وزارت راه و شهرسازى مركز تحقيقات راه، مسكن و شهرسازى

مقر رات ملّى ساختمان ايران

صرفهجويـي در مصرف انرزى

دفتر تدوين مقررات ملّى ساختمان
ويرايش جهارم (1ヶ9)

صفحه شناسنامه

,

همه ساله در كشور بخش عممداى از فعاليت اقتصادى و سرمايههاى ملى به صنعت ساختمان تخصيص مى يابد و ساختمان هاى ساخته شده از محل درآمدهاى ملى و يا سرمايه شهروندان جزء سرمايههاى كلان و پايدار كشور به خساب مى آيند. منافع ملى ناشى از حفظ و افزايش بهرهورى ساختمانه ها و نيز حفظ جان و مال بهرهبرداران، وجود اصول و قواعدى برایى برقرارى نظهم در اين بخش را اجتنابنایذير مى كند. تدوين مقررات ملى ساختمان در كشور از سال مقررات و ضوابطى ناظر به كاركرد فنى و مهندسى عناصر و اجزاى ساختـمان و با ها هدف تأمين اليمنى، بهداشت، بهرهدهى مناسب و آسايش بهرهبرداران ساختماني ها و نيز صرفهجزيیى در مصرف انرزى توسط وزارت مسكن و شهرسازى وقت آغاز گَرديده و تا به امروز به صورت دورها مانى مورد بازنگّرى قرار گرفته است. مقررات ملى ساختمان به عنوان فراگيرترين ضوابط موجود در عرصه ساختمان، در كنار استانداردها و آئيننامههاى ساختمانى نقش مؤثرى در ارتقاى كيفيت ساختمانيها داشته و مقايسه كيفى ساختمانيهاي ساخته شده طىى ساليان اخير با سالههاى قبل از
 پی پیدارد، بى ترديد مسير ارتقاى كيفيت ساختمان از تأمين همين حداقلمها مى كَذرد. ليكن براى تحقق اجراى موفق مقررات ملى ساختمان و دستيابى به وضعيت مطلوب در ساخت و سازهال، اقدامات تكميلى جدى ديگّرى شامل: تدوين نظام كنترلى جامع و كارآمد، تلاش مضاعف براى آموزش و بازآموزى عوامل دخيل در ساخت و ساز، صيانت از حقوت شهروندى و افزايش سطح آكَاهى بهرهبرداران از حقوق خود، بيمه ساختمان و انجام تحقيقات هدفمند با توجه به مقتضيات كشور ضرورى است. حر پايان از كليه صاحب نظران و همكارانى كه در تدوين و بازنتُرى مقررات ملى ساختمان با دلسوزى تلاش مى كنـند، قدردانى نموته و از پيشگاه خداوند متعال براى اين خدمتگزاران به ميهن
اسلامى و مردم عزيز، موفقيت و سربلندى آرزو مى نمايهم.

محمد اسلامى
 وزير راه و شهرسازى

ابالغيه

تاريخ :
شAl

بسعد لـلى

جناب آقاى دكتّ ر حمانى فضلى
 وزيو محترم كشور

با سلام و احترام
 بـدينوســله ويـرايش جهـارم مبصـك نـوزدهم مقـررات ملـى سـاختمان "صــراه جـويى در هصرف انــرزّى" كه مراحـل تهيـه، تـدوين و تصـويب را در وزارت راه و شهرسـازىى
 دوازده ماه بعد از تارين اين ابلاغ خواهد بود و بديهى است تا آن زمان استفاده از هر كـدام از اين دو ويرايش مجاز است.

رونوشت:

 سـالثـان الستان ها بايواي الجرا
 سـاختمان الستان ها بيائى اجرا.

هيأت تدوين كنندكّان مبحث نوزدهمر مقررات ملّى ساختمان - ويرايش چههارم
 (بر اساسي حروف الفبا)

الف) شوراى تدوين مقر رات ملّّي ساختمان

غضو	- مهندن بهروز علمدارى ميلانی	رئيس
عضو		عضو
عضو	-	عضو
عضو	- دكتر بهروز گّتميرى	عضو
ن		عضو
عضو	- دكتر محمودرضا هاهرى	عضو
غضو		عضو
عضو	- دكتر هحمود هحمونيزدادها	9
عضو		و
عضو	- دكتر سيدرسول هيرقادرى	عضو
غضو	- مهندّس نادر نجيمّا	عضو
عضو		و

- دكتر محمدثتثى احمدى

ع • • دكتر سيدرسول ميرقادرى

ب) اعضاى كميته تخصصي
- ع دكتر محمد تتقى احمدى

دبير

$$
\begin{aligned}
& \text { عضو } \\
& \text { عضو • دكتر بهروز محمد كارى } \\
& \text { عضو }
\end{aligned}
$$

- دكتر محمدرضا حافظى
- دكتر مازيار سلمانزاداده
- •
- دكتر ريما فياض

- هيندنس يونس قلىزاده طيار
- هميندس سيد امير موسويان

$$
\begin{aligned}
& \text { • دكتر هيهديه آبروش } \\
& \text { • •هيندس هيثنم اكبرى پايدنار } \\
& \text { • }
\end{aligned}
$$

ت) دبير خانه شوراى تدو ين مقررات ملّي ساختمان
معاون دفتر تدوين متررات ملىي ساختمان و دبير شورا
رئيس تروه تدوين مترينرات ملي ساتي ساختمان
كارشـناس معمارى دفتر تدوين متريرات ملي ساخـي اختمان

- مهيندس سهيلال پاكروان
- دكتر بهينام مهريريرور
- مهندس منصور نجنىى مطيعى

مقدمه ويرايش حهارم

 براى وزارت راهوشهيرسازى مشخص كرديدياست.
 اههر آنها عا عبارتند از:
 انرثى، به شـ شع زير، تتريفشدهد است:

دستيتيابى به اين رده اجبارى است است.

ضوابط تعيينشده براى »ساختمان هاى با مصرف انرزى نزديكى صفر " باشد. لاز مبه
 و اجرایى تمامى ساختمان هاى نو "اساختمان هالى با مصرف انـرزى نزديـى صــفر"

باشد.

- در ويرايشىهاى پيشين دو روش طراحى پوسته خارجى ساختمان مطرح شدهبود. هر ويرايش جديد، علاوه بـر دو روش »تجــويزى" و "موازنــهاى (كـاركـردى)"، دو روش ديگــر، تحـت
 »"تجويزى" سادهترين روش و روش » "ارايىى انرزى" تخصصىترين روش طراحى هسـتند. در عين حال، كمترين تَزينهها در طراحى و بيشترين هزينـه اجـرا در حالـت اسـتفاده از روش تجويزى است، درحالى كه بيشترين كزينهها و خق انتخابها در طراحـى و كمتـرين
 توضيحات تكميلى در اين خصوص در بند 19-r-Y-1 اين مبحث الرائه شدهاست. - فصلبندى مبحث بازبينى شدهاست. ضمن اين كه يكى فصل به تعاريف اختصاص يافتـهاسـت، فصلبندى بخشى هاى مربوط به روش هاى طراحى نيز تغيير كردهاست، و فصول ه تا م، هر يكى به يكى از روشيهاى مطرحشده اختصـاص يافتـهانـند، و زيرفصـلهـايى تحـت عنـوان "پيوسته خارجى"، »تأسيسات مكانيكى" و »تأسيسـات برقـى"، بـراى هـر يـكى از فصـول مربوط به روشىهاى طراحى در نظر گرفته شدهاست. علاوه بر اين، فصلى نيز تحت عنـوان »ضوابط اجبارى" در نظـر گرفتـه شـدهاسـت كـه حــاوى ضــوابطى اسـت كـه در تمـامى ساختمانهها بايد رعايت شوند.

در نتيجه، پس از تصميمڭگيرى در خصوص روش طراحى ترجيحى، كــافى اسـت طــراح در وهله اول از رعايتشدن "ضوابط اجبارى"مطرحشده در فصل ؟ اطممينان حاصل نمايــ، و سپِي به فصل مربوط به روش انتخابشده (ه تا 人) مراجعهـ نمايد.
-روشى كاركردى ساختارى مشابه روش تجويزى پيدا كردهاست، و در نتيجه، مقـادير متفـاوتى برای ضرايب انتقال حرارت مرجع ارائه شدهاست. ساختار جديـد ايـن روش، بـدون آنكــهـ تغيير اساسى در آن صورت گرَتـتهباشد، به طراح اين امكان را مىدهد كــه بـدون نيـاز بــه محاسبه پلهالى حرارتى، و بدون نياز به اسـتفاده از ضـرايب تعريـفششـده در پيوسـت 11

برای حالت عدم محاسبه پل حرارتى، طراحى پوسته خارجى را انجام دهد. علاوه بـر ايـنـ، برخی كاستى ها، از جمله وجود يكـ ضريب انتقال حرارت مرجع واحد براى ديوارها، بامهـا و كفـهاى در تماس با فضاى كنترلنشده برطرف شدهاست.

 گرمايى خورشيدى و همهچنـين نسبت ضريب عبـور نـور مرئـى بـهـ ضــريب بهــره گرمـايى
 كَرفتهشده براى ساختمان مرجع، براى مناطق سردسير (نيـاز گَرمـايى غالـب) و گَرمسـير (نياز سرمايى غالب)، و براى جهتتهاى مختلف، متفاوت اسـت، تـا جــدار نوركَــنر در نظــر كرفته شده بـراى سـاختمان مرجـع بيشـترين انطبـاق را بـا منطقـه اقليمـى مـورد نظـر داشتهباشد.

- در بخشىهاى مربوط به تأسيسات مكانيكى، علاوه بر مـوارد مطـرحشـده در ويـرايش قبلـى، موضوعات كليدى ديگرى نيز، از جمله حداقل بازدهى تجهيزات، كنترل و پايش، بازيافـت و ذخيرهسازى انرزی مدنظر قرار گرفتهاست.

 شدهاست، كه حق انتخاب مضاعفى را در اختيار طراح قرار مىدهد. - اهمميت ويزّایى به موضوع بهره گيرى از روشنايیى طبيعى معطوف شدهاست، تا علاوه بر ارتقاء شرايط محيط داخل، مصرف روشنايى مصنوعى نيز تا حد ممكن كاهش يابد.

 اندازهگيرى، آسانسورها و پلكانیهاى برقى نيز پرداخته شدهاست. - در پيوستها تغييرات زير صورت گرفتهاست:
- بهجاي مقادير فيزيكى اصـلى، تعـاريف و علائهمه پيوسـت ا، تحـت عنـوان فهرسـت
 - با توجه به تغيير الگُوى طراحى شيشهها و پنجرمها، پيوست "روش محاسبه شاخص خورشيدى" حذف گَرديدهاست.
- ييوست جديدى (پيوست ه) تحـت عنـوان "برنامـه زمـانى بهـرهبـردارى سـاكنين و عملكرد تجهيزات" براى ايجاد همـاهنگّىهـاى لازم بـرای طُراحـى بـا اسـتماده از نرمافزارههاى تخصصى اضافه شدهاست.
- روش محاسبهُ ضريب كاهشي انتقال حرارت طرح كه در ويرايش قبلى در فصل پوسته خارجى ساختمان آمده بود به پيوست 9 منتقل شدهاست.
 پاراگَرافهها دارایى سبكى قلم, يا پشتزمينه متفاوتى، به شرح زير هستند:

$$
\begin{aligned}
& \text { توضيحات يا توصيههاى غير الزامى } \\
& \text { يشت زمينه خاكسترى } \\
& \text { الزامات مطرح در زمان اجرا } \\
& \text { سبكـ قفمر (فونتا) /يتاريكى Italic }
\end{aligned}
$$

در پايان، جا دارد از معاونت علمى و فناورى رياست جممورىى و سازمان UNDP كه اين مركـز را با حمايت ماللى در جهت دستيابى به اهـداف تعيـينشــده در بـازبينى مبحـث 19 مقـررات ملـى ساختمان يارى نمودند صميمانه تشكر گّردد.

كميته تخصصى مبحث نوزدهمر مقررات ملى ساختمان

فهرست مطالب

صفتح4
عنوان

1 19-1 كليات
r.

19-1-1 - دامنه كاربرد
$\stackrel{\mu}{\mu}$ T- 1-19 ميزان كارايى انرزیى ساختمانهها
v Y-19 تعار يف، گونهبندىها و كروهبندى ها
V 19-Y- التعاريف
rı. \qquad Y- 19
rr r-19 مقررات كلى طراحى و اجرا.

19-19-1 مدار كى مورد نياز براى تأييد ساختمان از نظر صوابط صرفهجوئى در مصرف انررىى
ru در زمان اخذ يروانئ ساختمان

YV...
4
4-19 ضوابط اجبارى
ff
19 19
ff \qquad r-
ΔF (

91据

99

$9 Y$
91 19-1-1 ا اصول كلى V. \qquad

9.

99

IIV \qquad

119 19-צ روش موازنهاى (كاركردى)
119 19-9-1 الصول كلى
1% \qquad

ifi \qquad 19-Y- 19
ifi (F-チ- 19
ifi

140 روش نياز انرثى ساختمان V-19 149

- ا- ا الصول كلى
149 \qquad شبيهسازى و انجام محاسبات Y-V-19 100 r-V-19
100 F-V- 19
100 \qquad D-V- 19 $10 V$ A-19 روش كارايـى انرثى ساختمان
10 V
- 19
191 \qquad H-A-19 شبيهسازى و انجام محاسبات
$19 Y$ \qquad
 $19 Y$ پیيوست أ فهرست وازگَّان (معادل انگَليسى)

IVY
\qquad پپيوست Y گَونهبندى درجه انرڭى (گّرمايى- سرمايى) سالانه شهرها 119 \qquad پیيوست F گُونهبندى كاربرى و گَروه ساختمانها
18 \qquad پیيوست ه هبرنامه زمانى بهرهبردارى ساكنين و عملكرد تجهيزات
$r \cdot a$
 پ• پ... HTH پیيوست A مقاومت حرارتى لايههاى هوا و قطعات ساختمانى
HY پیيوست 9 ضرايب انتقال حرارت جدارهاى نور گّذر و بازشوها
rpq \qquad پیيوست •1 سايهبانها
190 \qquad پيوست 11
rar \qquad پيوست ז1 اطلاعات تكميلى در خصوص تأسيسات الكتريكى $r \cdot 1$ پییوست استانداردها و آييننامه هاي مرجع

19-19 كليات

در مبحث حاضر لز مقروات ملى سـاختمان ضـواببط الزالمـى در طراحسى و الجـرال، در زمينـه پوسـتـٔه

 استاندالردها و آييننامههاى مرجع مورد استناد در اين مبحث الرائه شدهالست. در فصل دوم تعاريف عبارات و وازَههاى فنى مورد الستفاده در اين مبحث، و در فصل سوم مقـررات كلى طراحى و اجرا لرائه شدهاست. فصل جهارم به ضوابط الجبارى الختصاص داده شدهاست. رعايت اين ضوابط در تمامى موارد و بـرالى همـ روشههاى در نظر تّر فتهشده براى طراحى و اجرا الزامى الست.

در فصل پنجهم، تمامى ضوابط مربوط به روش تجويزى لارائه شدهاستٍ در قسمت الول ايـن فصـل الز

در سه فصل بعدى (فصلهانى ششمه تا هشتمه)، با سـاختارى مشـابه سـاختار فصـل پــنجمه، تمـامى
 انرثى ساختمان الرائه شدهالست.

در ضمن، در يووستهاى سيزدهگّانه اين مبحث نيز الطلاعات تكميلى و روشهایى محاسـبه مربـوط به بخشهانى مختلفـ مبحث لرائه شدهاست.

شايان ذكر است كه رعايت الزامات تعيينشده در اين مبحث، بايد همولره با رعايت همززمان الزامات تعيينشده در ديكِّ مباحث مقررات ملى ساختمان همراه باشد. براى مثال، علاوه بر رعايت ضـوابط تعيينشده در اين مبحث در مورد حداكثر ميزلن تهويه و تعويض هـوال، تـأمين حــداقل هـوالى لازم برالى سلامت ساكنان و احتراق دستّاماهها، بايد در مطابقت با مبحـث أ مقـررات ملـى سـاختمان باششد.

ب- سيستهها و تجهيزاتى كه در تأسيسات مكانيكى و برقى ساختمانهالى بند الف مورد اسـتفاهه. قراز مى تيرند.

اين مبحث در خصوص انـرثى مصـرفى بـراى هـر تُونـه فرايــد توليـد در داخـل يـــ سـاختمان موضوعيـت ندالرد.

كليه ضوابط اين مبحث مى توانن، با رعايت ساير مباحـث مقـروات و ضــوابط فنـى، بــراى بهسـازى ساختماننهاى موجود نيز استفاده شود.

در مورد ساختمانهاى زير، ضوابط اين مبحث لازمالاجرا نيست: - ساختمانهاى مورد الستفاده براى يرورش، نكّهِدلارى و تكثير حيوانات؛

 نصب و بر جیيدششدن هستند؛

- ساختممانهاى موجود كه اقدامات بازنوسازى و بهسازى بر روى آنها هحدود باشل؛

 (V-19)، توسط وزارت , الوششهرسازیى تعيبن مى ترّردد.

(19-19 ميزان كارايى انرثى ساختمانها

 مىشود:

- ساختمان منطبق با مبحث 19 مقررات ملى ساختمان (EC)
- ساختمان كهمانرزیى (EC+)
- ساختمان بسيار كهمانرزی (EC++)

 در اين مبحث، عنوان " منطبق با مبحث 19 مقررات ملى ساختمان" به ساختمانى اطلاق مىشود كه در طراحى و اجرايى آن، علاوه بر رعايت ضوابط اججبارى بخش 19-أ، انتظارات تعيـينشــنده در

(EC+) ساختمان كمهانرزي
 مقررات ملى ساختمان (EC)" در بند 19-19-1-1-1، حدود كيفيت تعريفشده در يكى از بخششهاى
 باششد، اين عنوان به ساختمان تعلق می گيرير.

