}(t)=A \cos t-B \sin t \rightarrow Y_{(t)}^{\prime \prime}=-A \sin t \cdot B \cos t \\
& \Rightarrow-A \sin t \cdot B \cos t-r A \cos t+r B \sin t-\varepsilon A \sin t-\{B \cos t=(r B-O A) \sin t \\
& +(-\Gamma A, O B) \cos t=r \sin t \Rightarrow\left\{\begin{array}{l}
\sim B-O A=0 \\
-O B-N A=\cdot
\end{array} \rightarrow A=\frac{-0}{1 V} B=\frac{C}{N}\right. \\
& Y(t)=\frac{-O}{I V} \sin t+\frac{r}{N} \cos t \quad \quad \quad \operatorname{crs} \\
& d^{\prime} y^{\prime \prime}-\varepsilon_{y}^{\prime}-\varepsilon z=0 \rightarrow r^{r}-r \quad \varepsilon=\rightarrow(r-\varepsilon)(r+1)=\left\langle\begin{array}{l}
y_{1}=e^{\varepsilon_{t}} \\
y_{r}=e^{-t}
\end{array}\right. \\
& c^{\prime}, Y_{(t)}=C_{1} e^{2 t}+C_{1} e^{-t}+\left(-\frac{0}{1 V} \sin t+\frac{\pi}{1 N} \cos t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C) } x^{\prime}-{ }^{r} y^{\prime}-\delta y=\delta t^{r}-1 \\
& Y(t)=A t^{\prime}+b t+c^{a_{0}} \rightarrow Y^{\prime}(t)=r a_{1} t+a_{r} \rightarrow Y^{\prime \prime}(t)=r a_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{v^{r}, t}{r} r_{1}-\xi_{1} t-r a_{r}-\varepsilon a_{1} t^{r}-\varepsilon a_{r} t-\varepsilon a_{r}=\varepsilon t^{r}-1 \\
& \rightarrow \\
& \rightarrow-\varepsilon a_{1} t^{r}+\left(-4 a_{1}-\varepsilon a_{r}\right) t+\left(r a_{1}-r a_{r}-\varepsilon a_{r}\right)=\varepsilon t^{r}-1
\end{aligned}
$$

$$
\left\{\begin{array}{l}
-\varepsilon a_{1}=\varepsilon \rightarrow a_{1}=-1 \\
\left.-4 a_{1}-\varepsilon a_{r}=\rightarrow a_{r}=\frac{r}{r} \right\rvert\, \\
r a_{1}-r a_{r}-f a_{r}=-1 \rightarrow a_{r}=\frac{-11}{n}
\end{array}\right.
$$

$$
Y(t)=-t^{r}+\frac{r}{r} t^{2}-\frac{11}{1} \quad \cos \cos ^{2} \sin t^{2}
$$

$$
Y_{0}(t)=c_{1} e^{\varepsilon t}+c_{r} e^{-t}+\left(-t^{r}+\frac{r}{r} t-\frac{11}{\Lambda}\right)
$$

$$
C-\quad y^{\prime \prime}+p(t) y^{\prime}+q(t)=g(t)
$$

$$
z^{\prime \prime}-r^{\prime} y^{\prime}-\varepsilon_{y}={\frac{g_{1}^{(t)}}{e^{r t}}+r \sin t}_{g_{v}(t)}^{1 e^{t} \cos r_{t}}
$$

$$
\left\{\begin{array}{l}
y^{\prime \prime}-r_{y}^{\prime}-\varepsilon_{y}=r e^{r t} \Rightarrow Y_{1}=\frac{1}{r} e^{r t} \\
y^{\prime \prime} \cdot r_{y}^{\prime} \cdot \varepsilon y=r \sin t \Rightarrow Y_{r}=-\frac{0}{1 v} \sin t+\frac{v}{1 v} \cos t \\
y^{\prime \prime}-c_{y}^{\prime}-\varepsilon y=-1 e^{t} \cos 1 t \Rightarrow
\end{array}\right.
$$

$$
Y_{\mu}(t)=e^{t}\left(A \sin ^{r} t+B \cos ^{r} t\right)
$$

$$
\begin{aligned}
& Y_{\tau}^{\prime}(t)=e^{t}\left(A \sin r_{t}+B \cos r t\right)+e^{t}(r A \cos r t- \\
& Y_{\tau}^{\prime}(t)=e^{t}((A-r B) \sin r t+(B+r A) \cos r t)
\end{aligned}
$$

$$
Y_{r}^{\prime \prime}(t)=e^{t}((A-r B) \sin r t+(B+r A) \cos r t)+e^{t}((r A-\varepsilon B) \cos r t-(r B, \varepsilon A) \sin r t)^{2}
$$

$$
=e^{t}((A-\Gamma B-\Gamma B-\varepsilon A) \sin r t+(B+r A+r A-\varepsilon B) \cos r t) \Rightarrow
$$

$$
Y_{c}^{\prime \prime}(t)=e^{t}\left((-C A-\Sigma B) \sin ^{r} t+(-C B+\{A) \cos r t)\right.
$$

COM CR

$$
-\delta e^{t}(A \sin r t+B \cos r t)=-\Lambda e^{t^{\prime}} \cos r t
$$

$B=\frac{\varepsilon_{0}}{O r}=\frac{1}{1 r} \int \quad A=\frac{r}{1 r}+\quad Y(t)=Y_{1}+Y_{r}+Y_{0}=\frac{-1}{r} e^{r t}-\frac{O}{1 v} \sin t+\frac{r}{1 v} \cos \theta$
atlas notebook

$$
\begin{aligned}
& \begin{array}{l}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \Longrightarrow g(t)=\sin _{\cos , \beta_{t}}^{\sin } \Rightarrow Y(t)=A e^{\alpha t} \\
Y(t)=A \cos \beta t+B \sin \beta_{t}
\end{array} \\
& \xrightarrow{\text { Date: } Y(t): A, t^{n}+A_{1} t^{n-1} \ldots \ldots, h_{n+1}^{n}}+A_{n} \\
& +e^{t}\left(\frac{t}{1 \pi}-\sin r_{t}+\frac{1}{1 c} \cos r t\right) \\
& c^{t} \cos ^{t} Y(t)=c_{1} e^{\varepsilon_{t}}+c_{1} e^{-t}+Y(t)
\end{aligned}
$$

$$
y^{\prime \prime}+\varepsilon y=r \cos r t
$$

 (

$$
Y(t)=t\left(A \cos r t+B \sin ^{\gamma} t\right)
$$

$$
Y^{\prime}(t)=(-r A \sin r t+r B \cos r t) t+(A \cos r t+B \sin r t)=(-r A t+B) \sin r t+(r B t+A)
$$

$$
Y^{\prime \prime}(t)=-r A \sin r^{r}+r \cos r_{t} \times(-r A t+B)+r B \cos r_{t}-r \sin ^{r} r^{2}(r B t+A)=
$$

$-\left\{A \sin r_{t}+\varepsilon B \cos r t . \varepsilon A t \cos ^{\gamma} t\right.$, $\& B t \sin r_{t}$
(s)
$\stackrel{\&}{\square} \Rightarrow \quad-\varepsilon A \sin r t+\varepsilon B \cos r t-\varepsilon A t \cos r t-\varepsilon B t \sin r t+\varepsilon A t \cos r t+\varepsilon B t \sin ^{r} t={ }^{r}{ }^{r} c_{0}$小,

$$
\rightarrow-\varepsilon A \sin r t+\varepsilon B \cos r t=r \cos r t \Rightarrow \begin{aligned}
& \varepsilon B=r \rightarrow B=\frac{r}{\epsilon}
\end{aligned}
$$

$$
Y(t)=\frac{r}{\gamma} t \sin r
$$

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

$$
t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\ldots+A_{n}\right)
$$

C

$$
t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t}
$$

$$
\begin{aligned}
& t^{s}\left[\left(A_{1} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t} \cos \beta t+\left(B_{0} t^{n}+B_{1} t^{n-1}+\cdots+B_{n}\right) e^{\alpha t} \sin \beta t\right. \\
& \mathcal{L}^{\prime}+{ }^{\alpha} y^{\prime}=r t^{r}+t^{r} e^{-r t}+\sin c_{t}
\end{aligned}
$$

1）$z^{\prime \prime}+c^{c} y=r t^{\varepsilon}$
p）$y^{\prime \prime}+r^{\prime} y^{\prime}=t^{r} e^{-r t}$
r）$y^{\prime \prime}+c^{c} y^{\prime}=\sin c^{c} t$

1）

$$
\begin{aligned}
& Y_{1}(t)={ }^{t}\left(A_{0} t^{\xi}+A_{1} t^{*}+A_{r} t^{*}+A_{\varphi} t+A_{\varepsilon}^{\prime}\right) \\
& Y_{1}^{\prime}(t)=\Delta A_{1} t^{\varepsilon}+\varepsilon A_{1} t^{*}+r A_{1} t^{*}+r A_{c} t+A_{f} \\
& Y_{1}^{\prime \prime}(t)=r_{0} A_{0} t^{*}+r A_{1} t^{r}+4 A_{1} t+r A_{r}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \mid Q A_{0} t^{t}+\left(r A_{0}+r A_{1}\right) t^{r}+\left(1 r A_{1}+4 A_{r}\right) t^{r}+\left(4 A_{r}+4 A_{r}\right) t+\left(r A_{r}+r A_{f}\right)=r
\end{aligned}
$$

$A_{0}=\frac{r}{10} \quad A_{t}=\frac{-r}{9} \quad A_{r}=\frac{1}{r v} \quad A_{r}=\frac{-1}{v} \quad A_{t}=\frac{14}{11}$ atcas notebook $Y_{1}(t)=\frac{r}{10} t^{\sigma}-\frac{r}{a} t^{s}+\frac{1}{r v} t^{r}-\frac{1}{r v} t^{r}+\frac{19}{11} t$

$$
\text { v) } \begin{aligned}
Y_{+}(t)= & \left(A_{1} t^{r}+A_{1} t+A_{r}\right) e^{-r t} \xrightarrow{L_{0} 1} \times t \\
Y_{v}^{\prime}(t)= & \left(r A_{2} t^{r}+r A_{1} t+A_{r}\right) e^{-r t}-r e^{-r t}\left(A_{1} t^{r}+A_{1} t^{r}+A_{r} t\right) \\
Y_{+}(t)= & \left(4 A_{2} t+r A_{+}\right) e^{-r t}-r e^{-r t}\left(r A_{1} t^{r}+r A_{1} t+A_{+}\right)+9 e^{-r t}\left(A_{1} t^{r}+A_{1} t_{+}^{r} A_{1} t\right) \\
& -r e^{-r t}\left(r A_{1} t^{r}+r A_{1} t+A_{r}\right)
\end{aligned}
$$

OLu

$$
\begin{aligned}
& \stackrel{100}{\Rightarrow} e^{-r t}\left(4 A_{0} t+r A_{1}-9 A_{1} t^{r}-4 A_{1} t-8 A_{r}+9 A \cdot t^{r}+9 A_{1} t^{r}+9 A_{r} t-9 A_{0} t^{r}-4 A_{1} t-A_{1}\right) \\
& A_{r}=\frac{-r}{r_{v}} \\
& +e^{-r t}\left(4 A_{2} t^{r}+4 A_{1} t+c A_{r}-9 A_{0} t^{r}-9 A_{1} t^{r}-4 A_{1} t\right)=t^{r} e^{-r t} \Rightarrow A_{0}=-\frac{1}{9} A_{1}=\frac{-1}{9},
\end{aligned}
$$

$$
Y_{r}(t)=\left(-\frac{1}{9} t^{r}-\frac{1}{9} t^{r}-\frac{r}{r v} t\right) e^{-r t}
$$

r)

$$
\begin{aligned}
& Y_{t}(t)=A \cos C_{t}+B \sin C_{t} \\
& Y_{t}^{\prime}=-A \sin C_{t}+C B \cos r_{t} \\
& Y_{t}^{\prime \prime}=-9 A \cos C_{t}-9 B \sin C_{t}
\end{aligned}
$$

$$
\Rightarrow-9 A \cos c_{t}-9 B \sin c_{t}-9 A \sin C_{t}+9 B \cos c_{t}=\sin c_{t} \Rightarrow A=\frac{-1}{1}, B=\frac{-1}{11}
$$

$$
\left.Y_{e}(t)=\frac{-1}{1 n} \cos C_{t}-\frac{1}{1 n} \sin C_{t}\right)
$$

$$
Y_{c}=C_{+}+C_{1} e^{-C_{t}}+Y_{1}+Y_{r}+Y_{2}
$$

Dun

$$
Y(t)=-y_{1}(t) \int \frac{y_{v}(t) \cdot g(t)}{\omega\left(y_{1}, x_{v}\right)} d t+y_{v}(t) \int \frac{x_{1}(t) \cdot g(t)}{\omega\left(y_{1}, y_{v}\right)} d t
$$