 مترارّ، كاربرى، ...)، تعيين می تردهـ،

در صورتى كه علاوه بر جواب تُويى به انتظارات تعيينشده برالى ساختمان "امنطبق بـا مبحـث 19

 كَرفته باشد، اين عنوان به ساختمان تعلق مى كيرير.

 مترأث، كاربرى، ...)، تعيين مى تُردد.
(ECnZ) ساختمان با مصرف انرزي نزديكى به صفر F-Y-1-19

 براى "اساختمان با مصرف انرزّى نزديكـ به صفر « (ECNZ)، در طراحى و الجرا، ملاك عمــل قـرار گُرفته باششد، اين عنوان به ساختمان تعلق مي گّيرد.

لازمبهذكر استت دست يابى به اين حد كيفيـت سـاختمان (از ديـدكّاه انــرثى) الختيـارى السـت، بــه استثناى مواردى كه در دستورالعملها و بخشنامههاى صادر شده توسط وزارت راموشهرسـازى در اين زمينة، بسته به محل قرالرَّيرى ساختمان (استان، شـهر، ...) و مشخصـات آن (تعـدان طبقـات، مترازث، كاربرى، ...)، تعيين مى تَّردد.

r-19 تعاريف، گّونهبندى ها و گَروهبندىها

r-19 تعاريف

 توضيح اسست كه تعاريفـ بعضى عبارات مورد الستفاده در اين مبحث با تعـاريف الرائـهشــده در ديگّـر مباحث متفاوت الست.

احداث
بنا كردن ساختمان بر زمين خالى. ارزش حرار تى پايين (يا خالص)

 كّازهاى ناشیى از احتراق •10 درجه سلسيوس باشد. در الرزش حرالرتى خالص انرزی نهان بخـار آب در نظر رّرَّتنه نمى شود.

ارزش حرار تى بالا (يا ناخالص)
 جرمى (كيلوتَرم) سوخت در دماى ها

اكونومايزر

 جذبشده , الفزايش دهند.
 شرايطى كه دماى خارج الز ميزان تعيينشدهالى كمتر باشد، برايى كـاهش بـار سـرمايى سـاختمان، بخش عمده هوالى رفت دستگّاه هوالرسان را با هوالي تازه تأمين ميكند.

انرزیهای تجدییپپـير

 مجددشان، توسط طبيعت، در يكـ بازه زمانى كوتاه وجود دارد، مانند زيستتوده، زيسـتسـوخت و
اينرسى حرارت هيدورثى.
 نوسانه هاى دما و بار تَرمايى و سرمايى فضاهاى كنترلششده ساختمان. اينرسى حرالرتى ساختمان با استفاده از جرم سطحى مفيد ساختمان تَّروهبندى مىشود (ر.ك. به پيوست
آسايش حرار تى

شرايط ذهنى كه در آن افراد لز شرايط حرالرتى ابرالز رضايت مسىكنـنـد. آسـايش حرالرتـى بـه دمـا، رطوبت نسبى، سسرعت هوا، دماى متوسط تابشى سطوح اطراف، ميزالن لبـاس و نــوع فعاليـت الفـراد وابستة الست.

عنصرى در پوستهٔ خار جیى ساختمان، مانند در، پنجره و نورّ تّير، با قابليت باز شدن، براى دسترسى، تأمين روشنايى و ديد به خارج.
 طريق بازشو فراهمهم مى باشد. در صورتى كه تمهيدات و تجهيزات لازم در نظر تّرفتـه شدهباشد، اين عنصر در تهويه، تعويض هــوا و تأمين هوالى احتراق دستاًامها نيز مىتواند مشاركت كند. بام تخت يوششَ نهايع ساختمان كه شيبى كمتر الز • ا درجه يا مساوى آن، نسبت به افق دالرد. بام شيبدار

هوشش نهايى ساختمان كه شيبى بيشتر لز • ال درجه و كمتر از •9 درجه نسـبت بـهـ سـطعح الفقى دالرد. بر روى سقف شيبدار، فضاى خارج و در زير آن، فضايى كنـترلشده يا كنـترلنشده قـرالر دارد. التّر شيب جدلر بيش لز •و د درجه باشد، الز ديد اين مبحث ديوار تلقى ميشود.
بانكـ خازن (يا خازن)
 الكتر يكى در كّاز، به توان آكتيو. در استفاده لز بانكى خازن و يا خازن براى الر تقاء و اللاح مقدلر ضريب توان اوليـهه بـه مقـدلر مـورد نظر، موالرد زير مطرح مىباشد:

مبحث نوزدهمى
الف) طبثى ضوابط شر كت برق حداقل مقدلر ضريب توان كل شبكه بـرق تـأمين و تعذيـه بـرق
 ميباشد.

ب) ضر يب تولن كل شبكه برق كمـتر از مقدلر • ه, • مشمول هـز بنـه پردالختى از بابت مقدلر تولن

مشمول پرداخت هز بنـه بابت مقدلر تولن رآكتيو نخواهد بود.

برچحسب انرزى
 مورد الستفاده در ساختمان، براى مشخص كردن حد كيفيت محصولات از نظر مصرف انرزّى.

بهسازی (و بازنوسازی)
 هدف زير:

- بهيبود وضعيت ناهرى نما و با فضاهاي دالخلى!
- بهيبود عملكرد كل با بخشى از عناصر تشكيلدهنـنه تأسيسات مكانيكى و الكتر يكى؛ - اليجاد تغييرات در عملكرد و كاربرى فضاهاى مختلف.
 پی
 كاهش مى يابل و باعث افزاليش موضعى ميزالن النتقال حرارت مى تحردد.

پلنوم
بخشى از ساختتمان (براى مثال، فضاى بين سقف سازلى و سقف كـاذب، يـ كـف سـازلى و كـف
 الستفانه قرال, عَتيرد.

چنجره با عملكرد حرار تى بههبوديافته

پوستئ خار جیى

 دالخل ساختمان در الرتباط هستند.

 عناصرى است كه، در وجه خارجى خود، هجاور خاك و ز زمين هستند.

پوستئ كالبدى
 فخاى خارج و از طرف ديكَر با فضأى كنترلشده يا فضاى كـنترلنشده در لرتباط هستند.

تايمر مدار روشنايىى
 نصب شده در محل مورد نظر. تايمر امكان روشن نكاله دالشتن سيسـتمه روشــنايع بـرالى يـكـ مـدت زمان معين و خاموش كردن آن، بعد الز سيرى شدن زمان تنظيمششده , ا فرامهم مى سازد.

تعداد دغعات تعويض هوا

نظر.

تعويض هوا

فرايند جايتَّزين كردن مداوم بخشى الز هوالى فضاهانى ساختمان با هوالى تازه. ميـزالن حـداقل دبـى
 مقررات ملى ساختمان، جهت تأمين شرايط بهجداشتى هواى دالخل فضانى كنترلشنده باشد.
تغيـيـر كاربرى
 مبحث الرائه شدهاست.

> توان آكتيو

بخشى از كل تولن انرزی الكتر يكى در شبكه تأسيسات برق كه قابل تبديل به توانهایى الواع ديگـــر انرزّىها مى باششد.

توان رِآكتيو
بخشى از كل توان انرزّى الكتر يكى در شبكه تأسيسات برق كه توسط تجههيزاتى نظيـر موتورهـاى

انرزّىها نيست.
توان ظاهرى
الندازه برايند مؤلفههاى توان آكتيو و توالن رآكتيو النرزى الكتر يكي در شبكه تأسيسات برق.

كّسترش ساختمان موجود در سطح، يا الفزودن به طبقات آن.

فرايند جريان هوا (ورود و حروج هوا) در هر فصايع، بهصورت طبيعى و يا بـا اسـتعاده ز مجهيـزات مكانيكى. براى تأمين شرايط بهداشت ساكنين و بهرهبردارانن، لازم الست تمامى يا بخششـى از هـوالى تهويه با هوالى تازه تعويض شود (ر.ك. به تعر يف "تعويض هوا")،. هواى تهويه ممكن است مطبوع شده باشل (ر.ك. به تعريف "تهويه مطبوع").
 مى گّيرد.
 دريجهههاى پيشبينى شده براى اين منظور، بازشوها، دودكشها و هواكش هانى بدون موتـور انجـام

تهويئ مطبوع

 فضاهاهى ساختمان.

جدار نوركّذر (شفاف يا نيمه شفاف)

جرم سطحى
جرم متوسط يكى متر مربع الز سطح پوستهٔ داخلى يا خارجى ساختمان.
جرم سطحى مؤثر جدار (mi)

جرم مؤثر جدار

حاصلضرب جرم سطحى مؤثر در سطح جدلر.
(M) جرم مؤثر ساختمان
 محاسبئ اينرسى حرالرتى ساختمان در نظر تّرفته مىشود (ر.ك. به هيوست ז).

جرم مؤثر ساختمان در واحد سطح زيربنا (${ }^{\text {(}}$ (
 چگّالى توان سيستهم روشنايیى ساختمان
 مقدلر كل آن ها، براى تمام فضاها و يا محـيط سـاختمان، مقـدلر مصـرف بــرق سيسـتمه روشـنايى ساختمان ,ا مشخص مى كند. چنانحֶه اين مقدلر بر كل زيربنـاى سـاختمان و يـا مسـاحت محـيط
 بهدست خواهدآمد.

چگّالى توان سيستهم روشنايیى فضاها

 با تقسيهم مقدار توان كل پچراغهاى يكى فضا و يا محــيط سـاختمان بـر مقــدالر مسـاحت فضـا و يـا

حسگّر (سنسور) حركت و حسـًّر حضور

 مدال روشنايى به اين حسگّرها، اكَ حركت و يا حضور در محيط وجود نداشـتهباشــن، بعـد از مـدت
 دالده مىشود.

اين حسگِرها مىتوانند لز نوع فروسرخ فعال (مادون قرمز آكتيو)، فروسـرخ غيرفعـال (مـادون قرمـز پاسيو)، فراصوتى (اولتراسونيك)، فر كانس بالا (مايكرووِيو) و ميكروفونى (حساس به صذا) باشـنـن، و
 الستفاده قرار تحيرند.

حسكَر فروسرخ غيرفعال (مادونقرمز هاسيو)

 صورت عدم حضور افراد، بعد لز مدت زمان معينى كه الز قبل تنظيمه شده الست، مذالرها را غيرفعـال و يا هر اغها , ا خاموش مىشوند.

حسگّر فر كانس بالا (مايكرووِيو)

 لازم را به مدالر روشنايى و يا ساير مدار ها صادر مىكند.

حسكَر ميكروفونى
حسترى كه در صورت وجود فعاليت و صدا در محيط، فــال مسىــــود، و فرمـان لازم را بـهـ مــالر روشنايی و يا ساير مدالرها صادر مى كند.

حسگّر نورى (فتوسل) فرمان مدار روشنايى ريى

 (فتوسل) مجدداً برقرار شد، مدالر روشنايع را غيرفعال و هקراغها را خاموش مى كند.
 استفاده قرار می گيريد.

خيرگّى
 نور در محدوده چششم ناظر بيشتر الزّ درخشند

درخشندتى
 معيار سنجش شدت نور در واحد مساحت در يك جهـت مشخص است، و واحدآن كانـــلا بـر متـر مربع cd/m²

دستكَاه برق بدون وقفه (UPS)
 مراكزز داده، تأسيسات و تجهيزات برق سيستهمهاى ايمنى، تجهيزات خاص بيمارسـتانى، تجهيـزات

دستكَاه برق بدون وقفه ديناميكـ (No Break)
 استاتيكى مركزى، براى تأمين و تغذيه برق بدون وقفه و بهصورت مركزى، بهكار میرود.

دماى تنظيمر سيستهم سر مايبى
دماى مورد نظر براى هواى دالخل، در اوقات تَّرم سال، كه بهعنوالن ورودى، بـراى انجـام محاسـبـات عددى، شبيهسازى و تعيين ميزان نياز و مصرف انرزّى ساليانه ساختمان، به نرم الفزالر دالده مىشود.
 مراججعه شود.

دماى تنظيهم سيستهم گّرمايبى
دماى مورد نظر براى هوالى دالخل، در اوقات سرد سال، كه بهعنوان ورودى، برالى انجـام محاسـبات عددى، شبيه سازى و تعيين ميزالن نيـاز و مصـرف انــرثى سـاليانه سـاختمان، بـه نــرم افــزالر داده
 ه مر اججعه شود.

ديوار

 در جهه نسبت به سطح افقى قرلر تَرفته الست. راندمان (يا بهره نورى) لامپهای روشنايی راندمان (يا بهره نورى) لامپهاى روشنايی، بر حسب لومن بر وات، (بـهون لحـاظط كــرن مصـرف بالاست و ديكّ تجهيزات مورد نياز برایى هر گّروه لز انواع لامپها)، نسبت لومن (شار نورى) لامپ بر
 آن مىباشد.

ردهبندى (ميزان كارابي) انرزى ساختمانها

ردهبندى انرزیى ساختمان (با بخشى الز آن) شاخصى است كه حد كيفيت ساختمان الز نظر مصـرف انرزیى را نشان مىدهد. در اين مقررات، سه رده براى ساختمانهایى مختلف تعريف شدهاست: - ساختمان منطبق با ضوابط مبحث 19 مقررات ملى ساختمان - ساختمان كهانرپ٪ - ساختمان بسيار كهالنرزی

در بخش 19-1 - ا 19 توضيحات لازم در خصوص سه رده فوق الرائه شدهاست.

> روز - در جئ سر مايبى

والحدى براساس دما و زمان، كه براى بر آورد مصرف انرزّى و تعيين بار سرمايشى يكى سـاختمان در

روز - در جئ تكرمايىى
والحذى براساس دما و زمان، كه برايى برآورد مصرف انرزّى و تعيين بار تَرمايشى يكى سـاختمان در

روش تجويزى

 مختلف پوسته خارجمى ساختمان، سيستمهما و تجهيزات مـورد السـتقاده در تأسيسـات مكـانيكى و
 تفكيكى و مستقل لز يكديكِ، تعيبن می تَّردد.
محدوديتهالى كاربرد اين روش در بخش
روش كارايبى انرزى ساختمان
 سالانه مبنا قرال مى تّيرد. در نتـيجـه، لازم السـت طراحـى پوسـته خـارجى، تأسيسـات مكـانيكىى و
 ساختمان لز ميزلن محاسبهشده براى ساختمان مرجع كمتر باشد.

روش مواز نهاى (كاركردى)

يكى الز حههار روش طراحى تعيينشده در اين مبحث (فصل 19-9)، كه در آن تأثير متقابل عناصـر
 نتيجه، ضعفـ يكى لز عناصر ساختمانى ,ا مى توان توسط يكى يا چخنـد عنصـر سـاختمانى ديگّـر بـا

مشخصات برتر جبران نمود، تا ضريب انتقال حرالرت كل يا بخشــى لز سـاختمان از ضـريب انتقـال حرارت ساختمان مرجع كمتر باشد.
 روش نياز انرزى

 سيستمه هاى غيرفعال خورشيذى نيز در محاسبات لحاظ مى شـود.

زيربناى مفيد (A
مجموع سطح زيربناى فضاهامى كنترلشده در يكى ساختمان.

ساختمان با مصرف انرزى نزديكـ صفر (ECnZ)

ساختمانى كه ميزان كارايعى انرزیى آن در حدى الست كه مصرف انرزى سـالانه آن بـرالى تّرمـايش، سرمايش، تهويه و تأمين آبتَّرم مصرفى (در صورت محاسبه به روش كارايى انرزى)، طبق ضـوـوابط

ساختمان بسيار كمهانرزى (EC++)

ساختماني با ميزان كارايـ انرثى بسيار بهتتر از ميزان حداقل تعيبيشده در اين مبحث، كـه در آن
 شذه الست.
ساختمان كمهانرزى (EC+)

ساختمانى با ميزان كاراليع انرزى بهتر از ميزان حداقل تعيينشده در اين مبحث، كه در آن ضوابط

ساختمان موجود

ساختمانى كه ساخت آن بهاتمام رسيده و از آغاز بهرهبردالرى آن بيش از يكى سال مى گّذرد.

ساختمان ساختهنشده، كه طراحى آن در حال انجام است يا هنوز شروع نشُدهاست.
ساختمان منطبق با مبحث 19 مقررات ملى ساختمان (EC)
 شذه است.

ساعت فرمان مدار روشنايى
 يا فضاهاى دالخلى، با توجه به نياز و شرايط طرح. اين نوع ساءت قابل برنامهريزى الست، و در زمـان
 روشنايعى را، روشن و يا خاموش ميكند.

سامانه كاهنده (ديمر) روشنايبى

 خاص بناهاهى درمانى و يا در صورت نياز در فضاهاهاى الدارى و صنعتي مى باشد. سطح خالص فضاى كنترلشده
مساحت فضاى كنترلشده به متر مربع، بدون احتساب سطوح جدالرهاى يوسته خارجى.

> سيستهم توليد همززمان حرارت و برق (CHP)

سامانه مولد برق نظير موتور زنراتور، ميكروتوربين، توربين و نظاير آنن، براى توليد برق، و بهرهگّيرى
 آبتَّرم مصرفى و بخار (.ك.ك. به مبحث זا مقروات ملى ساختمانن).

سيستم توليد همززمان برودت، حرارت و برق (CCHP)

 سامانه مولد برق نظير موتور زنراتور، ميكروتوربين، توربين و نظاير آن، براى توليد برق، و بهرْگّيرى جیلر جذبى) و ديگّر كاربردها نظير تأمين آبگّرم مصرفى و بخار.

سيستم حجمم هواى متغير (VAV)
سيستمى كه در آن دبى (حجم) هوالى ورودى (سرد يا گَرم) به هر ناحيه دمايى، با تغيبر دور موتور
 قرال دارد. (CAV)
(VSD) سيستم (دستكّاه يا راهانداز) تغيير سرعت (ا)
 الكتر يكى ,ا با تغيير سرعت دورانى موتور آن كنتنرل مى كند.

سيستهم مديريت انرزى (EMS)
 كلى و تفكيكى انرزّى ساختمان، راههالى كاهش مصرفـ انرزّى را اولويتبندى و عمليـاتى مسىكنـد.
 تأسيسات برقى و مكانيكى مرتبط ، نقاط ضعفـ و مشكلات مرتبط با آنها , ال مشـخص نمايــن، و در صورت امكان روند كاركرد تجهيزات را بازتنظيهم و الصلاح كند. علاوه بر اين، با لرائه يك تصوير كلى و اطلاعات فنى جزئن، در خصوص مصرف، امكان اتخاذ تصميمات واقع تُر اليانه را فراهمهم ميسازد.

سيستم مديريت روشنايىى

 مىكند.

 سيستهم مديريت انرزّى و سيستهم مديريت هوشممند ساختمان مورد الستفاده قرالر مى گّيرد.
 مدارهاى روشنايى بهكار رود.

سيستم مديريت هوشمند ساختمان (BMS)

 سيستهمهاى مر تبط با تأسيسات مكانيكى و الكتر يكـى داخــل سـاختمان، و همچجنـين سـامانههـاى هرتبط با اليمنى، حفاظظت در برابر حريق و اطفــاء آن در صـورت وقـوع. سـامانه مـديريت هوشـمند
 ميتواند توسط اين سامائه تأمين كَردد.
شار كّر مايـى (يا حرار تى)
 بينالمللى يكاها وات بر مترمربع مىباشد.

شدت روشنايـي
 معادل يكـ لومن بر متر مربع است.

شيشه كماگّسيل
شيشهالى كه با داشتن پوششههانى پايه فلزی خاص، متشكل لز ذارات در مقياس نانو، بر روى يكى يا

ضريب افت توان نورى چراغ (LLF)
نسبت روشنايى (به لومن) كاهشيافته يكى منبـع (در اثـر عـوأملى نظيـر كَّذشـت زمـان و كـاهش بازدهى، كثيفـشدن، ولتاز اعمالشنده) به روشنايى اوليه آن.
(H) ضريب انتقال حرارت طرح

مجموع انتقال حرارت از جدالرهاى فضاهاهى كنترلشده ساختمان يا بخشى از آن (در حالت پايدلر))، در صورتى كه الختلاف دماى دالخل و خارج برابر يكى درجه كلوين باشد. والحد مورد السـتفاده بـرالى ضريب انتقال حرارت [W/K] است. در روش موالزنهالى (كاركردى)، اين ضريب بـا ضــريب انتقـال حرالرت مرجع مقايسه مى تُردد.

ضريب انتقال حرارت خطى (世)
شار تَرمايى يا توان حرإرتى منتقل شده بهازالى يكـ متر طول پـلحرالرتـى (بخشـى يـكـ بعـدى از يوستهٔ خارجى ساختمان)، در صورتى كه الختلاف دماى دالخل و خارج (در حالت پايدلار) برابـر يــى در جه كلوين باشد. واحد مورد الستفاده براى ضريب انتقال حرارت خططى [W/m.K] است.
(U) ضريب انتقال حرارت سطحى
 مترمربع)، در صورتى كه الختلاف دماى داخل و خارج (در حالت پايــالر) برابـر يــى درجـهـ كلـوين باشد. واحد مورد الستفاده براى ضريب انتقال حرارت [W/m².K] الست.

ضريب انتقال حرارت سطحى مرجع (Û)

ضريب انتقال حرالرت بر واحد سطح انواع مختلف جدالرهاى تشكيلدهننده پوستئه خارجى ساختمان

 الست.

خريب انتقال حرارت مرجع (ف)
حداكثر ضر يب انتقال حرارت مجاز ساختمان يا بخشى از آن، كه با الستفاده لز روابطط لرائـهشـشـه در
اين مبحث محاسبه می گردد. واححد مورد الستفاده براى ضريب انتقال حرارت [W/K] است.

ضريب انعكاس متوسط وزنيافته سطوح داخلى
مجموع حاصلضرب ضر يب انعكاس هر يكـ الز سطوح دالخلى فضا در مساحت آن سطح تقسـيـهم بـر مجموع مساحت كل سطوح.

ضريب بهره چراغ (CU)
نسبت نور رسيده به يكى سطح مشخص نزديكى به منبع نور، به كــل نــور منتشـر شــده توسـط آن

ضريب بهره كَرمايبى خورشيدى (SHGC)

 برای شيشه و همه براى كل سيستّهم جدار نور كّذر (شامل شيشه و قاب) تعريف مىشود.
(h) ضريب تبادل حرارت در سطح جدار
 آنها يكى درجه باششد.
ضريب كاهش انتقال حرارت (ح)

 لز سطوح مجاور فضاهاهى كـنترلنشَده (. ك. ك. به پيوست و). ضريب عبور نور مرئى

 دالخل ساختمان راه مى يابد.

ضريب هدايت حرارت (ג)

 واحد ضريب هدايت حرارت [W/m.K] است.

طبقه ساختمان

بخشى از ساختمان كه بين دو كفـ تمامشده متواللى قرالر دالرد. در محاسببه تعداد طبقات يـا شـماره هر يك لز طبقات يكى ساختمان، تراز همكفـ نيزّ به عنوان يكى طبقه محسوب مىشود. بـه عبـارت ديگّ، يكى ساختمان كه تنها بكى تراز همكفـ دالرد يكـطبقه محسوب مىشود، و همكفـ طبقـه الول آن تلقى مىتّردد.

عايق (عايق حرارت)

 تحت شرايط ويزه، هوا نيز مى تواند عايق حرالرت محسوب شود. عايق حرارت قابل الستفاده در ساختمان به عايقى اطلاق مى شود كه دالى ضريب هــدايت حـرارت كمتر يا مساوى

عايقكارى حرار تى (كّر مابندى)
الستفاده لز عايق هاى حرالرتى برايى محدود كردن ميزان انتقال حرالرت در اجزالى ساختمانى. سيستهم عايق كارى حرارتى بايد دو شرط زير را دالرا باشد:

باشش؛

- ضر يب هدايت حرالتى عايق مصرفي از حد مشخصشدهالى بيشتر نباشد.

يادشده در مقررات را بدون استفاهه لز عايق حرارتى تأمين كرد.

در صورت عايق كارى حرالرتى مناسب عناصر ساختمان، تأمين و حفظ آسايش حرالرتى در فخـاهاى
 عايق كارى حرارتى به وسيلئ يكى مانه يا مصالح خاص يا با سيسـتمى بـا پانــدين كـارآيى صــورت
 ولى در بيشتر موار ه، لازم است لايهالى ويزَه، صرفاً بهـعنوان عايق حرالرت، به جدالر الضافه شود.
عايقكارى حرار تى از داخل

عايتق كارى حرالرتى اجزالى ساختى ار الختمانى، كه با الفزودن يكى لايه عايق حرارت در سمـت دالخـل صـورت مى گّيرد.

عايقكارى حرار تى از خارج

 مى تّيرد.
عايقكارى حرار تى پيرامونى
 خار جـى ساختمان.

عايقكارى حرارتى همگّن

نوعى عايثقكارى حرالرتى كه در آن مصالح ساختمانى مصرف شده، المها از سازمالى و غير سازمالى، در بخش اعظمر ضخامت پوستئه خارجى (ديوار، سقف، كفـ)، مقاومت حرارتى زيادى داشتـهباشد.

عناصر ساختمانى

 عوامل ويرثه
عواملى كه وضعيت ساختمان را، لز نظر ميزلن صرفهجويى در مصرف انزرّى، تعيين مى كنـنـد (ر.كى. به بخش

فضاى كنترلشده
بخش هايع از فضاى دالخل ساختمان كه دماى هواى دالخل آنها توسط تجهيزلات سرمايى، تُّرمـايى و تهويه مطبوع كنـترل شود.

فضاى كنترلنشده
بخش هايى از فضاي ساختمان كه تعر يف فضاى كـنترلشده در بر حّيرنده آنها نيست (همانــند درز
 كرّايشى و سرمايشى اند).

كاربرى ساختمان

 عبارت »"حوؤ تصرف" بهكار رفتهالست.
 فضاى خار جـى در تماس الست. كفـ بخشى لز پوستئ خارجى ساختمان محسوب مىشود. كفايت نور روز
درصد ساعات مورد استفاده فضا در طول سال، كه حداقل ميزلن تعيـينشـده شـدت روشـنـايى در منطقه موردنظر (سطح كار) توسط نور روز تأمين مى تَرْدد. كفايت نور روز در فضا
درصدى از مساحت منطقه موردنظر (سطح كار)، كه حداقل ميزان شدت روشنايى تعيينشده براى درصد ساءات تعيين شده در طول سال تأمين مىشون.

كليد قطع و وصل

 مساحت تحت يوشش سيستهم روشنايى بهطور عام و در شر ايط عادى، محدود به مقدلر جريان مدلر روشنايی، كليد محافظتى مدالر و جر يان نامى كليد قطع و وصل مدلر الست.

كنترلكننده اتوماتيكـ قابل برنامثريزى (PLC)

 كنترل، صفحه نمايش و صفحه كليد براى تنظيهم و برنامهريزى هــر كانـال بـهـهـورت مسـتقل، بــر الساس مشخصات فنى توليد، مىباشد.

كواهى نامه فنى معتبر

مدرك فنى تأيدنكننده كارايع يكى محصول و انطباق آن با مقررات ملى ساختمان. تّوامیىنامه فنى توسط يكـ نهاد دالرالى صلاحيت قانونى صادر مـىشـون، و تــاريخ اعتبـارى دارد كــه بايــل در زمــن طراحى و اجرالى ساختمان بروسى شود و لز معتبر بودن آن اطممينان حاصل تَّردد.

محدودة آسايش (حرارتى)

 آن الز نظر حرارتى احساس آسايش دالرند. مقاومت حرار تى
 الختلاف دماى سطوح محصور كنـنده لايه يكى درجه باشل. بـرأى يـكى لايـه تشـكيلششـده از مصـالح

همكّن، مقاومت حرالتى برابر است با نسبت ضخامت لايه به ضر يب هدايت حرارتى آن. هقاومت حرالرتى يكى لايه هوالى محبوس در يكـ جدالر: مقاومـت حرالرتـى معـادل يـكـ لايـه هـوالى محبوس كه در آن انتقال حرالرت الز طريق هدايت، همرفت و تـابش، بـهمهـورت هـهمزمـان صـورت مى گّيرد. مقاومت حرالرتى (لايه هوالى محبوس) معكوس شار حرالرتى الست، زماني كه الختلاف دماىى سطوح محصور كنـنده لايه هوا يكى درجه باشد. مقاومت حرالتى لايه هوالى مجاور سطح دالخلى (يا خارجى) جدالر: معكوس ضريب تبادل حرالرت در سطح جدالر، و يا معكوس شار حرازتى گّذرنده لز سطح دالخلى (يا خارجى) جدالر، زمانى كه الختلاف دماى بين سطح داخلى (يا خار جى) جدار و هوالى محيط داخل (يا خارج) يكى در جه باشد.
 مقاومت حرارتى با R نمايانده مىشود و يكاى آن [m²K/W] است

نشت هوا

 محلهمايى كه براى تعويض هوا يششبينى شدهاست. نهاد داراى صلاحيت قانونى

 توسط وزارت راهوشهرسازیى مشُخص می يُردد.

 ملى ساختمان است. يك واحد خانه، متشكلى از يكى اتاق يا بيشتر، كه امكانات كامل و مستقل (خواب، خوراك، پֶتوريز و بهداشت) براى زندتَى يكى نفر يا بيشتر در آن فر(همه باشد.

هوابندى
جلوگّيرى الز ورود و خروج هوال، الز طريق يوسته يا درزهاى عناصر تشكيللدهنده آن.

r-r-19

 ساختمانها تَروهبندى مى شوند. عوامل ويرَّ الصلى تعيين كنندة كُروه ساختمان، به قرال زير است: - كاربرى ساختمان؛

$$
\begin{aligned}
& \text { - درجه انرزى (تّرمايع - سرمانی) سالانه محل استقرال ساختمان؛ } \\
& \text { - تعداد طبقات و سطح زيربناى مفيد ساختمان؛ }
\end{aligned}
$$

 مىشود.

19

 ساختمان از نظر نوع كاربرى به هيوست

در صورتى كه بخش يا بخشتهايى از ساختمان، با مسـاحت بــش الز • 10 مترمربـع، و بـا كـاربرى هتفاوت با كاربرى عمومى ساختمان (كاربرى بخـش بــزرگّتـر سـاختمان) جــزو فضـاهاى دالخلـى

آن تَّروهبندى رعايت شود.
 سالانه
 - مناطق دالرالى درجه انرزی سالانه كمه؛ - مناطقق دالراى درجه انرزّى سالانه متوسط؛ - مناطق دارالى درجه انرزّى سالانه زياد.
 درج شدهاست. در صورتى كه شمهر محل الستقرالر ساختمان در اين پيوست ذكر نشــده باشــن، بايــد نزديكـترين ايستگاه هواشناسى مندرج در اين پيوست ملاكى عمل قرال, گّيرد.
 در اين مبحث، ساختمانها الز نظر تعداد طبقات و سطح زيربناى مفيد به دو يّونهاند: - ساختمان هاى 9 طبقه و كمتر با زيربناى مفيد كمتر از ... - ديكِ ساختمان ها (ساختمانهایى با بيش لز 9 طبقه يا با زيربناى مفيد مسـاوى يـا بيشــتر از

- . . ـ مترمربع).
(19 F-1-Y-Y-19 ساختمانها، لز نظر شرايط بهرهگّيرى از انرزّى خورشيلى، به دو گّونه تقسيـهم مىشوند:
 - ساختمانههاى دالراى محدوديت در بهره گّيرى از النرزّى خورشيلىى.

 ساختمان با زاويهالى كمتر الز
 خورشيدى شناخته مىشود.

 دست كم ده ساءت در روند الستفاده وقفه بيفتد و بتوان كنتـرل دمـا در محــدودهُ متعـارف زمان الشغال فضاها , را متوقف كرد.
- استفادهٔ مداوم: الستفاده لز ساختمان (يا بخشى از آن) به تَونهالى كه تعريفـ اسـتفاده منقطـع ع بر آن صادق نباشد.

در حالتهالى زير، فخاهاى با استفادهُ منقطع، بهعنوان فضاهاهى با الستفادةُ مداوم تلقى مىشوند: - اينرسى حرالرتى زياد جدالرهاى فضاهاهى مربوط (.ر.ك. به پيوست Y)؛ - عدم امكان كاهش دماى هوالى فضا بيش از Y درجئ سلسيونس زير محدودةُ دماى تعيينشده
 تعيينشده براى زمانهاى عدم بهرهبردالرى سانختمان.

19 تع-r-r-r- تعيين گّروه ساختمانها

برالى طراحی ساختمان، طبق ضوابط مندرج در اين مبحث، لازم است ابتدا تَروه ساختمان تعيـين
 - تُروه ا: ساختمان هانى در اوولويت بالا الز نظر صر فهجويعى در مصرف انرزي؟؛ - تّروه t: ساختمانهانى در الولويت متوسط لز نظر صرفهججويى در مصرف انرثى؟؛

 است.
 روش هاى تعيينشده در بخش ضوابط اجبارى فصل 9 أ 19 اين مبحث الزامى است.