-

$$
\begin{aligned}
& \omega\left(y_{1}, y_{r}\right)=\left|\begin{array}{ll}
y_{1} & x_{r} \\
y_{1}^{\prime} & y_{r}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
n & n^{r} \\
1 & e_{n}^{r}
\end{array}\right|=r_{n^{r}-n^{r}=r n^{r}}^{Y(t)=-x} \int \frac{n^{r} r^{x} r_{n^{r}} e^{n}}{r_{n^{r}}}+n^{r} \int \frac{n \times r_{n}^{r} c^{n}}{r_{n}^{r}}=\ldots
\end{aligned}
$$

$$
y^{\prime \prime}+P(t) z^{\prime}+q(t) y=g(t) \quad \therefore \text { (ر) }
$$

$$
Y(t)=-y_{1}(t) \int \frac{x_{v}(t) g(t)}{\omega\left(x_{1}, x_{0}\right)} d t+y_{v}(t) \int \frac{y_{1} v_{0} g(t)}{\omega\left(x_{1}, x_{0}\right)} d t
$$

$$
r^{r}+\varepsilon r+\varepsilon=\Rightarrow(r+r)^{r}=\underbrace{\operatorname{Lin}} r=-r<z_{1}=e^{-r x}
$$

$$
Y(x)=-e^{-r_{n}} \int \frac{x e^{-r_{n}}\left(e^{-r_{n}} \ln x\right)}{e^{-r_{x}}}+x e^{-r_{n}} \int \frac{e^{-r_{n}} e^{-r_{n}} \ln x}{e^{-\varepsilon_{x}}}
$$

$$
\int \ln x d x=x \ln x-x
$$

$$
\int x \ln x d x=x^{\prime} \ln x-x^{\prime}-\int(x \ln x-x) d x \quad \begin{aligned}
& u=x \Rightarrow d u=d x \\
& \quad d v=\ln x d x \Rightarrow x \ln x-x=v
\end{aligned}
$$

$$
\int x \ln x d x=x^{v} \ln x-x^{r}-\int x \ln x d x+\frac{x^{r}}{r} \Rightarrow \quad \int x \ln x d x=x^{r} \ln x-\frac{x}{r} \Rightarrow
$$

$$
\begin{aligned}
& \int x \ln n d x=\frac{x^{r} \ln x-\frac{x^{r}}{r}=\frac{x^{v}}{r}\left(\ln x-\frac{1}{r}\right)}{P(x) y^{\prime \prime}+q(x) y^{\prime}+R(x) y=G(x)}
\end{aligned}
$$

的

$$
\begin{aligned}
& P^{\prime \prime}(x) \cdot-Q^{\prime}(x)+R(x)=. \\
& y^{\prime \prime}+x y^{\prime}+z=\cdots
\end{aligned}
$$

$$
P(x)=1 \rightarrow P^{\prime \prime}(x)=.
$$

$Q(x)=x \rightarrow Q^{\prime}(x)=1 \quad \Rightarrow P^{\prime \prime}(x)-Q^{\prime}(x)+R(x)=0 \quad \quad^{\prime}+\alpha^{\prime}, x$

$$
R(x)=1
$$

$$
\begin{aligned}
& y^{\prime \prime}+x y^{\prime}+z=\left(z^{\prime}+k(x) y\right)^{\prime \prime}=\left(z^{\prime}+x y\right)^{\prime} \\
& y^{\prime \prime}+k^{k^{\prime}(x) y+k n(y)} \Rightarrow k(x)=x \\
& y^{\prime \prime}+x y^{\prime}+y=\Rightarrow\left(y^{\prime}+(x y)\right)^{\prime}=0 \Rightarrow y^{\prime}+x y=c_{1} \Rightarrow e^{x^{\prime} d x}\left(x^{\prime}+x y=c\right)
\end{aligned}
$$

$$
\left.x^{\prime} y^{\prime \prime}+x y^{\prime}-y=\left(x^{\prime} y^{\prime \prime}+k(x) y\right)^{\prime} \Rightarrow \quad \frac{(x+k x) y^{\prime}}{\left(y^{\prime \prime}+\frac{x}{2} y^{\prime}+k(x) y^{\prime}+\frac{k^{\prime}(x) y}{-1} y\right.}=0 \quad \Rightarrow k(x)=-x\right)
$$

$$
\left(x^{\prime} y^{\prime}-x y\right)^{\prime}=\cdot \xrightarrow{\int} x^{\prime} y^{\prime}-x y=c_{1} \xrightarrow{x} \quad y^{\prime}-\frac{1}{n} y=\frac{c_{1}}{n^{r}} \times e^{\frac{1}{x}}
$$

$$
\left(\frac{1}{n} z^{\prime}\right)=\frac{c_{1}}{n^{r}} \Rightarrow \frac{1}{n} z=\frac{c_{1}}{-r_{n}}+c_{r} \Rightarrow z=\frac{c_{1}}{-r_{n}}+c_{r} n
$$

14) $y^{\prime \prime}+{ }^{2} x^{r} y^{\prime}+x y=0$
iv) $x y^{\prime \prime}-\cos x y^{\prime}+\sin x y=1 v_{2}$ is $\operatorname{vrc}^{\prime}$ iva

- $-4 n+x=-0 n \neq \quad \therefore f 1$
$0-\sin x+\sin x=0 \quad-\quad-\quad \omega^{\prime}$

1v) $x y^{\prime \prime}-\cos x y^{\prime}+\sin x y=\left(x y^{\prime}+k(x) y\right)^{\prime}=z^{\prime}+x y^{\prime \prime}+k^{\prime}(x) y+k(x) y^{\prime}$

$$
\begin{aligned}
& \Rightarrow k(x)+1=-\cos x \Rightarrow k(x)=-\cos x-1 \\
& k^{\prime}(x)=\sin x \\
& \left(x y^{\prime}+(-\cos x-1) y\right)^{\prime}=0 \xrightarrow{\int+x} x y^{\prime}+(-\cos x-1) y=\frac{C}{2} \xrightarrow{e^{f-\frac{\cos x-1}{x} d x}}
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{x^{r}}{r}} y^{\prime}+n e^{\frac{n^{r}}{r}} y=e^{\frac{n^{r}}{r}} c_{1} \Rightarrow\left(e^{\frac{r^{r}}{r}} y\right)^{\prime}=e^{\frac{r^{r}}{r}} c_{1} \Rightarrow e^{\frac{\mu}{r}_{r}^{r}} y=\int e^{\frac{n^{r}}{r}} c_{1}+c_{v} \\
& \Rightarrow \not z=c_{1} e^{-\frac{x^{r}}{r}} \int e^{\frac{z^{v}}{r}} d+c_{r} e^{-\frac{x^{r}}{r}} \\
& x^{r} y^{\prime \prime}+x y^{\prime}-z=0 \\
& P(x)=x^{*} \longrightarrow P^{\prime}(x)=r x \longrightarrow P^{\prime \prime}(x)=r \\
& Q(n)=n \rightarrow Q^{\prime}(x)=1 \quad \Rightarrow P(x)-Q(x)+R(x)=r_{-1-1}=C_{1}^{1}+00_{d}=4 \\
& R(2)=-1
\end{aligned}
$$

$i=1, \ldots, x_{i}=e^{r_{i} n} \quad-\quad$,

$$
\begin{aligned}
& y^{\prime \prime \prime \prime}+z^{\prime \prime \prime}-v z^{\prime \prime}-z^{\prime}+5 z=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
r^{\varepsilon}+r^{+}-v r^{+}-r+4 \left\lvert\, \frac{r-1}{r^{\prime}+e r^{+}-0 r-4}\right. \\
r^{\prime}: r^{r}
\end{array} \\
& r^{*}+r^{2}, v r^{*}-r+4=(r-1)\left(r^{2}+r^{*}, 0 r-4\right) \\
& \frac{-r^{\prime}-r^{-}}{\sqrt{r}-v r^{\prime}-r_{+4}^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{0 r^{\prime \prime}-r r^{\prime}}{-0 r^{\prime}-r+4}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
r^{2}+r^{\prime}-\text { or } & 4 \\
r^{\prime+1}+r-9
\end{array} \\
& \text { ortor } \\
& -4 r+4 \\
& \pm 4 r+4
\end{aligned}
$$

$$
\begin{aligned}
& r^{r}+r^{2}-V_{r}^{r}-r+4=0 \Rightarrow(r-1)(r+1)(r-r)(r+r)=a \begin{cases}r=1 & \rightarrow z_{1}=e^{n} \\
r=-1 & \rightarrow y_{v}=e^{-n} \\
r=r & \rightarrow z_{e}=e^{r_{n}} \\
r=-r & \rightarrow Z_{\varepsilon}=e^{-r_{n}}\end{cases} \\
& Z_{c}=C_{1} z_{1}+C_{+} Z_{2}+C_{r} Z_{e}+C_{\varepsilon} Z_{\varepsilon} \rightarrow Z_{c}=C_{r} e^{n} y+C_{r} e^{-n}+C_{r} e^{r_{n}}+C_{\varepsilon} e^{-c_{n}}
\end{aligned}
$$

$$
z^{i v}+x=0
$$

$$
r^{\varepsilon}+1=0 \rightarrow r^{s}=-1=i^{r}
$$

ONI, e: $\sqrt[n]{z^{-\cdots+y}}=\left\lvert\, z^{\sqrt{r^{n}}}\left(\cos \left(\frac{\theta+\tan ^{-1} \frac{y}{n}}{n}\right)+i \sin \left(\frac{\theta+r(k-1) n}{n}\right) \quad k=\ldots, 1, r, \ldots, h-1\right.\right.$

$$
-1=-1+0 i \rightarrow|-1|=\sqrt{(-1)^{r}+0^{x}}=1 \quad \theta=M
$$

$$
\omega_{1}=1\left(\cos \frac{\mu}{r}+i \sin \frac{\mu}{r}\right)=\frac{1}{\sqrt{r}}+\frac{i}{\sqrt{r}}=\frac{1+i}{\sqrt{r}}
$$

$$
\omega_{x}=1\left(\cos \left(\frac{\mu+r \mu}{t}\right)+i \sin \left(\frac{\mu+r_{\mu}}{\epsilon}\right)\right)=\frac{-1}{\sqrt{r}}+\frac{i}{\sqrt{r}}
$$

$$
\left.\omega_{\mu}=1\left(\cos \left(\frac{\mu+\varepsilon \mu}{\varepsilon}\right)+i \sin \left(\frac{\mu+\varepsilon \mu}{\varepsilon}\right)\right)=\frac{-1}{\sqrt{r}}-\frac{i}{\sqrt{r}}\right\} \cos
$$

$$
\omega_{f}=1\left(\cos \left(\frac{\mu+4 \mu}{\varepsilon}\right)+i \sin \left(\frac{\mu+4 \mu}{\varepsilon}\right)\right)=\frac{1}{\sqrt{r}}-\frac{i}{\sqrt{r}}
$$

$$
r_{1, r}=\alpha \pm i \beta \Rightarrow\left\{\begin{array}{l}
z_{1}=e^{\alpha n} \cdot \cos \beta_{n} \\
z_{1}=e^{\alpha x} \cdot \sin \beta_{n}
\end{array}\right.
$$

$$
\left\{\begin{array} { l }
{ z _ { 1 } = e ^ { \frac { n } { \sqrt { x } } } \operatorname { c o s } (\frac { n } { \sqrt { x } }) } \\
{ \mathcal { Z } _ { 1 } = e ^ { \frac { n } { \sqrt { x } } } \operatorname { s i n } (\frac { n } { \sqrt { x } }) }
\end{array} \left\{\begin{array}{l}
y_{2}=e^{-\frac{n}{\sqrt{x}}} \cos \left(\frac{n}{\sqrt{x}}\right) \\
z_{2}=e^{-\frac{n}{\sqrt{x}}} \sin \left(\frac{n}{\sqrt{x}}\right)
\end{array}\right.\right.
$$