19-r مقررات كلى طراحى و اجرا

لازم اسدت تمامى مدالر ك مورد نياز براى تأييد ساختمان از نظر ضوابط صرفهجوئى در مصرف انرزیى

19-1-19 مداركى مورد نياز براى تأييد ساختمان از نظر ضوابط صرفهجوئى در مصرف انرزی در زمان الخذ پروانةُ ساختمان
 صرفهجويى در مصرف النرڤى، لرائه تَردد:

19
جیىليست انرزَى بايد حاوى اطلاعات زير باشد:
الفـ- مشخصات ساختمان (شامل آدرس، مشخصات مالكى و ...)؛

 ت- سطح زيربناى مفيد ساختمان (مطابق زيربند 9 (9 -

مىشود)؛

 ح- اطلاعات مهندنس طراح و تاريخ طراحیى؛ خ- رتبه انرزیى ساختمان؛؛

د- مشخصات كلى عناصر يوسته خارجى (ضرايب انتقال حرالرت طرح و مرجع) ؛ ذ- مشخصهـات فنــى مصـالح و عـايقهــاى حرارتـى مصــرفى در ســاختمان، مطــابق بنــــ

و Y V مبحث)؛

ر- مشخصات حرارتى جدلرههاى تشكيلدهندهُ پوستئ خارجى ساختمان: ا- مجموعه ,اهحلهانى فنى مورد الستفاهه و الزامـات تعيـينشــده در آن بـا توجـه بـه

موقعيت جذلرها و نحوه عايق كارى حرلارتى آنها ، مطابق پيوست A الين مبحث؛「- مقاومت هانى حرالتى (طرح و مرجع)، در صورت الستفاده لز روش تجـويزى، هطـابق فصل 19-ه؛

ץ- ضرايب اننتقال حرارت (طــرح و مرجـع) سـاختمان، در صـورت السـتفاده لز يكـى از روشههاى موازنهالى (كاركردى) مطابق فصل 19-ع، يا نياز انرزّى مطابق فصل 19Y، يا كارايی انرزی مطابق فصل A-19؛
 آن ها (ضريب انتقال حرالرت، ضريب بهره تُرمايى خورشيدى، ضريب عبور مرنى)؛ ز- مقدلر نياز انرثى ساختمان (طرح و مرجع)، حر صورت استقاده لز روش نياز انرزّى ساختمان، مطابق فصل 19 - 9 ؛

زَ- مقدال مصرف انرزّى سالانه ساختمان (طرح و مرجـع)، در صـورت السـتفاده از روش كـارايى انرزیى ساختمان، مطابق فصل 19-A؛

س- مشخصات كلـى سيسـتمهــاى تأسيسـات مكـانيكى (طــرح و مرجـع) و مشخصـات فنـى

ش- دفتر جه محاسبات مكانيكى (شامل محاسبات بـار سـرمايى و گترمـايى سـاختمان، تعيـين ظرفيت و بازدهى تجهیيزات تأسيسات مكانيكىى) در صورت طراحـى بـا يكـى الز روشهــاى

ص- مشخصات كلى سيستههــى الكتريكـى و تجهيـزات (طــرح و مرجـع ات و مشخصـات فنـى
 محاسبات تأسيسات برقى (مر تبط با موضنع هـرفهجهـويى در مهـرف انــرثّى)، در هـورت

 صورت وجود امكان تأمين، لازم الست موارد زير مشخص تُّردد:

انرثى تجههيزات مورد الستفاده، مطابق بخش 19-19-P-D؛

تجديدِّير، مطابق بخش

$$
\Delta-F-19
$$

19

 بايد لرائه شوند:

- خلاصهالى الز محاسبات و تحليلهاى انجامشده، شامل ميزلن مصرف انرثّى سـالانه سـاختمان مرجع و ساختمان طرح (در صورت استفاده لز روش كاراليى الــرزى بـا السـتفاده از مقـادير معيار مصرف تنهيا محاسبات مربوط به ساختمان طرح لرإئه شود) - مشخصات نرمافزالرى كه براى محاسبات مورد الستقاده قرالر گرفته الست - فهرست امكانات و تجههيزات انرزَى بر در ساختمان، و تفـاوتهـاى احتمـالى مشخهـات فنـى آنها با مشخصات استاندلرا
- فهرست انطباق موارد مختلف با الزالمات در نظر گَرفتهشله در اين روش طراحى - روش مذلسازى و فرضيات در نظر تَّرفتهشده
- اطلاعات خروجيهاى نرمافزالر و ميزلن مصرف انرثىى تفكيكـى روشـنايع، تجهيـزات دالخلـى،

تهويه مطبوع (نظير چمـپها) باشد.

- خطاهاى احتمالى اعلام شده توسط نرمافزال,

r-1-Y-19 نقشههاي ساختمان

 ساختمان، نقشههانى تأسيسات مكانيكى و تأسيسات الكتريكـى سـاختمان هسـتـند. در نقشـهههـاى
 نظر ميزان صر فهجويى حر مصرف انرپى (پيوست F) مشخص شُده بانشد.
 حسب نياز) تهيه شوند؛ و در آنها نحـؤوء الجـراى عـايق كـارى حرالرتى و مشخصـات فنـى مصـالح تشكيلدهنندهُ پوستهٔ خارجى مشخص شده باشد.

نقشههانى تأسيسات مكانيكى بايد شامل سيستهمهاى توليد، توزيع و كنـترل مصرف الــرثّى، جـداول مشخصات تجهيزات مكانيكى و جزئيات عايقكارى لولهها، كانالها، منابع و كليه اجزالى نيازمنـلـ بــه عايق كارى حرارتى باشند.

در نقشههالى تأسيسات برقى بايد قدرت برق مصرفى، مشخصات فنى عمومى و يادالثتهـاي لازم

 بيشتر به مبحث سيزدهما مقر ات ملى ساختمان رجوع شود).

 مشخصات فنى مربوط بايد به تأييد و المضاى مهندس يا شركت طراح برسد.
r-r-19 روشهاي مختتلف طراحى و بهكارتّيرى نرمافزارهای در هماهنگّى با مقررات
 امكان پذير استٍ.

 صورت تَيرد.
19-r-r-19 روشهاي طراحى

جهار روش الصلى طراحى مطابق مبحث 9 1، بهشرح زير تعريف تَرديدهاست: - روش تجويزى مطابق فصل 19-ه - روش موازنذهالى (كاركردى)، مطابق فصل 19-9 Y-19 روش نياز انرزى ساختمان، مطابق فصل -

- روش كارايى انرزّى ساختمان، مطابق فصل 19-

 | نمودالر مراحل مختلف طراحى در پجهار روش لرائه شله در اين مبحث نشان دالده شده الست. براى كنتـرل رعايت مبحث 19 مقرات ملى در انواع سـاختمانهـا، در تمـامى مـوالرد مـىتـوان از روشهانى نياز انرزى و كارايى انرزیى ساختمان بهره تَرفت، الما براي استفاده لز روشههاى تجويزى و موازنهالى محدوديتهايى به شرح زير وجود دالرد:
 الستفاده لز روشهای تجويزى و موالزنهالى (كاركردى)تنهيا در صورت تحققى پنج شرط زير (بهصـورت همهزمان) مجاز است:
 .

ب) زيربناى مفيد ساختمان كمتر يا مساوى ... T مترمربع باشث؛ پ) تعداد طبقات (بدون احتساب طبقات مربوط به فضاهایى كـترلنشده نظير پاركينگّ و انبار) كمتر يا مساوى 9 طبقه باشد؛

ت) الينرسى حرارتى ساختمان (مطابق پيوست Y) متوسط يا زياد باشش؛ ث) ممنوعيت و هحدوديتى در دسـتور العملهــا و بخـشنامـههـاى صــادر شــنه توسـطط وزارت ,راهوشهرسازی، با توجه به محل قرارگّيرى سـاختمان (السـتان، شـهر، ...) و مشخصـات آن (تعداد طبقات، مترأز، كاربرى، ..)، در اين خصوص، وجود نداشتة باششد.

 طراح مىتواند با در نظر ترفتن شرايط و امكانات يروزَه بر اساس يكى از روشها اقدام به طراحى نمايد.

جدول 19-r-1 ويرثّى هاي روشىهاي مختلف طراحى "

كارايبى انرئ	نياز انريّ	موازنها	تجويزي	روشى هاي طراحى	
نياز به شبيهسازی بك براى تَهيِين ميزان مصرف انروزي ساكيانه	نياز به شبيهسازازى تهيين ميزان نياز انترزي ساكيانه	هحاسبه ساده با نر مافزفا كا (excel	نياز به محاسبات Evis	يوسته خارجى,	سهولتطراحى
	نيِاز به هحاسبات \qquad ع1505	نياز به محاسبات \qquad sues	نياز به هحاسبات 5030	تأسيسات عكانيكى,	
	نيِاز به محاسبات suse	نياز به محاسبات 5030	نياز به محاسبات 5050	تأسيسات برقى	
	بهصوت جزئى	با با	-	يوسته خارجي	دست انكانــ
	X	X	X	تأسيسات هكانيكى	
	X	X	X	تأسيسات برقَى	اقتصادي
	نسبتأ		ساهس	يوسته خارجيى	سهولت
- \%	ساده	oslu	ساس	تأسيسات عكانيكى	كنتول،
	\%	ساده	ساده	تأسيسات برقى	نظارت
سـاخْتمانهای تعيينـنـده در بخ شا	 1-1-19	سانختماندها 自 i-I-Y-Y-19	 $\begin{aligned} & \text { 1-1-T-r-19 } \\ & \text { 1-19 } \end{aligned}$	كاربر3	
نيازمنـد به كار ज	نياز به هتحصصص براي ملّ سازي	X	X	يوسته خارجى,	نياز به متخْصص
هتخصصصين	X	X	X	تأسيسات مكانيكى	انرئ
مدلّسازى (is	X	X	X	تأسيسات برقى	طرايراي
$\sqrt{ } \sqrt{ }$	بهصورت جزئى (بين اجزايى يوسته خا خا	بهصورت جزئى (بين اجزاي يوسته - خا	X	بهصورت يكهارهيه	اهكان طراح

 صلاحيت قانونى مورد استفاده گيرد. ويزگّى هاى حداقل نرمافزالرها، براى روش نياز انرزّى در بخـش

ض-19 ضوابط اجبارى

رعايت ضوابط تعيينشده در اين فصل در تمامى موارد و تمامى روشهانى طراحي، الزامى است.
 بايد رعايت شود كه در فصول 19-ه تا 19-19. برالى روشهماى مختلف طراحى الرائه ترّرديدهاست. در صورت طراحى با هر يكـ از جهار روش مطـحشده در اين مبحث، رعايت اصول كلى مطرح براى هريك الز روشهاى اتخاذشده الزاممى است. علاوه بر اين، ضوابط عمومى مطرح برالى يوسته خارجى،

 كمانرثّى و بسيار كمانرثّى در نظر تَرفته شدهاند، رعايت شوند.

در صورت رعايت اصول كلى و تمامى معيارهالى تعيينشده براي ساختمانهماى كمانرثّى يـا بســيار كمانرزّى، امكان الطلاق اين عنوانها بها ساختمان فراهمم مى كَّردد.

 يكى از روشههاى مطرحشده در فصلهايى 19-0 تا 19-A انجام شود.

در مورد تمامى يروزّههاى بازنوسازى و بهسازى نيز مولرد زير توصيه مىشود:

- در مورد تمامى پروزَههاى بازنوسازى و بهسـازى اساسـي، حتــيالامكــان الزالمـات مربـوط بـهـ ساختمانْهاى نو (نوسازى) مورد رعايت قرالر گَيرد؛
- در صور تى كه بهسازى هحدود به نما باشــلـ، حتـى الامكــن مقاومـت حرالرتـى نمـا در حــىى الفزايش يابد كه مساوى يا بـشتر لز مقادير تعيينشده در روش تجـويزى (ر.ك. بـهـ بخـش

$$
9 \text { 9- } 9 \text { شون؛ }
$$

- در صور تى كه بهسازى محدود بهه مسقف كرین يكى بخش روبـاز سـاختمان و تبـديل آن بـهـ فضاى كنترل ششده باشد، حتى الامكان مقاومت حرارتـى عناضـر قسـمـت بهســازىشــده در حدى افزايش يابن كه مساوى يا بيشتر لز مقادير تعيينششـده در روش تجـويزى (ر.كى. بـه بخش 19- 19 ش- ش) شود. پوستـهُ خار جى ساختمان Y-F-19

(-Y-Y-19

الفـ) در صورتى كه براى عايق كارى حرالرتى ساختمانها الز مصالح و سيستمهانى عـايق حـرالرت متعارف استفاده شود، لازم الست جزئيـات كليـه جــدارهناى خـار جـى و دالخلـى سـاختمان، مشخصات فنى مصالح مورد استفاده در اين جزئيات، مانند ضريب هدايت حرالرتى، چگّالى، پوشش محافظ احتمالى عايقها و مراججع مورد السـتفاده بـراى السـتخر الج مشخصـات فنـى مذكور در نقشُهها و مدلر ك مربوط به محاسبات مبحث 19 درج شده باششند.
 پيوست A اين مبحث، الستخراج شوند و تصوير صفحات مورد الستفاده مد نظر جزء مدلرى مربوط به محاسبات مبحث 19 باشد.

/و'ويت قرأر تميرثن.

 شون.

مشخصات حداقل جدارهاي غير نوركّذ پوسته خارجى ساختمان
مشخصات حرالرتى جذالرهاى مختلف، بسته به روش طراحّى مى تواند متفاوت باشد، ولى در تمـامى
 بيش از مقادير الرائه شده در جدول 19-1 أ | باششد:

جدول 19-1-1 معاو متهاي حداقل لازم براي جدارهاي يوسته خارجى ساختمان

[m².K/W] مقاومت حرارتى حداقل	
- Δ.	ديوار
$\cdot \gamma \cdot$	بام
-90	كف در تماسى با هوا

مشـخصات حداقل جدار هاي نوركّذر پو سته خارجى ساختمان

رعايت قرالر تَيرد:
 طبيعى شوند. براى اين منظور، لازم است:

- نسبت ضريب عبور مرئى به ضريب بهره تَّرمايىى خورشيدى (TV/SHGC) بيشـتر از
-, باشد.

نور ّزذر با ضرايب عبور مرئى (TV) مساوى يا كمتر لز اين مقدلر تنها زمـانى مجـاز
است كه دلايل فنى كافى بـرالى تـأمين روشــنايى طبيعى لارائـه شـود و طراحـى ساختمان به روش نياز انرزى يا كارايى انرزّى صورت تَيرد.

جدول

حداقل رده بر چـسب انرزي پَنجره	نوع شيشه	جنس پین.جر0	0\%
$\mathrm{C}^{* *}$	جنّن جـداره	يويْوكاسیى ألوميـنيومىی تّرماشكن خوبّ	كارايیى بالا
$\mathrm{F}^{* *}$	دو جـداره		بهيبوديافته كارايـى متوسط
-	تمام انواع	تمام انواع	ساده

* توضيخ: براي دستيايكى به پنجره با كارايیا بيبوديافته ، لازم است هلاوْ بر كاهشى ضريب انتقال حرارت، بـا انتخـاب

** توضيح هطابق استاندارد مربوطه در ييوست זّ

F-Y-Y-19

فضاهاهى كنترلشده ساختمان نبايد بهطور مستقيمر با فضاهاهى كنتـرل نـشـده يـا فــخاى خارج در
 درهاى الرتباطى با فضاى خارج بهصورت خودكـار بسته شوند يا از نوع تَردالن باشند.
(0 جدارهاي مجاور ديگّر ساختمانها
در مورد آن بخش از جدلرهاى جانبى ساختمان كه، با درز انقطاع لز ساختمان قطعـه مجـاور جــدا
شدهاست، لازم الست نكات زير مد نظر قرال, گّيرد:
الف) در صورت پوشيده بودن كامل فضاى درز انقطاع، و نيز يقين دالشتن به كنترلشــنده بـون فضاهانى ساختمان مجاور، نيازی به عايقكارى حرارتى آن جدالرها نيسـت، امـا در صـورتى كه اطلاعى در مورد نحوؤ كنترل دمايى ساختمان مجاور در دست نباشل، جدالر مجـاور آن ساختمان مانند جدالر مجاور فضاى كنترلنشده در نظر تَرفته مىشود.
ب) در صورت پوشيده نشدن درز ميان دو ساختمان، جدلر مجاور آن مانند جدالر مجاور فخـاى خارج در نظر تُرفته مىشود.

در مورد آن بخش از جدالرهاى جـانبى سـاختمان كـهـه بـدون درز انقططـاع بـه بنـاى قطعـه مجـاور
 نيست. اما اتّر نحوه كنـترل دمايى ساختمان مجاور معلوم نباشل، جدالر مجـاور آن سـاختمان ماننــد جدالر مجاور فضاى كـتـرلنشده در نظر تَّرفته ميشود. 9-Y-F-19
(19

 با بشّد.

جدول 19-f-r-r ميزان حداكثر نشت هواي متجاز تحت اختلاف فشار •ه هاسكال

بر'ى محاسبه نرخ تعويض هو'ى ححمىى (تعد/د دفعات تعويض هو' در ساعت) لاز ز/است نسـبت

(
تمامى درزغناى بين عناصر زير، با يلد بهانحو مناسبيى هو'بنلدى شَون:

- اجز'ى تتشكيلدنهناه فأكت، رِّنو
- بنّجرء و سنت كارى د ديو'ر.

 و نطّ ير آن هو'بنديى را تضعـيفـ نمىيكنـند.

(T-Y-Y-Y-19 تأمين هواى تازه در صورت كاهش ميزان نشت هوا

 تأمين سلاهتى و بهها/شت و هو'ى لاز

جئيات عايقكاري حرارتى جدارها

برالى عايق كارى حرالرتى جدار ها، لازم است جزييات طراحى و اجرا مطابق اصول تعيينشده توسـط نهانهاى دالراى صلاحيت قانونى باشد.

در صورتى كه طراح لز روش تجويزى استفاده كند، و مقادير مربوط به حالتهاى دالرالى پل حرالرتى
 لارائهشده در نظر تَرفته شدهاست. همحچنين، در ضوايب انتقال حرارت مرجع الرائه شـده در جـداول روش موازنه نيز اثر پلهانى حرالرتى در نظر تَرفته شدهاست.

اتُر طراح بخواهند مقادير دقيقى پل حرالرتى را رأساً محاسبه نمايــد، بايــد ايـن كـار را بـا السـتفاده لز
 مربوط به آن، انجام دهد.

9-ヶ-ヶ-19
(19-9-4-4-19
در اين بخشَ، الزامات الستماهه لز روشنايى طبيعى براى فعاليت افرادى كه دالرالى توانايع هاى بصرى
 شده استت. ميزلن روشنايى طبيعى در فضاى دالخـل بـه مقـدلار نـور والرد شــده لز بازشـوها و ميـزالن انعكاس سطوح دالخلى بستاگى دارد.

 فضاهاى خارج از موالد و جداول مذكور، موردنياز باشد، شدت روشنايى پيشـنـهادى السـتاندالردهاى معتبر بينالمللم، ملاكى انتخاب خواهد بود.

جداول شدت روشنايى مذكور، براى شرايط بينايي عادى كاربرد دالرند. در صورثى كه شر ايط بينايى فرد كمتر از حد عادى باشد، مقدار شدت روشنايى با مقادير جدلوال مزبور تماوت خواهنـد داشت

شدت روشنايى موردنياز فضاهاى دالخلى ساختمان مىتواند توسط ووشنايى طبيعى يا مصنوعى و يا تر كيبى از هر دو تأمين شود. فضاهايىى كه الزاماً به نور طبيعى نياز دالرند، بايد حداقل دالرالى يكى
 ميزان شدت روشنايع و يكنوالختى روشناييى بايد در الرتفاع سطح كار تعيين شود. ممكـن اسـت در
 شدت روشنايى بايد روى تمام آن سطح گّسترده تأمين شود.
 نور تّيرها و الرتفاع سقف بايد به نحوى باشد كه يكنواختتى روشنايى در فضايى دالخل تأمين شود.