ATLAS nOTEBOOK

$$
\begin{aligned}
& y^{\prime \prime}={ }^{\prime \prime} z^{\prime \prime}+y^{\prime} y^{\prime}-z=\varepsilon e^{t} \\
& r^{\prime}-\left\langle r^{\prime}+e r-1=. \rightarrow(r-1)^{\prime}=-\Rightarrow r_{0}\right|\left\{\begin{array}{l}
z_{1}=e^{t} \\
z_{2}=t e^{t} \\
z_{2}=t^{\prime} e^{t}
\end{array} \quad y(t)=A t^{\prime} e^{t}\right. \\
& Y^{\prime}=\left\langle A t^{r} e^{t}+A t^{r} C^{t}=A e^{t}\left(r t^{r}+t^{\nu}\right)\right. \\
& Y^{\prime \prime}=A e^{t}\left(c t^{\prime}+t^{\prime \prime}\right)+A e^{t}\left(4 t+c t^{r}\right)=A e^{t}\left(4 t+4 t^{r}+t^{c}\right) \\
& Y^{\prime \prime \prime}=A e^{t}\left(4 t+4 t^{r}+t^{\prime \prime}\right)+A e^{t}\left(4+1 r t+c t^{r}\right)=A e^{t}\left(t^{r}+9 t^{r}+11 t+4\right)
\end{aligned}
$$

G/

$$
A e^{t}\left(t^{2}+9 t^{r}+11 t+4-c_{t}^{2}-11 t^{r}-11 t+9 t^{\prime}+r t^{r}+t^{2}\right)=\varepsilon e^{t}
$$

$$
\left.\Rightarrow 4 A c^{t}=\varepsilon e^{t} \Rightarrow A=\frac{r}{c}\right\}
$$

$$
Y(t)=\frac{1}{r} t^{r} e^{t} \quad \mathscr{L}_{c}=c_{1} e^{t}+c_{r} t e^{t}+c_{c} t^{r} e^{t}+\frac{r}{r} t^{c} e^{t}
$$

$$
z^{\prime \prime}-\varepsilon_{y}^{\prime}=t+r \cos t+e^{-r t}
$$

$$
\begin{aligned}
& r^{2}-\varepsilon r \Rightarrow\left\{\begin{array}{l}
y_{1}=1 \\
y_{r}=e^{-r t} \\
z_{c}=e^{r t}
\end{array}\right. \\
& z^{z^{\prime \prime}}-\varepsilon y^{\prime}=t \Rightarrow Y(t)=A+B t \xrightarrow{2^{v o l} x^{*} t} Y(t)=A t+B t^{r}
\end{aligned}
$$

$$
z^{\prime \prime}-\varepsilon y^{\prime}=c \cos t \Rightarrow Y(t)=c \cos t+D \sin t
$$

\qquad
ال~ <
(1) $A=\frac{-1}{\Lambda}, B=$.
$\Delta C \cdots, D=-\frac{2}{0}$

$$
\Rightarrow z_{c}=c_{1}+c_{r} e^{-r_{t}}+c_{c} e^{r_{t}}-\frac{1}{\Lambda} t-\frac{r}{\Lambda} e^{-r_{t}} \sin t
$$

(). $E=\frac{1}{n}$
(

$$
W_{m}(s)=\left|\begin{array}{cccc}
y_{1} & \cdot & \cdots & y_{n} \\
y_{1}^{\prime} & 0 & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
y_{1}^{(n-1)} & 1 & & y_{n}^{(n-1)}
\end{array}\right|
$$

$$
\begin{align*}
& Y(t)=\sum_{\chi_{m}} \int \frac{g(s) W_{m}(s)}{W_{(s)}} \tag{Cornser}\\
& W\left(y_{1}, z_{1}, y_{n}\right)\left|\begin{array}{cccc}
y_{1} & y_{1} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{1}^{\prime} & \cdots & y_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
y_{1}^{(n-1)} & y_{1}^{(n-1)} & & y_{n}^{(n-1)}
\end{array}\right|
\end{align*}
$$

Da www.SoftCivil.ir

$$
=e^{t}\left(e^{t} \times \cdot+\varepsilon e^{0}\right)-t e^{t}\left(\ldots x-\ldots\left(-r e^{-t}\right)\right)+e^{-t}\left(\times r e^{t}-\cdots x e^{t}\right)=+\varepsilon e^{t}
$$

$$
\left.w_{1}\left(x_{1} \cdot y_{0}, y_{0}\right)=\left|\begin{array}{ccc}
0 & t e^{t} & e^{-t} \\
0 & (1+t) e^{t} & e^{-t} \\
1 & (r+t) e^{t} & e^{t}
\end{array}\right|=(-1)^{v_{x}} \times\left|\begin{array}{cc}
(1+t) e^{t} & -e^{-t} \\
(r+t) e^{t} & e^{-t}
\end{array}\right|+(-1)^{e} x_{0} \right\rvert\,
$$

$+(-1)^{8}|\quad|=-t-(1+t)=-r t-1$
$w_{N}\left(y_{1} \cdot z_{0} \cdot z_{c}\right)=\left|\begin{array}{ccc}e^{t} & \cdot & e^{-t} \\ e^{t} & \cdot & -e^{-t} \\ e^{t} & 1 & e^{-t}\end{array}\right|=r$
$w_{e}\left(y, y_{\rho}, y_{c}\right)=\left|\begin{array}{ll}0 \\ 1\end{array}\right|=e^{r t}$

$$
\begin{aligned}
& Y(t)=z_{1} \int \frac{(-1-r t) g(t)}{\varepsilon e^{t}} d t+Z_{t} \int \frac{r g(t)}{\varepsilon_{c} c^{t}}+Z_{c} \int \frac{e^{r t} g(t)}{\varepsilon_{e^{t}}} \\
& \left.Z_{c}=c_{1} e^{t}+c_{r} t e^{t}+c_{c} c^{-t}+Y(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \omega\left(x_{1} \rightarrow x_{0}+y_{e}\right)=\left|\begin{array}{ccc}
e^{t} & t e^{t} & e^{-t} \\
e^{t} & (1+t) e^{t} & e^{-t} \\
e^{t} & (r+t) e^{t} & e^{t}
\end{array}\right|=\left|\begin{array}{ccc}
e^{t} & t e^{t} & e^{-t} \\
0 & e^{t} & -r e^{-t t} \\
0 & r e^{t} & .
\end{array}\right|=
\end{aligned}
$$

"

$$
\sum_{n=1}^{\infty} \underbrace{(-1)^{n} n}_{a_{n}} n(n-r)^{n}
$$

$$
h-\left|\frac{(-1)^{n+1}(n+1)}{(-1)^{n} n}\right|=1 \quad \text { eun }^{1}{ }^{\prime} v_{0}
$$

$$
\begin{aligned}
& \text { (} 1<n(r) \cdot \text { - } \\
& (n>e, n<1) \cdot \underbrace{}_{6} / 6 \quad|n \cdot r|<\frac{1}{1}
\end{aligned}
$$

$$
n=1 \rightarrow \sum_{n=1}^{\infty}(-1)^{n} \cdot n(1-r)^{n}=\sum_{n=1}^{\infty} n
$$

$$
n=c \rightarrow \sum_{0}^{\infty}(-1)^{n} \cdot n(c-r)^{n}=\sum_{n=0}^{\infty}(-1)^{n} n \rightarrow(1)
$$

$f(a) \quad f(n)=\sum_{n=9}^{\infty} \frac{f^{(n)}(n .)}{n!}\left(n-n_{0}\right)^{n} \quad$ on
$f^{\prime}(a)$
$f^{\prime}(x)$

$$
f(n)=f\left(n_{1}\right)+f^{\prime}\left(n_{0}\right)\left(n-n_{1}\right)+f^{\prime}\left(n_{1}\right) \frac{\left(n-n_{2}\right)^{\prime}}{x^{\prime}}+\cdots
$$

 C.
*P $P(x) \frac{d^{r} y}{d x^{r}}+Q(x) \frac{d y}{d x}+R(x) y=$.

درهor

$$
\begin{aligned}
& y=a_{0}+a_{1}\left(n-n_{1}\right)+\cdots+a_{n}\left(n-n_{0}\right)^{n}+\cdots \\
& \vdots \\
& y=\sum_{n=1}^{\infty} a_{n}\left(n-n_{0}\right)^{n}
\end{aligned}
$$

$$
y^{\prime \prime}+y=\cdot \quad(-\infty(n<+\infty) \quad \text { locercuser }
$$

NubL $=\mathbb{R}$
هs

PapCO

$$
\begin{aligned}
& \mathcal{L}=\sum_{n=1}^{\infty} a_{n}(n-1)^{n}=\sum_{n=1}^{\infty} a_{n} n^{n}=a_{0}+a_{1} n+a_{n} n^{n}+- \\
& y^{\prime}=a_{1}+r a_{1} n+r a_{c} n^{\prime}+\ldots \rightarrow y^{\prime}=\sum_{n=1}^{\infty} n a_{n}(n)^{n-1} \\
& y^{\prime \prime}=4 a_{r}+4 a_{1} n \quad \rightarrow y^{\prime \prime}=\sum_{n=1}^{\infty} n(n-1) a_{n} n^{n-r} \\
& z^{\prime \prime}+y=0 \xrightarrow{0 / \Delta, \mu_{0}^{\prime \prime}} \sum_{n=1}^{\infty} n^{n}(n-1) a_{n} n^{n-r}+\sum_{n=0}^{\infty} a_{n}(n-0)^{n}=\cdot \rightarrow \\
& \sum_{n=1}^{\infty}(n+r)(n+1) q_{n+r} n^{n}+\sum_{n=1}^{\infty} a_{n}(n)^{n}=0 \rightarrow \sum_{n=0}^{\infty}\left((n+1)(n+r) a_{n+r}+a_{n}\right) n^{n}=0 \\
& (n+1)(n+r) a_{n+1}+a_{n}=\cdot \Rightarrow a_{n+r}=-\frac{a_{n}}{(n+1)(n+r)} \quad n \geqslant 0 .
\end{aligned}
$$

$$
\begin{aligned}
& a_{i k}^{n=1 k}=(-1)^{k} \frac{a_{1}}{(र k)!} \\
& a_{1}, a_{c}=-\frac{a_{1}}{r_{x} c}, a_{a}=\frac{-a_{r}}{\varepsilon_{y} 0}=-\frac{-a_{1}}{0 \varepsilon_{x} c_{x} r}=\frac{a_{1}}{0!} \\
& a_{v}=\frac{-a_{1}}{v 1} \quad \Rightarrow a_{i k+1}=(-1)^{k} \frac{a_{1}}{(k k+1)!}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\cdots+\frac{(-1)^{k}}{(k)!} n^{k}+\cdots\right)+a_{1}\left(x-\frac{1}{2!} n^{k}+\cdots+\frac{(-1)^{k} n^{k k+1}}{(k k+1)}\right)=a_{\cos } \cos +a_{1} \sin x \\
& \left\{\begin{array}{l}
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{r k+1}}{(r k+1)!} \\
\cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{r k}}{r k!}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { Year. Month. } \quad \text { Datc. } \\
y^{\prime \prime}-n \mathcal{Z}=0 \quad(-\infty<2<+\infty)
\end{array} \\
& \left(\mathcal{G} \leqslant \operatorname{con}_{i}: \mathbb{R} \Rightarrow n_{0}=\Rightarrow z=\sum_{n=1}^{\infty} a_{n}\left(n-\dot{p}_{0}\right)^{n}\right. \\
& z=\sum_{n=1}^{\infty} a_{n} x^{n} \rightarrow y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \rightarrow z^{\prime \prime}=\sum_{n=1}^{\infty} n(n-1) a_{n} x^{n-r} \\
& \sum_{n=1}^{\infty} n(n-1) a_{n} n^{n-1}-n \sum_{n=1}^{\infty} a_{n} n^{n}=\sum_{n=1}^{\infty} n(n-1) a_{n} n^{n-r}-\sum_{n=0}^{\infty} a_{n} n^{n+1} \xrightarrow{\text { oncon } c^{2}} \rightarrow \\
& \sum_{n+1}^{\infty}(n+r)(n+1) a_{n+1} n^{n}-\sum_{n=1}^{\infty} a_{n-1} n^{n}=0 \rightarrow r_{x} \mid \times a_{p}+\sum_{n=1}^{\infty}(n+r)(n+1) a_{n+1} r^{n}- \\
& \sum_{n=1}^{\infty} a_{n-1} x^{n}=0 \Rightarrow r a_{x}+\sum_{n=1}^{\infty}\left((n+r)(n+1) a_{n+1}-a_{n-1}\right) x^{n}=0 \Rightarrow \\
& \left\{a_{n}=0, \quad(n+1)(n+1) a_{n+1}-a_{n-1}=0 \quad \Rightarrow a_{n+1}=\frac{a_{n-1}}{(n+1)(n+r)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{e k}=\frac{a_{0}}{(c k)(c k-1) \times((c k-1))(c(k-1)-1) \times c_{1}^{2} \times x^{c} \times x^{v}}
\end{aligned}
$$

$$
a_{e k-1}=\frac{a_{1}}{(c k+1)(c k) \times(c(k-1)+1) \times(\ldots \times \varepsilon \times r}
$$

L, che z: $a_{0}=0, a_{0}=, a_{1}=\ldots, \ldots$

$$
a_{k_{k+r}}=0
$$

subjece:

$$
\begin{aligned}
& y=\sum_{n=1}^{\infty} a_{n} x^{n}=\left(a_{0}+a_{n} x^{k}+a_{6} n^{4}+\cdots+a_{k} x^{e k}+\cdots\right)+\left(a_{1} n+a_{k} x^{\varepsilon}+a_{v} x^{2}+\cdots+a_{k-1)} x^{n+1}+\cdots\right. \\
& +\left(a_{1} x^{r}+a_{0} x^{0}+a_{1} x^{1}+\cdots+a_{c k+r} x^{<k+r}+\cdots\right)=2 \\
& \varepsilon=a_{0}\left(1+\frac{1}{r \times r}+\cdots+\frac{1}{r k(c k-1) \times \cdots \times c_{x} x^{r}} n^{2 k}+\cdots+a_{1}\left(n+\frac{1}{c_{x} \varepsilon^{2}} n^{2}+\cdots+\frac{1}{(c k+1)^{2} k_{x}}+\right.\right. \\
& =a \cdot y_{1}+a_{1} z_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{L}=\sum_{n=1}^{\infty} a_{n}(n-1)^{n} \rightarrow \mathcal{Z}^{\prime}=\sum_{n=1}^{\infty} n a_{n}(n-1)^{n-1} \rightarrow \mathcal{Z}^{\prime \prime}=\sum_{n=1}^{\infty} n(n-1)(n-1)^{n-r} \\
& \sum_{n=1}^{\infty} n(n-1)(n-1)^{n-r}-\sum_{n=1}^{\infty} a_{n}(n-1)^{n}=0 \sum_{n=r}^{\infty} n(n-1)(n-1)^{n-r}-(n-1) \sum_{n=1}^{\infty} a_{n}(n-1)^{n}+\sum_{n=1}^{\infty} a_{n}(n-1 \\
& \rightarrow \sum_{n=1}^{\infty} n(n-1)(n-1)^{n-r}-\sum_{n=1}^{\infty} a_{n}(n-1)^{n+1}-\sum_{n=0}^{\infty} a_{n}(n-1)^{n}=\cdot \\
& \sum_{n=1}^{\infty}(n+r)(n+1) a_{n+r}(n-1)^{n}-\sum_{n=1}^{\infty} a_{n-1}(n-1)^{n}-\sum_{n=1}^{\infty} a_{n}(n-1)^{n}=0 \\
& (\& \times 1) a_{1}-a_{0}+\sum_{n=1}^{\infty}\left((n+r)(n+1) a_{n+r}-a_{n-1}-a_{n}\right)(n-1)^{n}=\cdot
\end{aligned}
$$

$r a_{1}-a_{0}=0 \Rightarrow a_{1}=\frac{a_{0}}{r} \quad(n+r)(n+1) a_{n+r}=a_{n}+a_{n-1} \quad n \geqslant 1$
$a_{n+1}=\frac{a_{n}+a_{n-1}}{(n+r)(n+1)} \quad n \geqslant 1$
$a_{5}=\frac{a_{1}+a_{2}}{1 \times r}=\frac{a_{1}}{4}+\frac{a_{0}}{4}$

$$
\begin{aligned}
& \text { siblyent. }
\end{aligned}
$$

$$
\begin{aligned}
& z=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=a_{-1} a_{1}(x-1)+a_{p}(x-1)^{r}+a_{e}(n-1)^{r}+a_{\varepsilon}(n-1)^{\varepsilon}+a_{0}(x-1)^{0}+\cdots= \\
& \left(a_{0}+\frac{a_{0}}{r}(n-1)^{r}+\frac{a_{0}}{r}(n-1)^{r}+\frac{a_{0}}{c \varepsilon}(n-1)^{\varepsilon}+\cdots f+-\left(a_{1}(n-1)+\frac{a_{1}}{\varphi}(n-1)^{r}+\frac{a_{1}}{1 r}(n-1)^{\varepsilon}+\cdots\right)\right. \\
& y=a_{0}\left(1+\frac{(n-1)^{r}}{r}+\frac{(n-1)^{r}}{4}+\frac{(n-1)^{\varepsilon}}{r \varepsilon}+\cdots\right)+a_{1}\left((n-1)+\frac{(n-1)^{r}}{4}+\frac{(n-1)^{\varepsilon}}{1 r}+\cdots\right)^{a \cdot y_{1}+a}= \\
& y^{\prime \prime}+n y^{\prime}-z=0 \quad x_{0}=1 \\
& z=\sum_{n=1}^{\infty} a_{n}(n-1)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1+n^{v}\right) y^{\prime \prime}-\varepsilon n y^{\prime}+4 y=0 \quad x_{0}=1 \\
& Z=\sum_{n=1}^{\infty} a_{n}(n-1)^{n} \rightarrow z^{\prime} \cdot \sum_{n=1}^{\infty} n a_{n}(n-1)^{n-1} \rightarrow y^{\prime} \cdot \sum_{n=1}^{\infty} n(n-1) a_{n}(n-1)^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\left(1+n^{\prime}\right)}{\Longrightarrow}\left(\sum_{n=r}^{\infty} n(n-1) a_{n}(n-1)^{n-1}\right)-\varepsilon_{n}\left(\sum_{n=1}^{\infty} n a_{n}(n-1)^{n-1}\right)+4\left(\sum_{n=1}^{\infty} a_{n}(n-1)^{n}\right) \\
& r \sum_{n=r}^{\infty} n(n-1) a_{n}(n-1)^{n-r}+(n+1) \sum_{n=r}^{\infty} a_{n} n(n-1)(n-1)^{n}-\varepsilon \sum_{n=1}^{\infty} n a_{n}(n-1)^{n}- \\
& \varepsilon \sum_{n=1}^{\infty} n a_{n}(n-1)^{n-1}+4 \sum_{n=1}^{\infty} a_{n}(n-1)^{n}=\cdot \\
& r \sum_{n=r}^{\infty} n(n-1) a_{n}(n-1)^{n-1}+\sum_{n=1}^{\infty} a_{n} n(n-1)(n-1)^{n}+r \sum_{n=r}^{\infty} a_{n} n(n-1)(n-1)^{n-1} \\
& -\& \sum_{n=1}^{\infty} n a_{n}(n-1)^{n}-\varepsilon \sum_{n=1}^{\infty} n a_{n}(n-1)^{n-1}+4 \sum_{n=1}^{\infty} a_{n}(n-1)^{n}=\cdot \\
& \& \sum_{n=1}^{\infty}(n+r)(n+1) a_{n+r} r(n-1)^{n}+\sum_{n=r}^{\infty} a_{n} n(n-1)(n-1)^{n}+r \sum_{n=1}^{\infty} a_{n-1}(n+1) n(n-1)^{n} \\
& -\& \sum_{n=1}^{\infty} n a_{n}(n-1)^{n}-\varepsilon \sum_{n=1}^{\infty}(n+1) a_{n+1}(n-1)^{n}+4 \sum_{n=0}^{\infty} a_{n}(n-1)^{n}=.
\end{aligned}
$$

$$
\begin{aligned}
& \left(f a_{n}+1 r a_{r}(n-1)\right)+\left(\varepsilon a_{r}(n-1)\right)+\left(-\varepsilon a_{1}(n-1)\right)+\left(-\varepsilon a_{1}-1 a_{p}(n-1)\right)+ \\
& \left(4 a_{0}+4 a_{1}(n-1)\right)+\sum_{n=r}^{\infty}\left(r a_{n+r}(n+1)(n+r)+n(n-1) a_{n}+r n(n+1) a_{n+1}-\right.
\end{aligned}
$$

$$
\left.\xi_{n} a_{n}-\varepsilon(n+1) a_{n+1}+9 a_{n}\right)(n-1)^{n}=0
$$

$$
\varepsilon a_{1}-\varepsilon a_{1}+4 a_{0}=\cdot \Rightarrow a_{1}=a_{1}-\frac{5}{r} a_{.}
$$

$$
\begin{aligned}
& 1 r a_{r}+r a_{r}-\varepsilon a_{1}-1 a_{r}+\varepsilon a_{1}=0 \Rightarrow a_{r}=\frac{\varepsilon a_{r}-r a_{1}}{r r}=\frac{a_{1}}{r}-\frac{a_{0}}{r}-\frac{a_{1}}{4}=\frac{a_{1}}{4}-\frac{a_{1}}{r} \\
& \left.r a_{n+1}(n+1)(n+r)+n(n-1) a_{n}+r_{n}(n+1) a_{n+1}-r_{n+1}\right) a_{n+1}+9 a_{n}=0 \\
& a_{n+r}=\frac{-\left(n^{r}-0 n+r\right) a_{n}-\left(r n^{r}-r n-\varepsilon\right) a_{n+1}}{r(n+1)(n+r)} \quad n \geqslant r \\
& n=r \Rightarrow a_{t}=\frac{-c a_{p x}}{4 x \delta}=0 \\
& n=r \Rightarrow a_{0}=\frac{-r}{1 .} a_{c}=-\frac{a_{8}}{\delta}=0 \\
& n=\varepsilon \Rightarrow a_{4}=0 \\
& y=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=a_{0}+a_{1}(n-1)+\left(a_{1}-\frac{r}{r} a_{0}\right)(x-1)^{r}+\left(\frac{a_{1}}{4}-\frac{a_{0}}{r}\right)(n-1)^{r}= \\
& a_{0}\left[1-\frac{r}{r}(x-1)^{r}-\frac{1}{r}(x-1)^{r}\right]+a_{1}\left((n-1)+(n-1)^{r}+\frac{1}{4}(n-1)^{2}\right)=a_{-} y_{1}+a_{1} y_{1}
\end{aligned}
$$

.

$$
\left(1+x^{2}\right)^{-1}=\frac{1}{1+x^{r}} \quad 1+x^{2}=\rightarrow x^{2}=-1=i^{r} \rightarrow x=i
$$

$(n=-, n-i) \xrightarrow{\xrightarrow{n 6}} \sqrt{(\cdots)^{x}+(\cdots)^{x}}=1$

$$
(n=, n=-i) \rightarrow \sqrt{ }=1
$$

PaPCO

$$
\left(1-x^{\prime}\right) \sum_{k=1}^{\infty} n(k-1) a_{k} x^{k-r}-p_{n} \sum_{k=1}^{\infty} n a k x^{k-1}+n(n+1) \sum_{k=0}^{\infty} a_{n} n^{k}=
$$