سطح كار r-q-r-p-19
اتُر محل سطح كار مشخص باشد، در اين صورت شدت روشنايى مورد نياز بايد در سطح كار تأمين شود، مثل روشنايیى روى سطح ميز كار. در صورتى كهة ارتفـاع سـطح كــار مشـخص نباشـنـ، بـرالى سنجش شدت روشنايـى لازم الست الرتفاع سطح كار لز كفـ برابر با مقادير زير در نظر تَّرفته شود:
 - برایى فضاهاى صنعتى و مسكونى، يكى سطح افقتى AD • متر بالاتر از كفـ. - براى راهروها، يكى سطح الفقى با الرتفاع كمتر از

لازم است، براى سطوح كار، روشنايى تعيين شده در مبحـث با مقــروات ملـى سـاختمان تـأمين تّردد.

در صورتى كه هنگًام طراحى محل سطح كار مشخص نباشد، يا احتمال تغيير محل سـطحح كـار در دوره بهرهبردالرى وجود داشتهباشل، مثل محل مبزهانى كار در يكـ ادالره با پـلان بـاز، طراحـى بايــد
 شدت روشنايع مساوى يا بـشـتر از مقدلر تعيين شده در اين مقررات باشد.

(يكنواختى روشنايى بر سطح كار

سططح كار بايد به طور يكنواخت روشن شود. يكنواختـى روشنايى بر روى سطح كــار زمـانى تــأمين

 باشد.

$$
\begin{equation*}
\mathrm{Ur}=\mathrm{Eh}_{\min } / \mathrm{Eh}_{\text {avg }} \tag{1-4-19}
\end{equation*}
$$

در اين رابطه:
نسبت يكنواختى شدت روشنايع
\quad : $\mathrm{Eh}_{\text {min }}$: Eh avg

شكل

جدول

شدت روشنايیى محيط مـجاور سطح كار lux	شدت روشنايـى سطح كار lux
$\Delta \cdot$	Vo. \leq
H..	$\Delta \cdot$
H.	H.
10.	H.
برابر با شدت ,وشناييى سطح كار	≤ 10.

(
به منظور هرهيز از إيجاد خـبرگى در فضاى دالخل، خورشيد يـا تصـوير مـنعكس شـده آن نبايــد در هحدوده چششم ناظطر، در جهت ديد الفراد قرالر بتِيرد. در اين صورت بايد لز سايهاندالز الستفاده نمود.

> F-F-19 تأسيـسات مكانيـكى

علاوه بر رعايت الزامات مبحت چهباردهمه مقررات ملى ساختمان، بايد الزامات مندرج در اين بخـش نيز، براى صر فهجويى در مصرف انرزیى در تأسيسات مكانيكي، در تمامى ساختمانهها رعايت شود. 1-Y-Y-19 تفكيك سيستمهاي گرمكننده و سردكننده فضاهاي با نحوه بهر هبر داري متفاوت

درصورتى كه از قسمتى از فضاهاها ساختمانى غيرمسكونى با بهرهبـردالىى منقطع، بــهـهـورت مداوم الستفاده شود، بايد سيستهم هاى گّـرم كنـنــنـه و سـردكنـنـده اين فضاها الز سيستهم مركزی تفكيكى و بهصورت مستقل در نظر گَرفته شود.

عايق
عايق كارى حرالرتى تمامى لولهها و هخازن آب تَرم و سرد و لولههالى حاوى مبرد بايد با السـتفاده لز

الفـ)مقاومت حرالرتى تمام لولهها و مخازن مورد الستفاده در سيستههانى سرمايى و تَّرمايه بايد در هماهنگگى با مقادير تعيينشده در مبحث IF أ مقررات ملى باشد.

بـراى تضـمين حــداقل ضـخامـت مفيـن عـايق حرارتـى، السـتفاده از عــايقهـاى حرارتـى يبشساخته توصيه ميشود.

 شده در مبحث 19 مقررات ملى ساختمان عايق كارى حرالرتى تَّردد.
 سرد يا مبرد، لازم الست عايق كارى حرازتى اين بخش الز مدلر با عايق حرالرتـى بـا مقاومـت حرارتى كافى صورت گّيرد، تا خطر ميعان سطحى بر روى عايق مرتفع گَردد.
 تعيينشده براى بالاترين قطر لولههایى مرتبط با هخزن در شرايط مشابه باشد.

عايقكارى حرار تى كانال

مقاومت حرالرتى تمام كانال هانى واقع در فخاى دالخلى، خارجى و كـتـرلنشده بايد در همـاهنتّى بـا مقادير تعيينشده در مبحث أ أ مقررات ملى باشلـ.

تبصره: در مورد كانالهانى كولر آبى، لازم الست تنهيا قسمتهايى از كانال ها، كه در تماس بـا فضـانـا خارجى هستند، عايق كارى حرالرتى شوند.

حداقل بازدهى تجهيزات

باشش.

ساختمان بسيار كمانر ($\mathbf{E C +}+$	ساختمان كهانز (EC+)	ساختمان منطبق با مبحث 19 (EC)	شماره استاندارد ملىى	محصول
D	D	E	(1r19-r	- آبكترمكن كازسوز مخزندار
B	C	D	IATA-T	آبكّرمكن كّازسوز فورى
A	B	C	1fvrs	رادياتور كّرمايىى
A	B	C	19979	بكيج
A++	A+	A	19859	
C	D	E	Hr.-r	بخاري كازسوز دودكشدار
\% 9.	$\% 1 \Delta$	$\%$.	VTgA-Y	بخارى كازسوز بدون دودكش
A	B	C		C بخاريهاي كاز
$\mathrm{AH} \%$	A1\%	VA\%	Al-iryat	ديگّ بخار
D	E	F	IfVgr	ديگّ و مشعل

ساختمان بسيار كمهانر） （EC＋＋）	ساختمان كمانرثي （EC＋）	ساختمان منطبق با مبحث 19 （EC）	شماره استاندارد ملى	محصول
B	C	D	10Fr－Y	آبكرمكن برقى مغزندار
A	B	C		الكتروموتور（تكىفاز و سهفاز）
A	B	C	1．94\％	فن（دمنده و مكنده）
A	A	A	VMFt－r	بخاري برقى
A	D	F	Pq）－r	كولر آبى
A	A	B	$\begin{gathered} r-9 \cdot 19 \\ 9 \\ 1.9 r \lambda \end{gathered}$	كرمايىى دوتكه（بدون كانال）
A	A	B	11ave	هواساز（هوارسان）
A	A	B	1.5 .9	بكيج تهويه مطبوع
A	A	A	T－VHFt	كرم كّن برقى（محيط）
A	A	A		كرمكن صنعتى（محيط）
A	A	B	1.949	فن كويل（زمينى،
A	B	C	1.940	برج خنى
			r－rgiva	＊يلر تراكمى آبى
			rava	خجيلر تراكمى هواكيّ
A	A	B	VAIV－Y	پیمه（كَّريز از مركز، مختلط، محورى）
A＋＋	A^{+}	A	VHfy	لامب الكتريكى
Al	A1	A2	1．$V \Delta 9$	بالاست لامیِ الكتريكى

بازدهى تجهيزات			شاخص بازدهى	دستّكّاه
ساختمان بسيار كمانرپ ($\mathbf{E C}++$)	ساختمان كهمانزي $(\mathbf{E C}+)$	ساختمان منطبق با مبحث 19 (EC)		
Δ, Δ	Fr	r / Δ	${ }^{(6)}$ IPLV	**
F, Y	r / Δ	r, λ	${ }^{(6)} \mathrm{COP}$	
غير مجاز	r, Δ	$r \cdot$	${ }^{(6)}$ IPLV	پ*يلر هوا خنك**
غير مجاز	r_{i}.	r, V	${ }^{(r)} \mathrm{COP}$	
$1, \mathrm{~V}$	1,	$\cdot 9$	${ }^{(r)} \mathrm{COP}$	\%يلر جذبى
\% 9	$\% 90$	$\%$ \%		بويلر هـكالشى
غير هجاز	$\%$ nd	\% \wedge.	(r)	بويلر غير جكَّالشى

PLV : Integrated Part Load Value

COP : Coefficient of Performance
ضر (T) (T)

شرايط طرح داخل F-r-F-19
 سلسيوس براى محاسبهُ بار تَّرمايى (الوقات سرد سال)، و دماى حداقل

نما يـ.
($\mathrm{O}-\mathrm{r}-\uparrow-19$
 مبحث 1 | مقررات ملى ساختمان بيشتر باشد.
ب) درصورتى كه الز سيستههاى باز يافت انرزى از هواى خروجى استغاده شود، المكان افزايش ميزان

نبايد الز انرزی مصرفى در حالت بدون سيستهم بازيافت تعيين شده در بند الفـ بيشتر باشد.
 ميزان هوالى تازه وجود ندارد.

9-Y-F-19

 سردكنـنـه كفـ يا سقف، بايل مجههز به يكـ شيستهم كنـترل ترموستاتيكى باشش.
 هوالى دالخل باشد.

 سيستمر كنـترل رطوبت هواي داخل ساختمان مجهز باشنـد.
 به سيستهمهاى كـنترل دماى آب رفت مدالرهاى سردكنـنده و تَرم كـنـنده باشند.
ج) تجهيزات سيستمر تأمين آبتُرم مصرفى بايــد بــه سيـستمه كنتــرل دمــاى مسـتقل مجهـز

ملى ساختمان انجام شود. دمـاى آبگّرم مصرفى نبايد بيش لز •و در جه سلسيوس باشد.
 مصرفى را، بر اساس دماى آب برگّشتشتى، كنتـرل كند.

ح) سيستمهانى مكانيكى تهويه و تأمين هواى تازه بايد به كليد روشــن-خاموش مجهـز باشـنـد، تا امكان خـاموش كردن آنها، در مواقع عدم حضور ساكنين، بهرهبردالران و عوامل آلا يندهكـنــنـن هواي داخل ساختمان، كه نيـازى به تأمين هـواي تـازه نيسـت، فراهمهم شود.
 روشن-خاموش نخواهد بود. خ) سيستههانى تخليه هــوا الز سـاختمان بايــد به كليد روشــن-خاموش تجهيز شوند، تا در شرايط
 به سامانه كنترل خودكار باشند. د) در ساختمان هاي با كاربرى عمومي، روشويعهها بايد دالراى شيرهاى قطعكن اتوماتيكى فنـرى يـا شيرهاى دالرالى جششهم الكترونيكى يا نظاير آن باشند.

 هفتّگى كاركرد تجهيزات مركزى الزاممى الست.

V-r-千-19 سامانههاي پايش عملكرد

 كاهش مصرف انرزّى در هر واحد يا هر بخش مسـتقل سـاختمان، جدالًاّانـه محاسـبه و عايــد همان واححد يا بخش ساختمان تَّردد.
 تأمين مىشود، لازم است كه تدابير لازم جههت تفكيكى مصارف آبتُرم مصـرفى بــكـــار بـرده شود، تا الث تدابير بهكار بردهشده براى كاهش مصرف و صرفهجويع هر واحد يا بخش مسـتقل ساختمان بهصورت جدالّانّه محاسبه و عايد همان واحد يا بخشَ تَّردد.
(19-r-r-19 استخر آبگرم

 حرالرتى بيش از

علاوه بر اين، لازم الست در اين نوع الستخر ها تمهيدات لازم در نظر تّرفته شود تا آب اسـتخ لز درجه سلسيوس بيشُتر نشود.

يادآورى: جكوزى ها و الستخر هاى درمانى از اين امر مستثنىي هستند.

9_r- f-19 انتخاب و نصب تجهيرات مناسب
الف) لازم است با در نظر گرفتن شيرهايى بالانس و ديكِ امكانات مورد نيـاز، امكـان متعـادل كردن

ب) نصـب يكى سيستهم سايهاندازى مناسب براى كولر آبي و كندانسور هوالخنكى الزاميست.
 اهرمى استفاهاه شود.

F-F-19

1-F-f-19

الطلاعات كلى در خصوص حوزه وظـايفـ و مسـئوليتهـاى شـركت بـرق و ضـوالبط مطــرح در ايـن خصوص در پيوست \mid ا اين مبحث الرائه شدهاست.

در طراحی سيستهمهاى تأسيسات برقى، در جهتت صرفهجويى در مصرف بـرق (انـرزیى الكتريكـى)، بايد موالرد زير، كه در راندمان كاركرد تجهيزات برقى و شبكههــاى سيسـتمههـاى تأسيسـات برقـى موثثرند، مد نظر قرال, گَيرند:
الف) نمودالر مصرف برق در دوره كاركرد و بهرهبردالىى و مقدلر ساليانه و روزانه آن؛

ب) محل استقرار پست برق، تأمين نيرو، و محل تابلو برق؛
 محيط در محل نصب تجهيزات برقى.

位

(1-Y-F-Y-19 انشعاب برق فشار ضعيف (منشعب از شبكه عمومى)
النشعاب برق فشـار ضـعيف بايـــل بـا توجـه بـه مقــدار مصـرف و شـرايط حـاكمه، مطـابق ضـوابط و دستورالعمل هالى شركت برق، براى تأمين مصرف برق مورد نياز ساختمان با الشُعاب سه فاز با ولتارٌ
 يادآوري: در ساختمانهايِي كه با النُعاب برق فشُار ضعيف تغذّيه مى شوند، القدامات صرفهجـوئى در مصرف برق به بعد از نقطه سرويس مشترك (كتنور برق فشار ضعيف) محدود مىشود.

(اختتصاصى) (

انشُعاب برق فشار متوسط بايد باتوجه به مقدار مصرف، شـرايط طــرح تأسيسـات بـرق، و المكانـات محلى موجود، و همحْنين بر اساس ضوابط و يا دستورالعملهماى شـركت بـرق، بـراى تـأمين بـرق ساختمان در نظر تَرفته شود.

معيار بررسى و مقايسه، ترانسفور ماتور هاى فشار متوسط ولتارٌ ناملمى برق فشُـار متوسـط اســت، كــهـ
 در اين سيسته، برق مورد نياز ساختمان بايد الز طريق يست برق اختصاصى دارالى ترانسـفورماتور و
 انشُعاب، علاوه بر نكات فوق، بايد يارارمترهانى زير مشُخص ترّرده:

الف) تعداد بهينه هست(ها) برق مورد نياز
ب) تلفات ترانسفورماتور (Lا) ب) اثثر شرايط اقليمى

ت) وانذمان حداكثر و ضريب بار ترانسفورماتور (ها)
در ساختمانهايیى كه با النشعاب برق فشار متوسط تغذيه مىشوند، اقدامات صرفهججويى در مصـرف برق به بعد لز نقطه سرويس مشترك (كنتور برق فشار متوسط)، يعنى در ترانسفورماتور پست برق، تجهيزات و شبكه توزيع و سيستمههاىى مرتبط با تأسيسات برق ساختمان، محدود مىشود.

مولد نيروي برق اضطراري

بههنتام طراحى و انتخاب مولد نيروى برق اضطرالىى، طراح بايد ضرايب كاهش رال، با توجه به نيـاز

 الخذ ترّرد.

نكات تكميلى كه توصيه مى شود در طراحى و انتخاب مولد نيروى برق اضطرالرى مورد توجــه قـرار تيمرد در پيوست 15 اين مبحث لرائه شدهاست.

(

 مقايسهها و پارامترهاى زير نيز توجه لازم معطوف تَرده: الف) توان يا ظرفيت نامى دستگاه برق بدون وقفه الستاتيكى يا ديناميك

ب) زمان باردهى دستّانماه برق بدون وقفه استاتيكـ

ث) مصرف برق مورد نياز براى تهويه و يا تخليه هوالى لازم براى كاهش دماى هحيط و افزايش

 ديناميكى
 ج) مصرف برق موتور رالاندالز دستألاه برق بدون وقفه ديناميك ح) مصرف سوخت و نيز تأمين شر ايط و فخاى لازم براى نصـب منبـع سـوخت موتـور نيـروى محر كه دستگّاه برق بدون وقفه ديناميك

خ) مدت زمان لازم براى قرالر تَرفتن در مدالر تغذيه مصارف برق بدون وقفـه و يــا مـدت زمـان

د) اثر شر ايط محيط (محل نصب) دستّاماهاى برق بدون وقفه الستاتيك و ديناميكـ در راندمان آنها

ذ) ضريب تولن بالالى دستكاه برق بدون وقفـه ديناميـكـ و امكـان حــنف بانـكـ خـازن الهـلاح

با توجه به نياز و شر ايطط طرح، در جهت كاهش مقدلر تولن رِّآكتيو حر شبكه توزيع بالادسـت محـل
 فرعى (گّروهى)، و يا بانكى خازن متصل به تابلوهاى برق نيمهالصلى، بــهـهـورت نيمـهمتمركــز و يـا
 حاصل شود:

الف) الفزايش قابليت و راندمان شبكه در تأمين توان آكتيو، ب) كاهش تلفات بار در شبكه توزيع و بهبود كارايى شبكه توزيع و اجزالى تابلوهاى برق،
 ت) كاهش توان رآكتيو و صرفهجويى در هز ينه پردالختى بابت آن

الين خازن ها بايد متناسبـ با تـوالن آكتيـو هـورد نظــر و مقـدلر متوسـط و يـا معـادل ضـريب تـوان مصرفكـنـندهانى برقى (ضريب توان اوليه) و ضريب توان الصلاحشده شبكه برق، محاسبه، انتخاب و و نصـب تَردند. خازن منفرد بر اساس مقدالر توان آكتيو، ضريب اوليه دسـتآّاه و ضــريب تـوالن الهـلاح شده، و نيز ظرفيت خازن تَروهى و يا بانكى خازن بايد براساس مقدلر توان آكتيو مورد نظر و مقــلر
 شده شبكه برق، محاسبه تّردد.