PaPCO_{4}

$$
\begin{aligned}
& { }^{n}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{1}+x^{2}=0 \rightarrow x^{*}=-1 \rightarrow x= \pm i \\
& |x-n|=|a|=\sqrt{x^{2}+\left.\right|^{2}}=1 \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \left(1+x^{*}\right)=0 \rightarrow x= \pm i
\end{aligned}
$$

$$
\begin{aligned}
& |x \cdot n \cdot|=\left|i+\frac{1}{r}\right|=\sqrt{\left(\frac{1}{x}\right)^{2}+1^{2}}=\frac{\sqrt{0}}{r} \\
& |x-x|=\left|-c+\frac{1}{7}\right|=\sqrt{\left(\frac{1}{7}\right)^{2}+r^{2}}=\frac{\sqrt{0}}{r} \\
& \sqrt{\frac{\sqrt{d}}{4}}=0 \text { بر }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=r}^{\infty} k(k-1) a_{k} n^{k-r}-\sum_{k=r}^{\infty} k(k-1) a_{k} n^{k}-\sum_{k=1}^{\infty} r k a_{k} n^{k}+\sum_{k=1}^{\infty} n(n+1) a_{k} n^{k}=0 \\
& \sum_{k=0}^{\infty}(k+r)(k+1) a_{k+r} n^{k}-\sum_{k=r}^{\infty} k(k-1) a_{k} n^{k} \\
& r \times a_{r}+r \times r a_{r} n-r a_{1} n+n(n+1) a_{0}+n(n+1) a_{1} n+\sum_{k=r}^{\infty}\left((k+r)(k+1) a_{k+r}-k(k-1) a_{k}\right. \\
& \left.-r k a_{k}+n(n+1) a_{k}\right) n^{k}=.
\end{aligned}
$$

$$
r a_{r}+n(n+1) a_{0}=0 \rightarrow a_{r}=\frac{-n(n+1)}{r} a_{0}
$$

$$
\left(4 a_{p}-r a_{1}+n(n+1) a_{1}\right) \rightarrow a_{c}=\frac{-(n+r)(n-1)}{4} a_{1}
$$

$$
(k+r)(k+1) a_{k+p}-k(k-1) a_{k}-r k a_{k}+n(n+1) a_{k}=\cdots
$$

$$
a_{k+r}=\frac{-k^{1}-k+n^{r}+n}{(k+2)(k+1)} a_{k}=\frac{(n-k)[(n+k)+1]}{(k+1)(k+1)} a_{k}, k \geqslant r
$$

$$
a_{f}=\frac{(n-r)(n+\varepsilon)}{\varepsilon \times r} a_{r}=-\frac{(n-r) n(n+1)(n+r)}{\varepsilon_{\times r} \times r}
$$

$$
a_{0}=\frac{(n-r)(n+\varepsilon)}{\sigma \times f} a_{c}=-\frac{(n-r)(n-1)(n+r)(n+\varepsilon)}{0 \times \varepsilon \times r \times r} \quad a_{4}=? \quad a_{r}=?
$$

$$
y=\sum_{n=1}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{r}+\cdots=a_{0}\left(1-\frac{n(n+1)}{r!} x^{r}-\frac{(n-r) n(n+1)(n+r)_{2}^{r}}{\varepsilon_{1}}+\cdots\right)
$$

$$
+a_{i}\left(n-\frac{(n+r)(n-1)}{\kappa!} n^{r}-\frac{(n-r)(n-1)(n+r)(n+\varepsilon)}{\sigma!} x^{0}+\ldots\right)
$$

($P(x) y^{*}+Q(x) y^{\prime}+R\left(-3 y=0\right.$, $q=\frac{R}{P}, P=\frac{Q}{R}$)
.

$P(4) y^{\prime \prime}+{ }^{R}(a) y^{\prime}, R_{(1) y} y=$. いに,

$$
\left(1-x^{\prime}\right) y^{\prime}-r_{n} y^{\prime}+\alpha(\alpha+1) y=0
$$ تَ CHBC $1-n^{*}=\cdot \rightarrow n= \pm 1$

 (

$$
\therefore \therefore p(n)-p / \int_{2 \rightarrow \cdots} x^{r} q^{(n)}=q .
$$

$:$ ün $l \quad F(r)=r(r-1)+p_{r} r+q=0$, Noter
(1) درصرנ

$$
y_{1}=|x|^{r_{1}}\left(1+\sum_{n=1}^{\infty} a_{n}\left(r_{1}\right) x^{n}\right)
$$

$$
z_{r} \cdot|n|^{r_{r}}\left(1+\sum_{n=1}^{\infty} a_{n}\left(r_{r}\right) n^{n}\right)
$$

(1)

$$
\mathscr{L}_{n}(n)=y_{1} \ln |x|+|n|^{n} \sum_{n=1}^{\infty} b_{n}\left(n_{1}\right) n^{n}
$$

$$
\begin{equation*}
y_{n}(n)=a_{2}(n) \ln |n|+|n|^{n_{n}}\left(1+\sum_{n=1}^{\infty} c_{n}\left(r_{n}\right)_{x^{n}}\right) \tag{i1}
\end{equation*}
$$

10 (a)

$$
F(n+r) a_{n}+\sum_{k=0}^{n-1}\left(p_{n-k}(r+k)+q_{n-k}\right)=\cdot, n \geqslant 1
$$

PapCO

$$
\begin{aligned}
& \mathcal{L}_{1}=|n|^{\prime}\left(1+\sum_{n=1}^{\infty} \frac{(-1)}{\left.(p n+1)\left(r_{n-1}\right), \ldots, \operatorname{cot+n}\right)} \times n^{n}\right) \\
& \text { - } r_{p}=\frac{1}{r} \rightarrow a_{n}=\frac{-a_{n-1}}{r_{n \times(}\left(n-\frac{1}{r}\right)}=\frac{-a_{n-1}}{n\left(p_{n-1}\right.} \\
& a_{1}=\frac{-a_{1}}{\mid+1} \\
& a_{1}=\frac{-a_{1}}{\sqrt{\times e}}=\frac{a_{0}}{1 \times \tau} \\
& a_{c}=-\frac{a_{r}}{c>\Delta}-\frac{-a_{1}}{r \times c_{x} \theta_{x}+c} \\
& a_{f}=-\frac{a_{e}}{\varepsilon \times V}=\frac{a_{0}}{r_{x} \times \varepsilon_{x} \varepsilon_{x}+\sigma_{x} r} \\
& a_{n}=(-1)^{n} \frac{a}{n!(+n-1)(r+-r) \times \cdots r^{r}}= \\
& Z_{v}=|2|^{\frac{1}{r}}\left(1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!(1 n-1) x \cdots r^{n}} n^{n}\right)
\end{aligned}
$$

Con ${ }^{\circ}$

(s>c)

$$
\begin{aligned}
& \left.L\left(e^{(c t}\right)=\int_{0}^{\infty} e^{-s t} \times e^{c t} d t=\int_{0}^{\infty} e^{(c-s) t} d t=\frac{e^{(c-s) t}}{(c-s)}\right]_{1}^{\infty}=\frac{0}{c-s}-\frac{1}{c-s}=\frac{1}{s_{-c}} \\
& L\left(e^{c t}\right)=\frac{1}{s-c}
\end{aligned}
$$

PAPCO

(r) (

, $\int_{0}^{\infty} f(t) d t$ in $\int_{j} \int_{j}, \int_{m}^{\infty} g(t) d t$

PAPCO \qquad

1) $\mathrm{f}\left(\mathrm{e}=1 \longrightarrow \quad \mathrm{H}=k e^{\text {at }} \quad t \geqslant M^{\circ} \quad s>a=\right.$
i) $f(t)$. .int $\longrightarrow|\sin t| \leqslant e^{-t} \quad t \geqslant 0 \quad S>0$
e) $f(t) \cdot e^{c t} \longrightarrow \quad t\left|e^{c t}\right| \leqslant 1 \times e^{c t} \quad 5 x$
 $=\frac{5}{5^{2}+b^{2}}$

2) $l(\sin a t)=\int_{0}^{\infty} e^{-x t} \cdot \sin a t d t=\frac{a}{a^{t}+s^{5}}$

$$
u_{=}=s^{s t} \rightarrow d w=s e^{* x}
$$

$$
\left.\int_{0}^{\infty} e^{-\lambda e} \sin a t d t=\frac{}{\Delta v_{1}+\operatorname{sit} d t \rightarrow r \cdot \frac{\cos a t}{a}}=e^{-s t} \times \frac{-\cos a t}{r}\right]_{0}^{\infty}-\int \frac{-\cos a t}{a}\left(-s e^{-s t}\right) d t
$$

$$
=-\left(-\frac{1}{a}\right)-\frac{s}{a} \int_{0}^{\infty} e^{-\pi} \cos a t d t=\frac{1}{a}-\frac{s}{a}\left(\frac{e^{-s t} \times \sin a t}{a}\right]_{0}^{\infty}+\frac{s}{a} \int_{0}^{\infty} e^{-s t} \sin a t d t
$$

$$
F(s)=\frac{1}{a}-\frac{s}{a} x-\frac{s}{a} F(s) \rightarrow F(s)=\frac{\frac{1}{a}}{\frac{a b s^{0}}{a^{2}}}=\frac{a}{a^{2}+s^{0}}
$$

$$
\begin{aligned}
& \text { T) Co,hbt }=\frac{e^{b t} \cdot e^{-b t}}{t} s>b \rightarrow L(\cosh b t)=\int . e^{-\lambda t}\left(\frac{e^{b t}+e^{-b t}}{t}\right) d t= \\
& \int^{-(s-b) t} \cdot e^{-(s+b) t} d t=\frac{1}{r}\left[\frac{e^{(-b) t}}{-(s-b)}+\frac{e^{-(s-b) t}}{-(s+b)}\right]_{0}^{\infty}=\frac{1}{r}\left[\left(--\frac{1}{-(s-b)}\right)+\left(\cdot-\frac{1}{-(s-b)}\right)\right. \\
& P_{A} P C O=\frac{1}{1}\left(\frac{1}{a-b} \cdot \frac{1}{3+b}\right)=\frac{1}{\frac{15}{s}} \frac{s}{s^{\prime}-6}=\frac{s}{s^{x}-b^{*}} .
\end{aligned}
$$

$$
\begin{aligned}
& L\left(c_{1} f_{1}+C_{r} f_{r}\right)=\int_{0}^{\infty} e^{-s t}\left(c_{1} f_{1}(r)+C_{r} f_{r}^{(r)}\right) d t=c_{1} \int_{0}^{\infty} e^{-s t} f_{1}(t)+c_{r} \int_{0}^{\infty} e^{-s t} f_{r}(t)= \\
& C_{1} L\left(f_{1}(t)\right)_{+} C_{r} L\left(f_{r}(t)\right)
\end{aligned}
$$

fi. $l(r \sin t)=r \frac{1}{1+r^{r}}$

$$
\begin{aligned}
& \mu(p)=\int_{0}^{\infty} e^{-x} x^{p-1} d x \quad(p>0) \\
& \left.\mu(1)=\int_{0}^{\infty} e^{-x} x^{0} d x=\frac{e^{x}}{-1}\right]_{0}^{\infty}=0-\left(\frac{1}{-1}\right)=1 \\
& \left.\mu(p)=\int_{0}^{\infty} e^{-x} x^{p-1} d x=e^{-x} \cdot \frac{x^{p}}{p v=e^{p-1} d x \rightarrow-e^{p}}\right]_{1}^{\infty}+\int_{0}^{\infty} \frac{x^{p}}{p} e^{-x} d x=\frac{\Gamma(p+1)}{p}
\end{aligned}
$$

广

$$
: 4 v_{C H}
$$

$$
\mu(p)=\frac{\mu(p+1)}{p} \Rightarrow \mu(p+1)=P \mu(p)
$$

$$
* \mu(n+1)=n \mu(n)
$$

$$
* \mu(\mu)=r \mu(r)=21
$$

$$
\begin{aligned}
& \text { * } \mu(1)=1 \\
& * \mu(t)=\varepsilon_{1} . \\
& A \Gamma(r)=1 \mu(1)=1! \\
& \kappa \mu(n+1)=n! \\
& \sqrt{n} . u \rightarrow n=u^{r} \\
& \Gamma\left(\frac{1}{r}\right)=\int_{0}^{\infty} e^{-x} e^{\frac{1}{r}-1} d x=\int_{1}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x=\int_{0}^{\frac{\partial \pi}{\sqrt{x}},} e^{-u^{r}} \times r d u=r \int_{0}^{\infty} e^{-u} d u
\end{aligned}
$$

Subject.

$$
\begin{aligned}
& \left(\mu^{\tau}\left(\frac{1}{v}\right)\right)^{r}=r \int_{0}^{\infty} e^{-u^{\prime}} d u \times r \int_{0}^{\infty} e^{-\alpha^{\prime}} d v=\xi \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(u^{r}+v^{\prime}\right)} d u d v=\varepsilon \int_{0}^{\infty} \int_{0}^{\frac{\alpha}{r}} e^{-r^{r}} v d \theta d \\
& \left.=\epsilon \times \frac{\mu}{r} \int_{0}^{\infty} e^{-r^{r}} r d \theta d r=-\mu e^{-r^{r}}\right]_{0}^{\infty}=-K(\cdot-1)=\mu \Rightarrow \Gamma\left(\frac{1}{r}\right)=\sqrt{\pi} \\
& \text { * } \Gamma(n+1)=n!
\end{aligned}
$$

$$
\begin{aligned}
& \alpha L\left(t^{\alpha}\right)=\int_{0}^{\infty} e^{-s t} t^{\alpha} d t=\int_{0}^{\infty} e^{-x}\left(\frac{x}{s}\right)^{\alpha} \frac{d x}{s}=\int_{0}^{\infty} e^{-x} x^{\alpha} \frac{d x}{s^{\alpha+1}}=\frac{1}{s^{\alpha+1}} \int_{0}^{\infty} e^{-x} x^{\alpha} d x \\
& \Rightarrow L\left(t^{\alpha}\right)=\frac{\Gamma(\alpha+1)}{s^{\alpha+1}} \\
& +l\left(t^{\prime}\right)=\frac{\mu(r)}{s^{2}}=\frac{1}{s^{r}} \\
& A L\left(t^{n}\right)=\frac{\mu(n+1)}{s^{n+1}}=\frac{n!}{s^{n+1}}
\end{aligned}
$$

 . $\left(f^{\prime}(t)\right) \cdot s>a$ (G'j) بر?

$$
\begin{aligned}
& L\left(f^{\prime}(t)\right)=S L(f(t))-f(\cdot)
\end{aligned}
$$

$G^{l o c}-t^{n}$, P4PCO

$$
l\left(f^{(n)}(t)\right)=s^{n} l(f(t))-s^{n-1} f(0)-s^{n-1} f^{\prime}(0) \ldots \ldots f^{(n-1)}(0)
$$

"

رل بالّ مهر رارلب
$f(t)$ ،

$$
l^{-1}\left(\frac{1}{s=1}\right)=e^{t} \quad, \quad l^{-1}\left(\frac{1}{s}\right)=e^{-t}=1
$$

مل :

$$
\begin{aligned}
& \left.4\left(y^{\prime \prime}\right)-L\left(y^{\prime}\right)-\text { 坚 }\right)= \\
& \rightarrow\left(s^{\prime}(y)-s y^{(0)}-z^{\prime}(0)\right)-\left(s((y)-y(0))-r^{r}(y)=.\right. \\
& Y(s)\left(s^{+}-s-r\right)+(-s+1)=0 \\
& Y_{(s)}=\frac{s-1}{s^{2}-s-r}=\frac{s-1}{(s-r)(s+1)}=\frac{A}{s_{-}-r}+\frac{B}{s+1} \Rightarrow\left\{\begin{array}{l}
A-\frac{1}{s} \\
B=\frac{r}{r}
\end{array}\right. \\
& Y_{(s)}=\frac{\frac{1}{c}}{s-\lambda}+\frac{\frac{t}{s}}{s+1} \quad c^{-1}\left(Y_{(s)}\right)=y(t)=\frac{1}{e} e^{r t}+\frac{r}{c} e^{-t}
\end{aligned}
$$

Subject :

$$
\begin{aligned}
& y^{\prime \prime}+z=\sin p^{\prime}, y^{\prime}(0)=1, y(\cdot)=r \\
& l\left(z^{\prime \prime}\right)+l(y)=l(\sin r t) \rightarrow\left(s^{r} L(y)-s^{r} \not L^{r}(\cdot)-y^{\prime}(b)\right)+l(y)=\frac{r}{s^{r}+f} \\
& \rightarrow Y(s)\left(s^{r}+1\right)=\frac{r}{s^{r}+t}+r s+1 \rightarrow Y(s)=\frac{r}{\left(s^{r}+\varepsilon\right)\left(s^{r}+1\right)}+\frac{r s}{s^{r}+1}+\frac{1}{s^{r}+1} \Rightarrow \\
& Z(t)=C^{-1}\left(\frac{\alpha}{\left(s^{1}+\varepsilon\right)\left(s^{2}+1\right)}\right)+r \cos t+\sin t \\
& \Rightarrow \frac{r}{\left(s^{r}+\varepsilon\right)\left(s^{r}+1\right)}=\frac{A s+a}{s^{r}+1}+\frac{B s+b}{s^{r}+\varepsilon}=A s^{r}+\varepsilon A s \\
& =\frac{s^{r}(A+B)+s^{2}(a+b)+S(\varepsilon A+B)+\varepsilon a+b}{\left(s^{r}+1\right)\left(s^{r}+\varepsilon\right)}\left\{\begin{array}{l}
A+B=0 \rightarrow A=-B= \\
a+b=0 \\
\varepsilon A+B=0 \rightarrow-O B=0 \rightarrow B=0 \\
\varepsilon a+b=r \rightarrow b=-\frac{r}{c}, a=\frac{r}{r}
\end{array}\right. \\
& L^{-1}\left(\frac{r}{\left(s^{2}+1\right)\left(s^{r}+\varepsilon\right)}\right)=C^{-1}\left(\frac{\frac{r}{r}}{s^{r}+1}-\frac{r}{r} s^{r}+\varepsilon\right)=\frac{r}{c} \sin t-\frac{1}{r} \sin \gamma t \\
& F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \quad \Rightarrow \quad \frac{d F}{d s}(s)=F^{\prime}(s)=\text { ? } \\
& f^{\prime}(s)=\int_{0}^{\infty}-t e^{-s t} \times f(t) d t=l(-t f(t)) \\
& l(-t \sin t)=\left(\frac{1}{s^{r}+1}\right)^{\prime}=\frac{-r s}{\left(s^{r}+1\right)^{r}} \quad l(t \sin t)=\frac{r s}{\left(s^{r}+1\right)^{r}} \\
& F_{(s)}^{(n)}=L\left((-t)^{n} f(t)\right) \\
& \left.L\left((+t)^{2} e^{r t}\right)=? G(s-r)^{-t}\right\} \quad F(s)=l\left(e^{r t}\right)=\frac{1}{s-r} \\
& { }^{9 n} \text { مro.rocrin } \\
& \text { PapCO } \\
& F^{\prime}(s)=-(s-r)^{-r} \rightarrow F^{\prime \prime}(s)=r(s-r)^{-r} \rightarrow F^{\prime \prime \prime}(s)=-4(s-r)^{-f}-\left(\left(1.5 e^{r+f}\right)\right.
\end{aligned}
$$

: Uo
 PAPCO

$$
\begin{aligned}
& \begin{array}{l}
\text { Year. Month. Date. } \\
y^{(0)}=,, y^{\prime}(\cdot)=1, z^{\prime \prime}(0)=\cdots, y^{\prime \prime \prime}(\cdot)=.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.Y(s) \notin s^{k}-1\right)=s^{\prime} \Rightarrow Y(s)=\frac{s^{r}}{s^{k}-1} \\
& \begin{array}{l}
\frac{s^{r}}{s^{r}-1}=\frac{A}{s-1}+\frac{B}{s+1}+\frac{C s+D}{s^{r}+1} \rightarrow \frac{s^{r}}{s^{r}-1}=\frac{A s^{r}+A s^{r}+A s+A+B s^{r}-B s^{r}+B s-B+C s^{r}-C s+D s^{r}-D}{\left(s^{r}-1\right)\left(s^{r}+1\right)} \\
\frac{s^{r}}{s^{r}-1}=\frac{s^{r}(A+B+C)+s^{r}(A-B+C)+s(A+B-D)+A-B-D}{A+B+C=0} \begin{array}{lll}
C=-B+D=1 & D-\frac{1}{1} \\
A+B-C=- & A=-1 \\
A=-\frac{1}{r}
\end{array}
\end{array} \\
& Y(s)=\frac{\frac{1}{\varepsilon}}{s-1}-\frac{\frac{1}{\varepsilon}}{s+1}+\frac{\frac{1}{r}}{s^{r}+1} \quad Z^{(t)}=\frac{1}{\varepsilon} e^{t}-\frac{1}{r} e^{-t}+\frac{1}{r} \sin t \\
& u_{c}(t)=\left\{\begin{array}{lll}
0 & t<c \\
1 & t \geqslant c
\end{array} \xrightarrow[c]{\rightarrow}\right. \\
& \text { (n) (م) } \\
& h(t)=u_{N}(t)-u_{* N}(t) \\
& t \geqslant 0 \\
& 0^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& L\left(u_{c}(t)\right)=\int_{0}^{\infty} e^{-s t} u_{c} d t=\int_{0}^{c} e^{-s t} \tilde{u}_{c}^{\pi}(t) d t+\int_{c}^{\infty} e^{-s t} u_{c}(t) d t=\quad \mathcal{U}^{j} d \mathcal{U}^{l} u \\
& \left.\left.=\int_{c}^{\infty} e^{-s t} u_{c}(-t) d t=\frac{e^{-s t}}{-s}\right]_{c}^{\infty}=0-\frac{e^{-s c}}{-s}=\frac{e^{-s c}}{s}\right] \quad j^{i} \cdot L\left(u_{1}(t)=\frac{e^{-s}}{s}\right.
\end{aligned}
$$

$$
\begin{aligned}
& L\left(e^{a r}\right)=\frac{1}{s-a} \quad l\left(-r e^{a r}\right)=\left(\frac{1}{s-a}\right)^{\prime}=\frac{-1}{(s-a)^{r}} \rightarrow l\left(r e^{a r}\right)=\frac{1}{(s-a)^{r}} \\
& G(s)=\frac{\frac{1}{(s-a)^{r}}}{s}=\frac{1}{s(s-a)^{r}} \\
& g(t)=u_{e}(t) \cdot f(t-c) \text { out } y=g(t)=\left\{\begin{array}{ll}
0 & t<c \\
f(t-c) & t \geqslant c
\end{array} \text { : } 1:\right. \text { at } \\
& g(t)=f(t-c) \times\left\{\begin{array}{ll}
0 & t<c \\
1 & t \geqslant c
\end{array}=f(t-c) u_{c}(t)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.l\left(u_{c}(t) f(t-c)\right)=e^{-c s} F(s)=c^{-c s} l(f(t))\right)
\end{aligned}
$$

$$
\begin{aligned}
& l^{-1}\left(e^{-c s} F_{(s)}\right)=u_{e}(t) f(t-c)
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\sin t+\left\{\begin{array}{l}
0 \quad 1 \leqslant t<\frac{\mu}{f} \\
\cos \left(t+\frac{\mu}{\varepsilon}\right) \quad t \geqslant \frac{\mu}{f}
\end{array} \rightarrow \quad L(f(t))=\frac{1}{1+s^{r}}+e^{-\frac{\mu}{f} s} \times \frac{s}{1+s^{r}}=\frac{1+e^{-\frac{\mu}{e} s}}{1+s^{r}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { PAPCO }
\end{aligned}
$$

$$
\begin{aligned}
& F(s)=\frac{1}{s^{r}}-\frac{e^{-r s}}{s^{r}} \Rightarrow l^{-1}(F(s))=f(t)=t-u_{p}(t)(t-r) \\
& \therefore \text {. ها } \\
& l\left(e^{c t} f(t)\right)=f(s-c) \\
& \text { 3) } a+c \\
& \text {. . Uit } f(\theta)=L^{-1}(f(s)) \cdot 0^{2}()^{2} \\
& e^{c t} f(t)=L^{-1}(f(s-c)) \\
& G(s)=\frac{1}{s^{r}-\varepsilon s+0}=\frac{1}{(s-r)^{r}+1} \quad L^{-1}(G(s))=e^{r t} \times \sin t
\end{aligned}
$$