9-F-F-19 تمفات بار در شبكه توزيع برق و سيهركشى برق

در پيوست 1 I نكات و توصيهها در خصوص اقدامات قابل انجام براي كاهش تلفـات بـار در شـبكه توزيع برق و سيهم كشى برق ارائه شدهاسـ.

 ميزالن و كيفيت روشنايیى مورد نظر، لازم الست شاخص راندمان (لومن بر وات) و يا بهره نورى لامـت
 اجزالى آن بايد مدنظر قرال, گّيرند در پيوست آ 15 مبحث الرائه شدهاست.
 لامپهای بخار جيوه با راندمان كمتر از

 برايى انتخابهاى غيرمجاز الرائه نمايد.

 صحنة (در تئاتر، آمفىتئاتر، و نظاير آن) الست.

19-1-4-19 مطالعات و پيشبينىهاي لازم

درطراحى پروزه ساختمان، لازم الست فضاى اختصاصى و مسيرهاى نصب و رالاندالزى مدارهاى آتى سيستهمهاى انرثّى تجديدیذير و زيرساختهالى مرتبط مشخص شوند.

 بهتفكيكى درج شود.

براى تمامي ساختمان ها، بايد مطالهات وريششبينى هاى لازم براي فضـاى نصـب صـورت گّيـرد تـا
 لز مقادير زير نباشد:

الف) . Y كيلوواتساعت در مترمربع در سال براى ساختمان هاى يكى طبقه؛ ب) بr كيلوواتساءت در سال به ازالى هر مترمربع ا; سطح باه، براى سـاختمانهــاى بـيش از يكى طبقه.

لازم است تمامى الطلاعات در اين خصوص، در دفتر حهه محاسـبات و طراحـى مطـابق ضـوالبط ايـن مبحث قيد شود.

موارد خاص r-a-F-19
 وضعيت استقرال ساختمان، لز جمله سايهاندازى ساختمان هالى مجـاور و يـا المكـان تـأمين مقـادير

19-ه روش تجويزى

اين روش يكى از جهار روش طراحى تعيينشده در اين مبحـث اســت. كــربرد اليـن روش تنها در
 كه شرايطط لازم محقق نشود، لازم خواهد بون طراحـى سـاختمان بـه روش نيـاز انــرثى سـاختمان

در روش تجويزى مشخصات عناصر مختلف يوسته خارجى ساختمان، سيستمهها و تجهيـزات مـورد

 الفزايش مقاومت حرالتى بعضى از جدارها و دستيابى به مقادير بالاتر از حداقلهانى تعيينشـنـه در الين روش، المكان تخفيف تّرفتن بر روى ديِّر موالرد فراهمهم نمى تُردد.

در عين حال، اين روش امكان طراحى بخشههاى مختلف (يوسته خـارجى يـا معمـارى، تأسيسـات

19-0-1 الصول كلى

 پوسته خار جى ساختمان، تأسيسات مكانيكى، سيستهم روشنايى مصنوعى، ديكّر تجهيزات الكتر يكى

در صورتى كه هدفـ طراحیى ساختمان كهمانرزیى يا بسيار كمهانرثى باشد، لازم خواهد بود، عـلاوه بـر رعايت ضوابط اججبارى، ضوابط تجويزى مربوط به ساختمان كهانرزیى يا بسيار كمهانرزى نيز مـدنظر قرار گَيرد.

شكل 19-4 - أ نمودار تّردشى مراحل روشى تجويزي

طراحى پوسته خارجى ساختمان بايد با رعايت يكى از راهحلهایى فنى تعيينشــده در اليـن بخـش
صورت تَيرد.

لازم به توضيح است كه راهحل هاى ارائهشده براى حالتهانى مختلف پارامترهانى زير هستند:

- رده انرزیى ساختمان (منطبق با مبحث 19 ، كمانرزیى يا بسيار كمهانرزیى)

در هر يك از مجموعه ,اهحلهاي فني، الزلامات زير در مورد مشخصات حرالرتى جدالرهاى ساختمان
بايد مورد رعايت قرالر تَيرد:

الف) حداقل مقاومت حرارتى ديوارها، بر حسب:

- وضعيت مجاورت ديوار (با فضاي خارج يا فضاى كنترلنشده)،

ب) حداقل مش خصات حرالر تى جدلر هاى نُورّنذر برحسب: - شرايط اقليمى (نياز غالب تَّرمايى و يا سرماني)، - جهيت تيرى جغرافياني جدلر نور كّذ پ٪) حداقل مقاومـت حرارتى بام يا سقفـ، برحسب:

- وضعيت مجاورت بام (با فخاى خارج يا فضاى كنترلنشده)، - نحوهُ عايقكارى حرالرتى بام و ديوارهایى ساختمان، و

ت) حداقل مقاومت حرالتى كفـ مجاور هوا، برحسب:

- وضعيت مجاورت كف (با فضاى خارج يا فضاى كنترلنشده)، - نحوهٔ عايق كارى حرالرتى كف مجاور هوا و ديوار هاى ساختمان، و ث) حداقل مقاومت حرارتى عايق كفـ مجاور خاكى، برحسب: - موقعيت كفـ، و
- نوع عايق كارى (یيرامونى يا سراسرى).

در مورد مجموعه راهحلهالى فنى، در نظر تّرفتن موارد زير لازم الست:

- برای درهاى كدر (غير نور تّذر) پوسته خارجى سـاختمان، ضـرايب انتقـال حــرالرت حـداكثر معادل مقادير ارائهشده براى جدالرهاى نور كّذر است.
- مقادير مقاومت حرالتى دادهشده در مورد ديوالر، بام و كفـ مجاور هوا فقط مربوط بـه تمـامى لايههالى ضخامت جدالرها الست. بنابراين، لازم است مقاومت حرالرتى عـايت، بـا اسـتفاده از مقادير بيانشده در راهحل فنى و با در نظر تَّرفتن مقاومت حرالرتى ديگّر لايههــاى جـدالر، تعيين شود.
- مقادير مقاومت حرالرتى دادهشده در مورد كفـ روى خاكى تنها مربوط به لايـهٔ عـايق حرالرتـى است.

(

مقاومت حرارتى (طرح) جدالرهاى كدر ساختمان بايد با الستفاده از ضر ايب هـدايت حـرالرت مصـالح

(پيوست A) محاسبه تَردد.
 مورد نياز هستند و باءث اليجاد پل حرارتى مىشوند، لازم اسـت مقاومت حرالرتى (طرح) بـا در نظـر كَرفتن اثر حرالرتى اين قطعات محاسبه يا تعيين شود.

لازم است ضريب انتقال حرالرت بازشوها و جدالرهاى نور تّذر پوستئ خار جـى ساختمان نيـز براسـاس جداول پيوست 9 اين مبحث تعيين تَردد. در صورتى كه هقادير مربوط به بعضى مصالح، يا الجزالى خاص، در پيوستهاى مذكور نياملده باشد و يا سازندهاى مدعى باشد كه محصولاتى با مشخصات حرالرتى بهتتر از مقادير مندرج در منابع معتبـر عرضة كرده الست، لازم است تَواهیى فني معتبر محصول مورد نظر ضميمه مدالرك كَّرد.

تُّواهیى فنى بايد حاوى دادمها و مقادير مربوط به ضر ايب هدايت حرالرت يـا مقاومـتهـاى حرالرتـى

 فنى، تا زمان اعتبار آن، ملاك طراحى و هحاسبات الست.

الف- حداقل مقاومت حرارتى ديوار - ساختمان كَروه ا
 بسته به نوع فضاى مجاور آن (كنترلششه يـا كنتـرلنشــنده)، روش عـايق كـارى حرالرتـى ديـوالر، و

ديوار مجاور فضاي كنترل نششده	ديوار مجاور فضايى خار				© , انرّا
	مايق حرارتى * هم	عايقي حرارتىا ميانتى	عايق حرارتىا داخلى	عايق حرارتىا خارجى	
1,	r, 1	Y,	H,	1,4	EC
1,4	r_{1}.	r,	H,	1, V	EC+
Y,	غير مجاز	غير مجز	غير مجاز	Y, 4	EC++

 گَرفته شود.

ب - حداقل مشخصات حرار تى-نورى جدار هاى نورگّذر - ساختمان گَروه

نياز سرمايى غالب				نياز گرمايى غالب				0) انرزی	جهت
$\frac{\mathrm{TV}_{\mathrm{V}}}{\text { SHGC }}$	SHGC		$\begin{gathered} \mathrm{U} \\ {\left[\mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}\right]} \end{gathered}$	$\frac{\mathrm{T}_{\mathrm{V}}}{\mathrm{SHGC}}$	SHGC		U $\left[\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}\right]$		
حداقل	حداكثر	حداقل	حداكثر	حداقل	حداكثر	حداقل	حداكثر		
1,	- if.	-	$r_{1} 1$	-		- 9.	$r_{1} /$	EC	
1,7	- rv	-	rif	-	-	. 94	rrer	EC+	جنوب
r, r	- ra	-	r,r	-	-	. 90	1,1	EC++	
1,	- 4 -	-	$r_{\text {/ }}^{1}$	-	-	-	$r_{1} /$	EC	
1,4	-140	-	ris	-	-	-	r, r	EC+	شمال
1,9	, if.	-	r,r	-	-	-	1,1	EC++	
1,4	- ra	-	ril	-	-	- $\Delta \cdot$	$r_{j} 1$	EC	بهج
r_{1}.	$\cdot r \cdot$	-	T, ${ }_{\text {r }}$	-	-	- Δr	r, r	EC+	جنوب
r / λ	- ra	-	r, r	-	-	- $\Delta \Delta$	1/1	EC++	شمال

ضريب انتقال حرارت حداكثر جدلرهاى نور گّذر فضاهاى كنترلشده مرتبط با فضاهاى كنترلنشـده
 [W/ m².K] T/A

برایى مناطقى با نياز سرمايى غالب، در صورتى كه براى تمام جدالرهاى نور گّذر سامانههاى مورد نيـاز
 برای SHGC حداكثر و TV/SHGC حداقل نخواهد بود.

پ پ حداظل مقاومت حرار تى بام يا سقف - ساختمان گّروها

 جوابتُو باشند.

بام يا سقف مجاورفضاي كنترلنششده	بام يا سقف مجاور فضاي خارج با عايق حرارتى از داخل		بام يا سقف مجاور فضاي خارج با عايق حرارتى از خارج		
	ديوار با عايقي داخلى يا هـ	ديوار با عايق خارجي يا ميانیى	ديوار با عايقي داخلى يا 	ديوار با عايق خارجیا	003
					انرزی
1,	T,	r, r	r_{r}.	T,	EC
1,4	H	f, ${ }^{\text {r }}$	F,r	H, r	EC+
Y,	غير مجاز	غير مجاز	غير مجاز	F,	EC++

ت - حداقل مقاومت حرار تى كف مجاور هوا - ساختمان كّروه

 كفـ و ديوار مجاور آن، و همعچنين رده انرّْى ساختمان، بايد شرايط تعيينشـده در جـدول ا9-ه-

كف مجاورفضاي كنترلنشـده	كف مجاور فضاي خارج با عايق حرارتى از داخل		كفَ مجاور فضاي خارح با عايق حرارتي از خارج		
	ديوار با عايق داخلى يا هـ	ديوار با عايق خارجي يا ميانیى	ديوار با عايق داحكلى يا همـتّن يا ميانىا	ديوار با عايقي خارجيا	003
					انرز
$\cdot 9$	r,	r, Δ	r, r	Y,	EC
1,4	r,	Δ_{1}.	F,F	$r_{1} 1$	EC+
1,1	غير مجاز	غير مجاز	غير مجز	F,	EC++

ث - حداقل مقاومت حرار تى عايق كف مجاور خاكى - ساختمان كَروه

 ساختمان

موقعيت كف ساختمان				, انرثا
كمتر از V. سانتى لمتر بالاتر از محوطه		ـمتربالاتر از محوطه	بيثن از	
عايقكارى يبيرامونىى V. با عرض حداقل سانتىمتر	عايقكارى سراسرى	عايقّكارى يبرامونىا با مرض حداقل . سانتىمتر	عايقكار سراسري	
$\cdot \mathrm{V}$	$\cdot \beta$	9	$\cdot \mathrm{V}$	EC
1,	- γ	1,4	1,	EC+
1,4	1,	, 1,1	1,4	EC++

الف- حداقل مقاومت حرار تى ديوار - ساختمان گّروه
 بسته به نوع فضاى مجاور آن (كنتـلشلشه يـا كنتــرلنشـده)، روش عـايقكــارى حرالرتـى ديـوالر، و

ديوار مجاور فضاي كنترل نششده	ديوار مجاور فضاى خارحا				
	عايق حرارتىا * هـمّن	عايق حرارتى ميانیى	عايق حرارتى داخلى	عايق حرارتىا خار جیا	
				(1)	© انرثاري
\cdot -	1,4	1,4	1,0	$\cdot 9$	EC
1,1	r.	r, 1	T,	1,4	EC+
1,9	r, A	r_{1}.	r_{i}.	$1, A$	EC++

 ترَفته شود.

ب- حداقل مشخصات حرار تى-نورى جدار هاى نورگّذر - ساختمان گّروه 「

نياز سرمايى غالب				نياز گرمايى غالب				-0) انرزى	جهت
$\frac{\mathrm{T}_{\mathrm{V}}}{\mathrm{SHGC}}$	SHGC		$\underset{\left[\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right]}{\mathrm{U}}$	$\frac{\mathrm{T}_{\mathrm{V}}}{\mathrm{SHGC}}$	SHGC		$\left[\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}\right.$		
حداقل	حداكثر	حداقل	حداكثر	حداقل	حداكثر	حداقل	حداكثر		
1,1	$\cdot \Delta \cdot$	$\cdot r \cdot$	$r, 1$	-	. 9.	- if.	$r_{\text {r }}$	EC	
1,4	, if	-r	$r,{ }_{r}$	-	- $\Delta \mathrm{V}$, 4r	r.f	EC+	جنوب
1,1	. 40	- ra	r,i	-	- $\Delta \Delta$	- 40	ret	EC++	
1,1	-	-	r, 1	-	-	-	r,	EC	
1, ω	-	-	K,			-	r,	EC+	شمال
1,1	-	-	r,f	-	-	-	r, 4	EC++	
1,4	- 4.	- ra	r,	-	- Δ -	- ra	r,	EC	بهجز
1,V	$\cdot \mathrm{rr}$	$\cdot r \Delta$	r,a	-	- 4 F	- ra	$r, 9$	EC+	جنوب
r.	- $\mathrm{r} \omega$. ra	rif	-	$\cdot 4 \Delta$	- ra	r,4	EC++	شمال

ضريب انتقال حرارت حداكثر جدارهاى نور گّذر فضاهاى كنترلشده مرتبط با فضاهاى كـنترلنشـــده
 [W/ m².K] [/। در نظر تَرفته شود.

براى مناطقى با نياز سرمايى غالب، در صورتى كه برای تمام جدالرهاى نور گّذر سامانههایى مورد نيـاز
 برای SHGC حداكثر و TV/SHGC حداقل نخواهد بود.

 بسته به نوع فضاى مجاور آن (كنترلشده يا كـتـرلنشده)، روش عايق كارى حرالرتى بام (يا سقف) و
 جوابتّو باشنـد.

بام يا سقف مجاورفضاي كنترلنشده	بام يا سقف مجاور فضاي خارج با عايق حرارتى از داخل		بام يا سقفّ مجاور فضاي خارج با عايق حرارتى از خارح		
	ديوار با عايقي داخلى يا هـ	ديوار با عايق خارجیى يا ميانىـ	ديوار با عايقّ داخلىي يا همـتّن يا ميانىـ	ديوار با عايق خارجيا	003
					انرزی
$\cdot \wedge$	1,1	5,4	Y,	$1, A$	EC
1,1	r, ${ }_{5}$	H, 4	r_{1}	Y,	EC+
1,8	r,	i, A	F,4	H,F	EC++

ت - حداقل مقاومت حرار تى كف مجاور هوا - ساختمان گّروه

 كفـ و ديوار مجاور آن، و همشٌنين رده انرزَى ساختمان، بايد شرايط تعيينشــنه در جــدول 19-ه9 , 9 جوابگّو باششند.

ث - خداقل مقاومت حرار تى عايق كف مجاور خاكى - ساختمان كَروه 「
 (r-Y-F-19 9

 ساختمان

موقعيت كف ساختمان				© انرّريا
پايينتر از محوطه، هماتراز با سحوطه، يا كمتر از •V سانتىیمتر بالاتر از محوطه				
عايقيكارى يبيرامونىى با عرض حداقلى V.	عايق كارى سراسرى	ي 1.. حداقل تـتـيمتر	عايقكارى سراسرى	
- V	$\cdot \beta$	$\cdot 9$	$\cdot \mathrm{V}$	EC
1,		1,4	1,	EC+
1,4	1,	$1, A$	1,4	EC++

الف- حداقل مقاومت حرار تى ديوار - ساختمان كّروه ٪
 بسته به نوع فضاى مجاور آن (كـنترلشده يـا كنتــرلنشــنه)، روش عـايقكـارى حرالرتـى ديـوالر، و

ديوار مجاور فضاي كنترل نششده	ديوار مجاور فضاي خار خارح				
	عايق حرارتىا * هم	عايق حرارتيا ميانىـ	عايق حرارتىا داخلى	عايق حرارتى خارجى	
					© , انرثى
- Y	1,1	1, ${ }^{\text {r }}$	1, 5	\cdot -	EC
1.0	1,6	1, \%	1,V	1,1	EC+
1,4	r,	r,4	Y,4	1,9	EC++

 كَرفته شود.

نياز سرمايى غالب				نياز گرمايى غالب				هر انرزى	جهت
$\frac{\mathrm{T}_{\mathrm{V}}}{\mathrm{SHGC}}$	SHGC		$\begin{gathered} \mathrm{U} \\ {\left[\mathrm{~W} / \mathrm{m}^{2} .\right.} \end{gathered}$ K]	$\frac{\mathrm{T}_{\mathrm{V}}}{\mathrm{SHGC}}$	SHGC		$\begin{gathered} \mathrm{U} \\ {\left[\mathrm{~W} / \mathrm{m}^{2} .\right.} \\ \mathrm{K}] \\ \hline \end{gathered}$		
حداقل	حداكثر	حداقل	حداكثر	حداقل	حداكثر	حداقل	حداكثر		
1,1	- $\Delta \Delta$	$\cdot \mu \cdot$	r,	-	- 90	-ra	$r, 1$	EC	
1, \%	- Δ -	- rr	Y, 1	-	. 94	- rı	r, 1	EC+	جنوب
1,0	- $/ \Delta$.	-ra	r, ${ }_{\text {c }}$	-	- 4 .	- 4 .	Y, 4	EC++	
1,1	-	-	r,	-	-	-	r,	EC	
1,	-	-	r, λ	-	-	-	r, Λ	EC+	شمال
1, ${ }^{\text {a }}$	-	-	r, 4	-	-	-	r,,	EC++	
1,4	- 40	- ra	$r, 1$	-	- $\Delta \Delta$	- ros	$r, 1$	EC	بهجز
1,9	- 4 H	-ra	rA	-	- ΔT	- ro	r, Λ	EC+	جنوب
1,1	- ff.	- ra	r, ${ }^{\text {r }}$	-	${ }^{-} \Delta$.	- ro	r, ${ }^{4}$	EC++	شمال

ضريب انتقال حرالرت حداكثر جذالرهاى نور گّذر فضاهاى كنترلشده مرتبط با فضاهاى كنترلنشـده
 [W/ m².K] r/l

براى مناطقى با نياز سرمايی غالب، در صورتى كه برایى تمام جدالرهاى نور گّذر سامانههاى مورد نيـاز
 براى SHGC حداكثر و TV/SHGC حداقل نخواهد بود.

 بسته به نوع فضاى مجاور آن (كنترلشده يا كـنترلنشده)، روش عايت كارى حرالرتى بام (يا سقف) و
 جوابتُو باشند.

بام يا سقف مجاورفضاي كنترلنشـده	بام يا سقف مجاور فضاي خارح جا با عايق حرارتى از داخل		بام يا سقف مجاور فضاي خارج با عايق حرارتيا از خارج		03, انروّى
	ديوار با عاييق داخلى يا هـ	ديوار با عايقي خارجي يا ميانى	ديوار با عايق داخلىى يا همـِّن يا ميانىـ	ديوار با عايق خارجيا	
- V	1,9	Y,	1,9	1,9	EC
1,0	T,	r, 8	Y, Y	T,	EC+
1,4	M,	F_{1}	r,	r,	EC++

ت - حداقل مقاومت حرار تى كف مجاور هوا - ساختمان كَروه 「

 9-

 ساختمان

كف مجاورفضاي كنترلنششده	كف مجاور فضاي خارج با عايق حرارتى از داخل		كف مجاور فضاي خارج با عايق حرارتى از خـارح		
	ديوار با عايق داخلى يا هـ	ديوار با عايقي خارجى يا ميانیى	ديوار با مايقي داخلى يا هـمـّن يا مياني	"يوار با عايتى	08
					انرزی
- 9	1,4	ri.	1,9	1,4	EC
$\cdot 9$	Y, 1	r, q	T, Y	T_{i}.	EC+
1,4	r_{1}.	fi.	r,	r, A	EC++

ث - حداقل مقاومت حرار تى عايق كف مجاور خاكى - ساختمان گّروه ٪

 جدول 19-0-1 19 , 11 جوابتَو باشند.
 ساختمان

(

در روش تجويزى، علاوه بر رعايت ضوابط الجبارى تعيين شله در بــد كه ضوابط اين بند براي طراحى سادهسازى شده (دستى) روشنايیى طبيعى نيز رعايت شود. براى تعيين درصد سطح فضاهاى بهرهمند از روشنايى طبيعى، بدون انجام شبيهسازى عددى، لازم الست، با الستفاده لز روابط تعريفشده در اين بخش، ميزان عمق و عرض فضاى بهرهمند الز روشنايى
 انرزی بايد مساوى يا بيش از مقادير تعيينشده در جلول باشد.

[\%] (Ap)	ریه انرı*
$\Delta \Delta$	EC
90	EC+
Vos	EC++

 خيرتّى اطمـينان حاصل شود.

ميزان عمق نفوذ روشنايى طبيعى در فضاى دالخل برابر اسـت با كمترين مقدالر بـهدسـت آمـده، بـا
 وجود سايهبان:

$$
\mathrm{L}=\frac{2}{1-\mathrm{R}_{\mathrm{b}}} /\left(\frac{1}{\mathrm{~W}}+\frac{1}{\mathrm{H}}\right)
$$

عمق فضا كه الز نور طبيعى بهرهمنلـ ميشود بر حسب متر : عرض اتاق در داخل، در امتداد عرض پنـجره بر حسب متر الرتفاع بالاى پنجره از كف تمامشده بر حسب متر
 نيمهالى از اتاق، مجاور پنجره، به جز سطح ديولر زير پنجره

برای پنجرههای فاقد سايبان:

$$
\mathrm{L}=2.5 \times \mathrm{H}
$$

براى پنجرههاى دالراى سايبان:

$$
\mathrm{L}=2.0 \times \mathrm{H}
$$

$$
(r-\Delta-19)
$$

$$
\mathrm{l}=(\mathrm{H}-\mathrm{h}) /(\mathrm{H} / \mathrm{L})
$$

1 = عمق نفوذ نور در لرتفاع سطح كار بر حسب متر
h
 جدول 9 1-0- - 9 ا، ضريب كاهش عمق فضا تعيين تَردد:

جههت ينجره				زاويه رؤيت موانع
شمال	عرب	شرق	جنوب	
1	1	1	1	50.j
1		1	1	
1		1	$\cdot \wedge$	

جههت				زاويه رؤيتا موانع
شمهال	غربا	شرو	ج-نوب	
- A	- λ	$\cdot \mathrm{V}$	$\cdot 9$	
- λ	- ${ }^{\mathrm{Y}}$	$\cdot \mathrm{V}$	- A	
$\cdot \beta$	$\cdot \beta$	$\cdot \mathrm{V}$	- A	بيـثن از •ع لدرجه

 مىشـود.

التَّر در مجاورت پنجره مورد نظر، پنجّره ديگّرى قرار داشته باشد و فاصله افققى بين دو پنجره كمتر لز دو پنجره ملاكى عمل قرال می گّيرد.

اتّر در فاصله عرض پنجره به اضافه يكى متر الز طرفين يكى مانع كــدر، نظـيـر تيغـه دالخلـى، وجـود دالشته باشد، در اين صورت، بهجاى يكى متر، فاصله پنـجره تا مـانع مزبـور در محاسـبـه عـرض فضـا منظور مىشود.

براى نماهاى شيششالى، عرض فنا يلى بهرهمند الز نور طبيعى همان عرض اتاق الست. براى محاسبه عرض فضاى روشن شده با نور طبيعى پنجرهها و نور گّيرهاى سقفى، در جههـت افقـى
 مىشود، و به آن يكى الز مقادير زير اضافه مىشود:

 دندانهاى.

درالينجا نيز، ماننـد حالت قبل، مىتوان فاصله يكى متر يا فاصله تا يكى جداكنـنده كـدر، يـا نـيمـى از فاصله الفقى بين يكى نور گّير سقفى مجاور يا شيشه عمودى مجاور رال هر كدام كــه كمتــر باشــد در

براى محاسبات، در صورتى كه جهت پنـجره مورد نظر با يكى لز جهـات الهـلى جغر افيـايـى منطبـق

($\mathrm{r}-\mathrm{Q}-19$

در صورت طراحى به روش تجويزى، علاوه بر الزامات بخش

$$
9 \text { ا } 9 \text { - - }
$$

19-

 الساس هر يكـ الز ردمهاى انرزّى ساختمان عايق كارى حرالرتى شوند.

قطر نامى لوله		, ده انر**
r و بيشتر	كr كـتـر از	
هـطابق با مبحث 19 مقررات ملى ساختمان	مطابق با مبحث 19 مقررات ملى ساختمان	ساختمان منطبق با مبحث 19 (EC)
$1,4$.	$\cdot \beta$.	
$1, N \Delta$	1,10	

 بسته به رده انرزّى ساختمان، ضريب افزالششى برابر با مقدلر تعيينشده در جدول 19-ه- آبا اعمال شود.

جي

لوله يا مخزن يا كاثال واقع در		,
**	فضاي خارجي يا كنترلنششده	
$1, \ldots$	$1, \cdots$	(EC) 19 (1)
1,t.	1,9.	ساختمان كمانر\% (EC+)
$r_{1} \cdot$	$r_{\text {, }}{ }^{\text {a }}$	ساختمان بسيار كّمانر)
دارد، مشابه بخشى در معرض فضاي خار جيى يا كنترلنششده عايقىكارى حرارتى شود.		

عايقكارى حرارتى كانالها r عا
برای تعيين مقاومت حرالتى حداقل تمامى كانال هاى فضاى دالخلـى، خـارجى و كنـتـرلنـشــده لازم است به مقاومت حرارتى حداقل تعيينشله در مبحث F| أ مقررات ملى ساختمان (fif)، بسـته بـه

 سيستهم هوار سان، لازم است موالر ز زير، براى بازيافت انرزّى، مورد رعايت قرالر كّيره:

 بيشتر باشد الزامیى است.
 (در صورت كاركر د بيش از A.…

درصد هواي تازه \%.A.	درصد هواي تازه \%.A. بيشتر يا مساورى	نياز غالب	0, انرير
$(g r \Delta V) r \ldots$	(1119) \ldots	سرمايیى	EC+
$(G r \Delta V) r \cdots$	(119) $1 \cdots$	كّرمايیى	
(FYMA) Y...	(1. 09) $\Delta \cdot$	سرمايیى	EC++
(FYHA) Y...	(1- 09) $\Delta \cdot$	ك゙,	

: حداكثر دبى كل خروجى از فن دستكّاه هواساز (هوارسان)
 (در صورت كاركرد كمتر از A… ساعت در سال)

درصد هواي تازه 	درصد هوايى تازه 	نياز غالب	© انرثى
(1. $\Delta 9$ f) $\Delta \cdots$	(FTHA) +..	سرمايدا	EC+
$(1 . \Delta 9 f) \Delta$.	(119) $1 \cdots$	كّرمايیى	
(AfVg)f..	(1199) \ldots	سرمايیى	EC++
(1 fVg) f..	(1-09) $\Delta \cdot$	كّرمايیى	

* حداكثر دبى كل خروجي از فن دستكّاه هواساز (هوارسان)
 تعيينشده در جدول 9 - 9 - 9 الفزايش يا كاهش دهند.

جدول 19-ه -

كاهث نسبىى اختلافـ آنتاليىى هواي ورودى و هواي تخليه (ω صر	,
9.	ساختمان كمانر\% (EC+)
V.	ساختمان بسبار كم, انرّى (EC++)

 نيازی به سامانه بازي بافت النرزى نيست.

 صورتى كه ميزالن تَّرماى دفع شده لز كندانسور بيشتر از . . Aا كيلووات و بار آبتُرم هصرفى بيشتر لز . . ب) سامانه باز يافت انرزّى در كندانسورها در صورتى قابل قبول است كه بتواند دمـاى آب در زمـان
 انرزَى تخليهشده لز كندانسور در شرايط طراحى را بازيافت نمايد.

پ) در صورت عدم رعايت بند (الف)، لازم است كاهش مصرف انرزّى سيستهم سرمايى و يا تَّرمايى، بهميزلن معادل اقدامات تعيـينشــنده در بنــد (ب)، بـا اسـتفاده لز فنـاورىهــاى ديگّـر، نظيـر
 دالراى صلاحيت قانونى، انجام شود.

, $3-r-\Delta-19$

در سيستهمهاى سرمايى فندلر و سيستهههالى سرمايى آبى بــدون فـن (بـا ظرفيـت بيشــتر از • •

$$
\text { تج-r- - - } 19
$$

 طراحى شدهباشد. علاوه بر اين، لازم الست انتخاب آن بر اساس محاسبات تأييد شده صورت گَيره. ($\Delta-r-\Delta-19$

در كليه ساختمانهها الستفاده لز سيستمر ذخيرهساز حرالرتى توصيه مىشود.

9-r-Q-19
الف) در ساختمان هاى با رده كهانرزیى (EC+) و بسيار كمانرزیى (EC++)، لازم است براى تمامى

ميزان آلايندگّى و مصرف انرزّى صورت گّيره.

V-Y-ム-19 انتخاب و نصب مناسب تجهیيزات

 مشخصات فنى تمامى تجهيزات انتخابشده نيز بايـد در همـاهنگّى بـا محالسـبات و طراحـى باششد.

 پيوست זّا، بايد به ترتيب B و A باشد.

(1-4-4-19 ترانسفورماتورها
(-1- $-\omega-19$
جهت آّٓاهی از نكات و توصيهها در خصوص ترانسفورماتورهالى فشار متوسط به پيوست شود.

حـداكثر راندمان انرزى و تلفات ترانسفور ماتور هاى فشار متوسط
ترانسفور ماتورهاى فشار متوسط مورد الستفاده در پستهالى برق اختصاصى ساختمان مسىتواننـد لز
 ترانسفورماتور ها در پست برق اختصاصى ساختتمان به مبحث سيزدهم مقـررات ملـى رجـوع شـود.

مقادير تلفات و ضريب حداكثر راندمان انرزى ترانسفورماتور هاي روغنى، در شرايط كاركرد نرهـال و

 اين جدول شامل مقادير تلفات بىبار (Po)، تلفات بار (Pk) و ضريب حداكثر رانــدمان انــرزى بـراى تَّروههاى ترانسفورماتورهاهى روغنى مى باشد.
(اثر شرايط اقليمى در باردهى ترانسفور ماتور های روغنى
شرايط كار نرمال ترانسفورماتور هاى روغنى، لز نظر شــرايط و اقلـيمر شـهر يـا منطقـه محـل نصـب ترانسفورماتور، براى باردهى با توان نامي، براساس حدالكثر دماى شهر و يا منطقه محل نصـب برابـر
. F درجه سلسيوس و الرتفاع شهر و منطقه محل نصب از سطح دريا برابر . . . ا متر، در السـتاندالرد شماره • GVY سازمان ملى استاندارد اليرلن (الستاندلرد ترانسـفورماتور هاى روغنـى) تعيـين تَّرديــنه است.

ضرايب كاهش باردهیى ترانسفورماتور در شرايط محيط (محل نصـب)، نسـبت بـه شــرايطا كـاركرد نرمال آن، براى تعيين توان مجاز ترانسفور ماتور هاى روغني، متناسـب بـا حــداكثنر دمـا و ارتفـاع لز
 استاندارد فوقالذكر، مشخص شده است.
 استاندالرد •GVY, رجوع شود.
تبصره ז: براى ضو ايب بارنهى مربوط به دما و لرتفاع خارج لز مقادير فـوقالــذكر، لازم السـت الز توليدكنـندگّان استعلام گَّردد.
 نظر حداكثر التفاع محل نصب در گروه ديكّرى باشد.

جدول 19-0 - غץ ضرايب باردهى براي حداكثر ال تفاع مـحل نصب

	ارتفاع معادل (m)	حداكثر ارتفاع از سطح دريا (m)	55980 شهير و منطقه
$1, \cdots$	1...	, . 1 يا	A
-, 9VA	$10 \cdots$	10.. 1 \% 1 .	B
-9, 8	F..	r... $10 \times$	C
-970	「 $0 \cdot$	بـبش از	D

(CRT) (
مقادير تلفـات شـامل مفـادير ثلفـات بـى بـار (Po) و تلفـات بـار (Pk) و ضــريب حــداكثر رانـدمان
 كيلوولت كه عموماً در اكثثر نقاط كشور در تأمين و تعثديـه بـرق سـاختمان بـا انشُعاب بـرق فشـار متوسط به كار مى ووند، برایى تَروههاى ترانسفور ماتور هاى خشُك در پيوست

ضرايب كاهش باردهى ترانسفورماتور در شرايط محيط (محل نصــب)، نسـبـت بـه شــرايط كـاركرد نرمال آن، برایى تعيين توان مجاز ترانسفورماتورهاى خشُك، متناسـب بـا حـداكثر دمـا و الرتفـاع لز
 استاندارد فوقالذكر، مشخص شده است.

جدول TV-A - TV ضرايب باردهمى براي حداكثر دماي محخل نصب

ضريب باردهـيـ	حداكثر دماي محيط (درجه سلسيوس)
1.9	r.
$1, \cdot$	f.
-9\%	Δ -

ضريب باردهـى	ارتفاع معادل (m)	حداكثر ارتفاع از سطح دريا (m)
$1, \cdot$	$1 \cdots$	- أ..
-9VA	$10 \cdot 0$	- $10 .$. تا..
$\cdot 98$	F...	$\upharpoonright \cdots \cdots$ ت 10. .
-978	¢ 0.	ب- بيثّ از

تبصره ا: براى تعيين شرايط اقليمى شهر ها و مناطق كشور، به استاندلر . GVY, ججو شود.