$$
\begin{aligned}
& f(s)=\frac{c l}{(s-1)^{t}} \quad L^{-1}(f(s))=e^{r t} \times t^{r} \\
& F(s)=\frac{e^{-r s}}{s^{t}+(s-t)} \quad l\left(e^{c t} f(t)\right)=F(s-c), \quad\left(\left(U_{c}(t) f(t-c)\right)=e^{-c s} F(s): d x\right. \\
& G(0)=\frac{1}{s^{2}+(s-1)}=\frac{1}{(s+2 \times s-1)}=\frac{A}{s+r}+\frac{B}{s-1} \Rightarrow A=-\frac{1}{e}, B=\frac{1}{e} \\
& g(t)=L^{-1}\left(\frac{1}{5 \cdot 5-\sigma^{2}}\right)=-\frac{1}{c} e^{-r_{t}}+\frac{1}{c} e^{t} \\
& U^{-}\left(c_{x}^{-s_{s}} G_{(s)}\right)=u_{(t)} \times g(t-r)=u_{\nu}(t)\left(-\frac{1}{r} e^{-(t-r)}+\frac{1}{c} e^{t-r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Year. Month Date } \\
& F(s)=\frac{r(s-1) e^{-r}}{s^{r}-r_{s}+r}=\frac{r(s-1) e^{-r}}{(s-1)^{r}+1} \quad G(s) \frac{r(s-1)}{(s-1)^{r+1}} \Rightarrow g(t)+c^{+} \cos b \cdot u^{r-10} \\
& L^{-1}(F(s))=u_{v}(t) g(t-r)=u_{v}(t)+e^{t-r} \cos (t-r) \\
& F(s)=\frac{(s-r) e^{-s}}{s^{r}-t s+r}=\frac{(s-r) e^{-s}}{(s-r)^{r}-1} \quad G(x)=\frac{s-r}{\left(s-y^{r}-1\right.} \Rightarrow g(t)=e^{r t} \sin ^{h} t \cdot 1.60^{v} \\
& l^{-1}(f(s))=u \\
& G(s)=\frac{s-r}{(s-1)(s-r)}=\frac{A}{s-1}+\frac{B}{s-r} \Rightarrow A=\frac{1}{r}, B=\frac{1}{r} \\
& G(s)=\frac{\frac{1}{r}}{s-1}+\frac{\frac{1}{r}}{s-r} \quad g(t)=\frac{1}{r} e^{t}+\frac{1}{p} e^{r t} \quad L^{-1}\left(e^{-s} G(s)\right)=U_{1}(t) g(t-1)= \\
& U_{1}(t)\left[\frac{1}{r} e^{t-1}+\frac{1}{r} e^{r(t-1)}\right] \\
& F(s)=\frac{e^{-s}+e^{-r s}-e^{-p s}-e^{-\varepsilon s}}{s} \\
& F(s)=\frac{e^{-s}}{s}+\frac{e^{-s s}}{s}-\frac{e^{-c_{s}}}{s}-\frac{e^{-s s}}{s} \rightarrow f(t)=u_{1}(t)+u_{r}(t)-u_{c}(t)-u_{t}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } L(f(c t))=\frac{1}{c} f\left(\frac{s}{c}\right) \quad \text { s>ca } \\
& \text { c) } L^{-1}(f(k s))=\frac{1}{k} f\left(\frac{t}{k}\right) \\
& \text { 2) } l^{-1}(F(a s+b))=\frac{1}{a} e^{-\frac{b}{a} t} f\left(\frac{t}{a}\right)
\end{aligned}
$$

PAPCO

Subject

$$
\begin{align*}
& F(s)=\frac{r^{n+1} n!}{s^{n+1}}=\frac{n!}{\left(\frac{s}{r}\right)^{n+1}} \rightarrow l^{-1}(F(s))=\frac{1}{\frac{1}{r}}\left(\frac{t}{\frac{1}{r}}\right)^{n}=r(r t)^{n} \cdot t^{n} \\
& F(s)=\frac{r_{s+1}}{\varepsilon_{s}^{r}+r_{s+0}}=\frac{r_{s+1}}{\left(r_{s+1}^{r}\right)^{r}+} \rightarrow C^{-1}(F(s))=\frac{1}{p} e^{-\frac{t}{r}} \cos \left(\frac{r t}{p}\right) \\
& F(s)=\frac{e^{r} e^{-r_{s}}}{r_{s-1}}=\frac{e^{r-f_{s}}}{r_{s-1}}=\frac{e^{-r\left(-1, r_{s}\right)}}{r_{s-1}} \rightarrow C^{-1}\left(F_{(s)}\right)=\frac{1}{p} e^{\frac{t}{r}} u_{p}\left(\frac{t}{p}\right)
\end{align*}
$$

1) $F(s)=\frac{s+r}{s\left(s^{r}+r s+1\right.}+\frac{s}{(s-r)^{r}}$
r) $f(s)=\ln \frac{s^{r}+r s+r}{s^{r}-r s+\varepsilon}+\frac{e^{-r} s}{s^{r}-r s+0}$
p) $F(s)=\frac{s+r}{s^{r}+r s+0} \times e^{-s}$
e) $F(s)=\tan ^{-1}\left(\frac{1}{5}\right)$
a) $F(s)=\ln \frac{s^{r}+r}{s^{r}}$
2) $F(s)=\frac{s^{p}+\gamma}{s(s+0)}, \frac{p(s-1) e^{-p s}}{s^{r}-p s+r}$
3) $f(t)=e^{-t} u_{1}(t) \cos c t$

$$
\begin{aligned}
& z^{\prime \prime}+y^{\prime}+r_{y}=g(t) \quad \mathcal{L}^{(0)}=0, z^{\prime}(1)=0 \\
& g(t)=\left\{\begin{array}{ll}
1 & 0 \leqslant t<r_{0} \\
0 & t \geqslant r_{1},
\end{array}<t<0\right. \\
& g(t)=u_{0}(t)-u_{0}(t)=\left\{\begin{array}{ll}
0 & t \leqslant 0 \\
1 & t>0
\end{array}-\left\{\begin{array}{ll}
0 & t \leqslant r \\
1 & t>0
\end{array}=\left\{\begin{array}{ll}
0 & t \leqslant 0 \\
1 & 0 \leqslant t \leqslant r \\
1 & t>r_{0}
\end{array}- \begin{cases}0 & t \leqslant t \\
1 & t>r_{0}\end{cases} \right.\right.\right. \\
& =\left\{\begin{array}{ll}
0 & t \leqslant 0, t>r, \\
1 & 0 \leqslant t \leqslant r
\end{array} \quad \Rightarrow \quad r^{\prime \prime}+y^{\prime}+r_{y}=u_{0}-u_{r} \quad \xrightarrow{\text { by }}\right. \\
& Y\left(s^{\prime} L(y)-s y^{(\cdot)}-Z^{\prime}(\cdot)+s L(y)-Z_{0}+Y L(y)=\frac{e^{-\Delta s}}{s}-\frac{e^{-r \cdot s}}{s} \rightarrow\right. \\
& \left.\left.L(y)\left(r s^{r}+s+r\right)=\frac{e^{-0 s}-e^{-r-s}}{s} \rightarrow Y(s)=L_{c}\right)=\frac{e^{-0 s}-e^{-r-s}}{s\left(r s^{r}+s+r\right)}=\frac{e^{-0 s}}{s\left(c^{H(s)}\right.}-\frac{e^{-r . s}}{s(}\right) \\
& H(s)=\frac{1}{s\left(r s^{r}+s+r\right)} \frac{r\left(s^{r}+\frac{s}{r}+\left(\frac{1}{\varepsilon}\right)^{r}-\left(\frac{1}{\varepsilon}\right)^{r}+1\right)}{r} \rightarrow H(s)=\frac{\frac{1}{r}}{s}-\frac{s+\frac{1}{r}}{r s^{r}+s+r} \rightarrow H(s)=\frac{-\left(s+\frac{1}{\varepsilon}+\frac{1}{r}\right)}{r\left[\left(s+\frac{1}{r}\right)^{r}+\frac{10}{14}\right]}+\frac{\frac{1}{r}}{s} \\
& =-\frac{s+\frac{1}{r}}{r\left(\left(s+\frac{1}{r}\right)^{r}+\frac{10}{14}\right)}-\frac{\frac{1}{\sqrt{r}} \times \sqrt{10}}{r\left(\left(s+\frac{1}{\varepsilon}\right)^{r}+\frac{10}{14}\right)}+\frac{\frac{1}{r}}{s} \Rightarrow h(t)=-\frac{1}{r} e^{-\frac{1}{r} t} \cos \frac{\sqrt{10}}{r} t-\frac{1}{r \sqrt{10}} e^{-\frac{1}{r} t} \sin \frac{\sqrt{0}}{r} t+\frac{1}{r} \\
& \mathcal{L}(t)=u_{(0)}(t) h(t-0)-u_{1}(t) h\left(t-r_{0}\right) \\
& \delta_{\tau}(t)=\left\{\begin{array}{ll}
\frac{1}{r \tau} & -\tau<t<\tau \\
0 & t \leqslant-\tau, \tau \leqslant t
\end{array} \quad \sum_{t \rightarrow 0}^{\ell_{t}} \delta_{\tau}(t)=\frac{\delta(t)}{\sigma^{t}}\right. \\
& \left\{\begin{array} { l }
{ C (\delta (t)) = 1 } \\
{ L ^ { - 1 } (1) = \delta (t) }
\end{array} \quad \left\{\begin{array}{l}
\left(()^{\prime t}\right)=\frac{1}{3} \\
C^{-1}\left(\frac{1}{3}\right)=1
\end{array}\right.\right.
\end{aligned}
$$

-

$$
\begin{aligned}
& h(t)=\delta(t)+\sqrt{r} \sin (\sqrt{r}(t+r)) U_{-r}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{\tau}\left(t_{-} t_{0}\right)= \begin{cases}\frac{1}{r t} & -t<t-t \cdot<\tau \\
0 & t-t \cdot \geqslant \tau \leqslant t-t . \leqslant-t\end{cases} \\
& \int_{\tau \rightarrow 0} \delta_{\tau}\left(t-t_{0}\right)=\delta\left(t-t_{0}\right) \\
& \left\{\begin{array} { l }
{ l ^ { - 1 } (e ^ { - s t }) = \delta (t - t _ { 0 }) } \\
{ l (\delta (t - t _ { 0 })) = e ^ { - s t } } \\
{ l (t _ { 0 }) = e ^ { - s t } }
\end{array} \quad \left\{\begin{array}{l}
l^{-1}\left(\frac{e^{-c s}}{s}\right)=u_{c}(t) \\
l\left(u_{c}(t)\right)=\frac{e^{-c s}}{s}
\end{array}\right.\right.
\end{aligned}
$$

$$
F(s) G(s)=l(h(t)) \quad(s>a)
$$

$$
h(t)=\int_{0}^{t} f(t-t) g(t) d t=\int_{0}^{t} f(t) g(t-t) d \tau
$$

.

$$
\begin{aligned}
& z^{*}+{ }^{\varepsilon} z=g(t) \quad z(0)=r, \quad z^{\prime}(0)=-1 \\
& \text { " }
\end{aligned}
$$

$$
\begin{aligned}
& Y(s)=\frac{G(s)+r s-1}{s^{r}+\varepsilon}=\frac{G(s)}{s^{r}+\varepsilon}+\frac{F(s)}{s^{r}+\varepsilon} \quad\left\{\begin{array}{l}
f(t)=\frac{1}{v} \sin t \\
g(t)
\end{array}\right\} \Rightarrow c^{-1}\left(\frac{G(s)}{s^{r}+\varepsilon}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{t} \frac{1}{r} \sin r(t-r) g(r) d r=\int_{0}^{t} \frac{1}{r} \sin r r g(t-r) d r \Rightarrow \mathcal{L}^{(t)}=h(t)+r \cos \gamma t-\frac{1}{r} \sin r t \\
& L\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(s) d s \text { : . Cli } L(f(t))=F(s) \cup \text {, 人) al } \\
& \left.\left.l\left(\frac{e^{t}-e^{-r t}}{t}\right)=\int_{s}^{\infty}\left(\frac{1}{s-1}-\frac{1}{s+r}\right) d s=\ln (s-1)-\ln (s+r)\right]_{s}^{\infty}=\ln \frac{s-1}{s+r}\right]_{s}^{\infty}=C^{L^{2}} \\
& -\quad-\ln \left|\frac{s-1}{s+r}\right|=\ln \left|\frac{s+r}{s-1}\right|
\end{aligned}
$$

(1)

$$
\begin{aligned}
& y^{\prime}(t)=e^{t}+\cos t \int_{0}^{t} Z(x) \cos x d x+\sin t \int_{\cos (t-2)}^{t} y(x) \sin x d x \quad y(0)=0 \quad \int^{t} \quad \\
& \int_{0}^{t} x(x)\left(\cos t^{\cos (t-x)} \cos x \sin t ; \sin x\right) d x
\end{aligned}
$$

Q) $\quad f(t)=C_{t}^{r}-e^{-t}-\int^{t} f(x) e^{t-x} d x$
(1) $y^{\prime}+z-r \int_{0}^{t}(t-x) y^{\prime \prime}(x) d x=r t+r \rightarrow z(-)=z^{\prime}(0)=1$

$$
\begin{aligned}
& \text { (1) : } s Y(s)-Z(0)=\frac{1}{s-1}+Y(s) \cdot \frac{s}{s^{r}+1} \Rightarrow Y(s) \times\left(\frac{\frac{s^{r}}{s-1}}{s-\frac{s}{s^{r}+1}}\right)=\frac{1}{s-1} \\
& Y(s)=\frac{s^{r}+1}{s^{r}(s-1)}=\frac{A}{s-1}+\frac{B}{s}+\frac{C^{-1}}{s^{r}}+\frac{D}{s^{r}} \Rightarrow\left\{\begin{array}{ll}
A+B=0 \\
-B+C=1 \Rightarrow & A=r \\
-C+D=0 \\
-D=+1
\end{array} \begin{array}{l}
C=-r \\
D=-1
\end{array}\right. \\
& \mathscr{D}(t)=r e^{t-r-t-\frac{1}{r} t^{r}}
\end{aligned}
$$

(v) $s Y(s)-z(0)+Y(s)-r \frac{1}{s^{r}}\left(s^{x} Y(s)-s y(0)-z^{\prime}(0)\right)=\frac{r}{s}+\frac{1}{s}$

$$
Y(s)(s+1-r)=1-\frac{r}{s}-\frac{r}{s^{r}}+\frac{r}{s^{r}}+\frac{r}{s}=1 \Rightarrow Y(s)=\frac{1}{s-1} \Rightarrow \dot{z}(t)=e^{t}
$$

$\frac{c^{+}, e^{*}}{r}$ cocer (ther
(1) $f(t)=\cosh \theta \int_{0}^{6} \frac{e^{r r}-e^{r}}{r} d r$
(1) $f(t) \cdot \frac{\frac{e^{t} \cdot e^{t}}{t}}{\sinh t} \int_{0}^{t} \frac{e^{2 r}-e^{r}}{r} d r$

Q $f(t)=e^{e t} \int_{0}^{t} e^{-r r}\left(\frac{1 e^{-e r}}{r}\right) d r$

$$
\begin{aligned}
& \text { (1) : } e^{e^{r}} \int_{0}^{t} e^{-r r}\left(\frac{1-e^{-c r}}{r}\right) d r \rightarrow f(t)=\int_{0}^{t} e^{<t} e^{--r r} \times\left(\frac{1-e^{-c r}}{r}\right) d r=\int_{0}^{+\frac{f(t-r)}{e(t-r)}}\left(\frac{e^{-r}-e^{-l r}}{r}\right) d r \\
& L(f(r))=\frac{1}{s-r} \times \int_{s}^{+\infty} \frac{1}{s-1}-\frac{1}{s+r} d s \rightarrow f(s)=\frac{1}{s-e^{-x}} \times \ln \left|\frac{s+r}{s-1}\right|
\end{aligned}
$$

$\left(D^{r}+r D+r\right)\left(D^{r}+D\right) y=0$

$$
\left(r^{\prime}+r+r\right)\left(r^{r}+r\right)=0
$$

$$
F(s)=\tan ^{-1}\left(\frac{1}{s}\right)
$$

$$
\begin{aligned}
& f^{\prime}(s)=\frac{-\frac{1}{s^{*}}}{1+\frac{1}{s^{r}}}=\frac{-1}{1+s^{+}} \rightarrow\left(-t^{\prime \prime} f(t)=L^{-1}\left(f^{\prime}(s)\right)=-\sin t \rightarrow-t f(t)=-\sin t\right. \\
& \Rightarrow f(t)=\frac{\sin t}{t}
\end{aligned}
$$ (ه)

$$
\begin{aligned}
& \begin{array}{l}
f:\left\{\begin{array}{l}
r_{n}-D_{z}=0 \\
D_{2}-C_{z}=\cdot
\end{array} \Rightarrow\right. \\
z=c_{1} e^{\sqrt{4} t}+C_{r} e^{-\sqrt{4} t}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=c_{c} e^{\sqrt{4} t}+c_{\epsilon} e^{-\sqrt{4} t}
\end{aligned}
$$

$$
\begin{aligned}
& r c_{1} e^{\sqrt{4} t}+i c_{t} e^{-\sqrt{4} t}-\sqrt{4} c_{1} e^{\sqrt{4} t}+\sqrt{4} c_{1} e^{-\sqrt{4} t}=0 \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& (D .6) x-D(D \cdot 1) x=t^{*} \rightarrow\left(D . t \cdot D^{*}-\phi\right) x=t^{*} \rightarrow\left(D^{*} \cdot 8\right) x=-t^{*} \Rightarrow \\
& \left(D^{\prime}+\varepsilon\right) x=0 \Rightarrow \gamma^{\prime}+\varepsilon=l_{r=-r i}^{r i} \\
& x_{1}=\cos t_{t}, x_{1}=\sin t^{1} t \\
& n_{c}=C_{1} \cos { }^{1} t+C_{0} \sin r t
\end{aligned}
$$

$$
\begin{aligned}
& ; x_{p}^{\prime}=1 A t+B \\
& n^{\prime \prime} p=1 A \\
& n=C_{0} \cos r t+C_{r} \sin ^{r} t-\frac{1}{8} t^{r}+\frac{1}{1} \\
& (0+1)\{(D-\varepsilon) x+D)^{\prime} z=t^{r} \\
& (1, i)\left(D_{1}+1\right) x+D_{y}=0 \\
& \left(D^{*}+D^{\prime}\right) z-\left(D^{r}-\varepsilon D\right) z=r^{\prime}+t^{r} \\
& \left(D^{\prime}+\varepsilon D\right) \chi=r t+t^{\prime} \rightarrow r^{\prime}+\varepsilon_{r}=0 \rightarrow r\left(r^{r}, \varepsilon\right)=\cdot \rightarrow\left[\begin{array}{l}
r_{1}=\operatorname{laz}=1 \\
-r_{r}=i i \rightarrow z_{r}=\cos r t \\
r_{2}=-r_{t} \rightarrow z_{0}=\sin r t
\end{array}\right. \\
& Z_{c}=C_{r}+C_{\varepsilon} \cos r t+C_{0} \sin t \quad Z_{p}=\left(A t^{r}+B t+C\right) t=A t^{r}+B t^{r}+C t
\end{aligned}
$$

$$
\left|\begin{array}{ll}
l_{1} & l_{r} \\
l_{e} & l_{\epsilon}
\end{array}\right| x=\left|\begin{array}{ll}
g_{1} & l_{v} \\
g_{v} & l_{f}
\end{array}\right| \quad, \quad\left|\begin{array}{ll}
l_{1} & l_{r} \\
l_{N} & l_{f}
\end{array}\right| z=\left|\begin{array}{ll}
l_{1} & g_{1} \\
l_{r} & g_{r}
\end{array}\right|
$$

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = r x - y - 1 r } \\
{ z ^ { \prime } = x + y + \varepsilon e ^ { t } }
\end{array} \rightarrow \left\{\begin{array}{l}
(D-r) x+z=-1 r \\
(D-1) y-x=\varepsilon e^{t}
\end{array} \rightarrow\left|\begin{array}{cc}
D_{-} r & 1 \\
-1 & D-1
\end{array}\right| x=\left|\begin{array}{cc}
-1 r & 1 \\
\varepsilon e^{t} & 0_{-1}
\end{array}\right| \Rightarrow\right.\right.
$$

$$
\left(D^{r}-\varepsilon D+r+1\right) n=\left((D-1)(-r) _\varepsilon e^{t}\right) \quad \rightarrow \quad D^{r}-\varepsilon D_{+} \varepsilon=1 r-\varepsilon e^{t}
$$

$$
r^{r}-\varepsilon r+\varepsilon=\cdot \Rightarrow(r-r)^{r}=0<n_{1}=e^{r t}
$$

$$
\left\{\begin{array}{l}
\left(D^{r}-\varepsilon D+\varepsilon\right) x=1 r \stackrel{x_{p}=A}{\Rightarrow} \leqslant A=r \Rightarrow A=r \rightarrow x_{p}=r \\
\left(D^{r}-\varepsilon D+\varepsilon\right) x=-\varepsilon e^{t} \xrightarrow{n_{p} p_{0}} c^{t} \theta e^{t}-\varepsilon B c^{t}+\varepsilon B c^{t}=-\varepsilon e^{t} \Rightarrow B=-\varepsilon \rightarrow x_{p}=-\varepsilon e^{t}
\end{array}\right.
$$

PAPCO

$$
\begin{aligned}
& y=C_{r}+C_{\varepsilon} \cos r t+C_{0} \sin r t+\frac{1}{1 r} t^{r}+\frac{1}{\varepsilon} t^{r}-\frac{1}{n} t \\
& =-c_{1}+\frac{c_{r}}{r}=\overline{c_{1}} \bar{r}=c_{r} \\
& \text { 秋 }
\end{aligned}
$$

$$
\begin{aligned}
& \left(D^{r}-\varepsilon D+\varepsilon\right) Z=(D-r)\left(\varepsilon e^{t}\right)-1 r \rightarrow r^{r}-\varepsilon r_{t} \varepsilon=0\left\{\begin{array}{l}
y_{1}=e^{r t} \\
y_{r}=t e^{r_{t}}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& z=c_{r} e^{r t}+c_{e} t e^{r t}-1 e^{t}-r
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
z^{\prime}+r y+4 \int_{0}^{t} z(r) d r=-r u .(t) \\
z^{\prime}+z^{\prime}+z=0 \quad z(0)=4, z(\cdot)=-0
\end{array}\right. \\
& \left\{\begin{array}{l}
S Y(s)-Z(0)+r Y(s)+4 \frac{Z(s)}{s}=\frac{-r}{s} \\
S Y(s)-Z(0)+S Z(s)-Z(0)+Z(s)=0
\end{array}=2\right. \\
& \text { s. }\left\{\begin{array}{l}
(s+r) Y(s)+\frac{4}{s} Z(s)=-\frac{r}{s}-0 \\
s Y(s)+(s+1) Z(s)=-r-0 s-s-r \quad \rightarrow \quad\left(-s^{r}-c s+\varepsilon\right) Z(s)=-4 s-r
\end{array}\right. \\
& Z(s)=\frac{4 s+\varepsilon}{s^{r}+r s-\varepsilon}=\frac{\varepsilon}{s+\varepsilon}+\frac{r}{s-1} \rightarrow Z(t)=\varepsilon e^{-\varepsilon t}+r c^{t}
\end{aligned}
$$

$$
Y(s) \cdot \frac{s^{s}+s}{s(s, 1)(s+1)} \frac{-0 s^{r}-v_{s}-1}{s(s, 1)(s, \varepsilon)}=\frac{r}{s}+\frac{-\varepsilon}{s-1}+\frac{-r}{s+r}
$$

1, (11) $\chi^{\prime \prime \prime}$

1) $\left\{\begin{array}{l}\frac{d i_{1}}{d t}, 0 . i_{1}=4_{0} \\ 0 \times 1, \frac{d i}{d t}+i_{1}-i_{1} . .\end{array} \quad i_{1}(v) \cdot i_{1}(\cdot)=\right.$.
r) $\begin{cases}x_{1}^{\prime \prime}+1 . x_{1}-f x_{1} \ldots & \left.x_{1}(\cdot)\right)_{i}^{\prime} x_{1}^{\prime}(\cdot)=1 \\ -k x_{1}+x_{1}^{\prime \prime}+x_{n} \ldots & x_{1}(\cdot)=, x_{1}^{\prime}(\cdot)=-1\end{cases}$
r) $\left\{\begin{array}{l}x^{\prime \prime}+x^{\prime}+x+y^{\prime \prime}+z-c^{\prime} \\ x^{\prime \prime}+x^{\prime}+y^{\prime \prime}+e^{-t}\end{array}\right.$