استعلام تَّردد.

سيستمههاى كاهش دماى اتاق ترانسفور ماتور
ترانسفورماتور ها عموماً در اتاق يـا فخـاى بسـتـه در پسـت بـرق اختتصاضـى سـاختمان و يـا مـدل كيوسكى پست برق نصب و مورد الستفاده قرار مى گّيرند. حرالرت ناشى از تلفات بـار (Pk) و بـى بـار (Po) ترانسفورماتور باءث افزايش دماى ترانسفورماتور و اتاق آن مى ترّردد.

براى صرفهجويی در مصرف برق، لازم است طراححى اتـاق ترانسـفورماتور و نيـز پ پــت بـرق فشـار, متوسط، بـا بـهكــارگّيرى روشهــا و سيسـتمههـاى طبقـهبنـدى

ترانسفورماتور با كارايیى لازم و سيستهم تأسيسات مكانيكى مناسب، ، كاهش دماى ترانسـفورماتور و
 شود.

الف) در شهرها و مناطقق تُروه A، براى كاهش دماى اتاق ترانسـفورمانتو، تعـويض و تخليـه هــوالى اتاق مى تواند با تهويه طبيعى و يا مكانيكى انجام گّيرد (به مبحث سيزذمهم مقروات ملى رجوع شود). در روش تهويه مكانيكى از هواكث برقى، كه از طريق ترموستات قطع و وصل يا كنـترل
 مناطقى مذكور، بهجاي هواكش، مجاز نمىباشد.
 مجـاز اسـت كـه ضــرايب مربـوط بـه دمـا و الرتفـاع در محاسـبه تـوالن مجـاز (بـار خروجـى) ترانسفورماتور اعمال شده و ترانسفور ماتور با مشخصـات فنـى و تـوالن نـامى مناسـب انتخـاب تَّرديلدباشد.
 زماني مجاز اسست كه پس از اعممال ضر ايـب مربوط بهه دما و الرتفاع، مشخصات فنى و توان نـامى

ت) در صورتى كه دماى محل الستقرال, ترانسفورماتور، در اوقـاتى الز سـال، از •ه درجـه سلسـيوس فراتر رون، لازم است در انتخاب ترانسغورماتور مناسب براى اين شُرايط دقت لازم بهعمل آيــ، و در صورت پیشبينى سيستهم سرمايى براى كاهش و كنترل دماى اتاق و ترانسفورماتور، لازم الست وابستگّى ميزالن مصرف برق سيستهم سرمايعى با تلفات بار و بازدهى ترانسفورماتور در نظــر ترَ فته شود.

A-1-F-А-19 شرايط استفاده از انواع مختلف ترانسفور ماتور هاى فشار متوسط

 CRT33)، بر اساس تلفات بار، تلفات بى بار، حداكثر رانــدمان انــرثى و تلفـات كـل در زيربنـدهاى

پيوست זا آمدهاست. شرايط استفاده از انواع مختلف ترانسفورماتورهاى فشار متوسط به قـرال زيـر میباشد:

الفت) الزامات مربوط به استفاده از ترانسفورماتور هانى روغنى و يا خشكى فشار متوسط در پسـت برق (الختصاصى) ساختمانها بايد منطبق بر رديفـها و بندهاى مبحث سـيزدهمم مقـررات ملى باشد.

 شدهاست.

نوع ترانسفورماتور		تلفات بار در توان نامى\|	ترانسفورماتور
خشك	روغنىا		
CRT1	OIT1	كمترين مقدّار	اول
CRT2	OIT2	مقدار متوسط	دوم
CRT3	OIT3	مقدار متعارف	سوم

19-1-F-0-19 ضريب بار ترانسفور ماتور هاى روغنتى و خشكـ فشار متوسط
مقادير خـريب بـار حــداكثر يـا حــداكثر درصــد زيـر بـار بـودن رهمهـأى مختلـفـ (اول تـا سـوم) ترانسفورماتورهاى روغنى و خشكى از نظر تلفات بار، بر حسب ردهبندى آنها، براى رتبـهبنــدىهـاى هختلف ساختمان، در جدول أ-ه- • ب ار ائه شدهاست.

جدول 19-0-r • ضر يب بار خداكثر ترانسفور ماتورهاي ووغنى و خشى

						رتبـه انزيز ساختتمان
خشك			روغنىا			
$\begin{gathered} \text { CRT3 } \\ (\text { (رده } 10 \text { (} \end{gathered}$	$\begin{gathered} \text { CRT2 } \\ (\text { دومه }) \end{gathered}$	CRT1 (و)	OIT3 (ر)	OIT2 (, (رده	OIT1 (${ }_{(}$)	
$7 . \Delta \cdot$	$1 / 9$.	90\%	7.0	7.9.	/V.	ساختمان منطبق با مبحث 19 (EC)
غير محاز	$\Delta \Delta \%$	7.9.	غير مـحز	$1 / 8$.	$1 / 9$.	ساختمان كم،اتزریى (EC+)
غير مجاز	غير محاز	$7 . \Delta$	غير مـجز	غير مجاز	$7 / \Delta$	ساختمان بسيار كمىانریى $(\mathrm{EC}++)$

(\quad موتور هاي برقى

 در نظر تُرفتن عوامل زير صورت تَيرد:
 جدول 19-4-4-9 و متناسب با رده ساختمان،

٪٪، براى جلوگّيرى از كاهش راندمان موتور.

ميزان حداقل يا قرار دادن آن در حالت خاموش فراهمرم باشد. ج) استفاده از راه اندلزه نرم (Soft Starter)، بهمنظور كاهش مقـدل, جريـان رالانــدازى موتورهـا،
 توان نامى 1 ال كيلووات (kW) و به بالا، توصيه مىشود.

$$
\text { 葵 } 1-r-r-\Delta-19
$$

الف) تمامیى پمپهای مورد استفاده در تأسيسات الكتر يكى و مكانيكى، بسته به رده ساختمان، بايد

الف) تمامى فن هاى مورد استفانه در تأسيسات الكتـريكى و مكانيكى، بسته به رده سـاختمان، بايـــ

ب) در فنها، بازده كل در نقطـهـه طراحـى كـاركردى بايــد در فاصـله حــداكثر ها درصـد از نقطـهـه حداكثر كارايع كل فن باشد.

وبيّكّى هاي لازم براي فنكويل		,
سيسـتم كنتر ل سرعت	موتور	
سيستهم كنتـرل سرعتـ متعارفـ سسهسرعته	حداقل	ساختمان منطبق با مبحث 19 (EC)
سيستم كنترل سرعت متعارفـ جهارسرعته	حداقل چههارسرعته	ساختمان كمهانر) (EC+)
سيستتم كنترل سرعت از نوع (VSD) سرعتتمتغير	تكـسرعته	ساختمان بسيار كمدانرزى (EC++)

تبعره ا: استفاده لز شير برقى نـيز برالى كنـترل جريان آب فن كويل توصيه مىشوه.

كّ

در جدول

جدول 19-4 - بr و يرْكّى هاي لازم براي موتور و سيستمر كنترل سرعت و راهاندازي كولر آبى، مربوط به رتبهبنديهاي انرزي مخختلف

ويزَكّىهاي لازم بواي موتور و سيستهم كنترل كولر آبى	رتبه انرزي ساختملن
	(EC) 19 (1) 19 (\%
(VSD) موتور تكـسرعته با سيستهم راهاندازى و تغيبير سرعا	
	ساختم-ن بسيار كّمانرض) (EC++)

($\mathrm{T}-F-\Delta-19$

موتورهای آسانسورها و پِلكانهایى برقى ساختمانها، بسته بهَ رتبه ساختمانى مورد نظر، بايد دارالى يكى از شرايط زير باشند:

$$
9-4
$$

تبصره: در راندمان كاركرد آسانسور، عمدتاً مقادير قدرت موتور، نوع سيستهم محركـه، ظرفيـت، سرعت، نوع سيستم كنتـرل سرعت و نيز وزن سيستمر تعليـق (عمــدتاً وزنــه تعـادل) مـؤثر است. بنابراين، برايى تعيين مقدالر بهينه رانـدمان لازم اسـت كـه پارامترهـاى فـوق طبـق شرايط و نياز طرح و نيز مشخصات فنى توليد آسانسور مورد توجه قرالر ّيّيرد.

 الرائه تَّرديده الست.

($0-F-\Delta-19$

حداقل مقدار ضريب توان اصلاح شده	رتبه انرزى ساختمان
$\cdot 9 \cdot$	ساختمان منطبقى با مبحث 19 (EC)
-94	
$\cdot 9.90$	ساختمان بسيار كانمر)

الصلاح ضر يب قدرت با الستفاده لز خازن، كـهـ روى سيسـتهم مصـرفكنـنــنـه نصـب مــشــود، انجـام
 در طرح سيستهمهاى تأسيسات برقى بايد حتى الامكان از بانكى خازن بـراى الهـلاح ضــريب قــدرت،
 قرار دالن پلههایى بانكى خازن در مدار، الستفاده شود.
 ضريب توان اوليه و مقدار ضريب توان الصلاح شده تعيين تردد.

در صورت عدم استفاده از اين سيستهه، طراح بايد هلايل توجئى مرتبط با آن , ال الرائه دهد. 9-F-ه-19
 مى شود. امهم اين اهدافف عبارتند لز:

الف) اندازهگّيرى مقادير توان مصرفى برق،
ب) بهبود مليريت مصرف برق با كمتى كردن و مشاهده ميزالن صرفهجويى در مصرف، پ) تعيين ميـزلن اثثربخشـى مـديريت هوشـمنـد مصـرف انـرزیى (EMS) و سيسـتمه مـديريت هوشمند ساختمان (BMS)،
ت) تعيين هزينه تفكيكى مصرف برق،

ث) اندازهتَّيرى پارامترهاى شبكه توزيع و تابلوهانى برق. در تأمين و تعذيه برق ساختمان از طريق انشُعاب فشار ضعيف و يا فشـار متوسـط و نيـز مـديريت
 طرح انتخاب مىشوند.

الف) اندازه گّيرى مقدلر توان آكتيو كل مصرف برق، بر حسب كيلووات ساءت (kWh)، لز طريـى كنتور برق آكتيو برالى هر دو النشعاب فشار ضعيف و فششار متوسط.
 ساءت (kVARh) در الشُعاب فشار متوسط و در انشعاب فشار ضـعيف طبـق زيربنـدهاى

$$
r-F-F-\Delta-19,1-F-F-\Delta-19
$$

 طرح
ت) اندازه گيرى مقدار لحظهالى توان ظاهرى كل مهـرف برحسـب كيلوولـت آمبـر (kVA) بـر اساس نياز طرح
ث) اندازهگّيرى ضريب توان كل شبكه فشار ضعيف براساس نياز طـرح
 نسبت به نول، جريان فازها و فر كانس شبكه، كيلووات (توان آكتيو) و كيلوولتآمبـر (تـولن ظاهرى) مصرفى ، ضريب توان و غيره توسط پاورمتر در تابلوهاى برق براساس نياز طـر انـ

 مقدالر حداكثر مصرف و غيره، كه براساس ضوابط و دستوزالعمل شركت برق لازم باشد.

طبق ضوابط و دستورالعملهانى شركت برق، برالى تأمين و تغذيه مصارف برق كليه ساختمانها، بـا انشُعاب برق فشار ضعيف برابر •ه آميـر سـه فـاز و يـا تـوان •ن كيلـووات (kW) و بـه بـالا بـرالى

 ميشود.

با توجه به نياز و شرايط الستفاده از پاورمتر و يا آميرمتر و ولتمتر در تابلوهـاى بـرق الهـلى نرمـال ساختمان هاى دالراى انشُعاب فشار ضعيف و با مقدار مصرف • ك كيلووات (•ه آمبر سه فاز) و بهبالا، برايى اندازه گّيرى پارامترهاى مورد نياز جههت بررسى شرايط شبكه فششار ضعيف و يا با هدف كنترل و برنامةر يزى مديريت مصرف برق توصيه مىشود.
 خواهد داشت.

تأمين و تعذيه مصارف بـرق سـاختمان بـا بـيش از مقـدالر مشـخص و تعبـين شــده، در ضـوابط و دستور العمل هاى شر كت برق، با انشعاب برق فششار متوسط و پسـت بـرق اختصاضـى خواهــد بـود، هقدار مصرف برق در اين انشعاب، اندازهمّيرى هاى توان آكتيو، توان , إلكتيو و حداكثر مقدار مهــرف
 الندازهمكيرىها حداقل بايد مقادير زير را در بر بتيره:

الف) توان آكتيو برحسـب كيلـووات سـاءت (kWh) بـا كنتـور تعرفـهدالر و براسـاس ضـوابطط و
دستورالعملهاى شركت برق

ب) توان رِآكتيو بر حسب كيلوولتآمير رِآكتيو سـاعت بـا كيلووارسـاءت (kVARh) بـا كنتـور تعرفهدالر و براساس ضوابط و دستورالعملهانى شر كت برق

براساس ضوابط و دستورالعملهاى شركت برق

متوسط

حر انشعاب برق فشار متوسط، لازم الست از پاورمتر براى اندازه گّيرى پارامترهاى شـبكه بـرق فشـار ضعيف، به شرح زيو، بهمنظور اطلاع و يا ثبـت اين پارالمترهـا در دوره بهــرهـــردالرى الز سـاختمان، و برنامهريزى برای الصلاح و استفاده بهينه لز امكانات شبكه، و مديريت مصرف برق، الستفاده شود: الف) پارامترهاى برق فشار ضعيف در تابلوهاى برق عادى (نرمال) و اضطرا'رى اصلى، موتور خانه
 تجهيزات پر هصرف بهمنظور كنترل و يا ثبت پارامترهاى مندرج در (بند ج زيربند 19-ها (F-F F F و نيز كنتـرل و برنامهر يزى مديريت مصرف برق، شامل مقادير توان آكتيو بـر حسـب كيلـووات (kW)، تـوان رِّكتيـو بــر حسـب كيلـووار (kVAR) و تـوالن ظـاهرى برحسـب كيلوولتآمبر (kVA) و ضريب توانن، در كليه رتبههالى ساختمانى، الزامى الست.

ب) پارامتر ها، در تابلوهاى نيمه الصلى بـرق نرمـال و اضـطـرارى در صـورت نيـاز، ومتناسـب بـا
شرايط طـح

برق الصلى برق بدون وقفه مركزى

ت) پارامترها، در تابلوهاى برق مصارف و تجهيزات خاص، الز جمله مراكز كامپيوتر، مراكــز داده،
 عملكرد ويزه در ساختمان. تبصره: الستفاهه از یاورمتر براي هر تابلو برق ديكّر، بستگیى به شرايط طرح خواهد دالشت.

(V-F- $\omega-19$

استفاده لز سيستهم مديريت روشنايع براى ساختمانههاى بسيار كمانرثري الزامى است.
سيستمه مديريت روشنايى بايد دارلى حداقل امكانات و قابليتهاى زير باششد:
الف) ساختار ديجيتالى آدرسيذير و با تويولورّى آزاد،

شدت روشنايع،

 مختلف فخا، با هدف صرفهججويى در مصرف برق.

ت) قابليت اتصال به بردهكركره خودكار (اتوماتيك) براى تنظيمه مقدالر نور روز ورودى به داخل
فضا.
ث) قابليت اندازه گّيرى و ثبت مقدار هصرف بوق مدارهالى روشـنايع قسـمـتهـا و يـا فضـاهانى مشخصى از ساختمان،

ج) اندازه گّيرى و ثبت مدت زمان روشن بودن چحراغها و يا خاموش بودن آنها و نيز مدت كـلـ
كاركرد لامچچها، برایى برنامهُريزى تعويض لامپپها.

ج) قابليت ثبت اطلاعات مربوط به فعال بودن يا غيرفعال بودن مدارهالى روشنايع، ح) قابليت لرسال اطلاعات مربوط به مقدلر مصرف برق مدالرهاى روشنايى قسمتى از سـاختمان به سيستهم مديريت هوشممند ساختمان، در صورت پپشبينى اين سيسـتمه در سـاختمان و نيز ثبت آنها براى بررسى هاى دورالى، و مذيريت مصرف برق از طريق سيسـتمه مـديريت
 مرتبط با كنترلر و مركز سيستهم مديريت هوشمند ساختمان، صادر مـيشــود (بـه مبحـث سيزدهمم مقررات ,جوع شود). پروتكل ارتباطى داله (ديتا) سيستهم مديريت روشنايعى بايـــ الز نوع استائدلرد و نيز دالراى قابليت اتصال و ارتباط با شبكههاى داده (ديتا) متفاوت باشد.

A-个- - - 19
برای كنترل سيسته روشنايی، در كليه رتبههاى ساختمانى، تركيبى از روشهاى زير بهكار گرفتـه مىشود:

- كليدهاى قطع و وصل
- كليدهانى قطع و وصل
 - حسگّر نورى (فتوسل) فرمان مدالر روشنايى - ساءت فرمان مدار روشنايع - تايمر مدالر روشنايه - سامانه كاهنده (ديمر) روشنايعى
-كنترل كننده اتوماتيك قابل برنامهر يزي (PLC) براى توضيحات بيشتر روشهاى فوق به فصل تعاريف رجوع شود.

در انتخاب هر كدام از سيستهمهاى كنترل روشناي، علاوه بر منحنى يوشش و نحوه عملكرد آن در

اسكن، موارد زير نيز بايد مد نظر قرار گيرد:

 تشخيص حركت فرد، در فاصلهاى برابر با دو برابر الرتفأع نصب حراغغهانى روشنايه محوطـهـه
 برابر .A/ الز محوطه تحت پوشش پشاغهها , ال داشته باشد.
 موارد زير مد نظر قرال, گّيرد:
() عدم نصب حسگّر فراصوتى (اولتراسونيكى) در كنار دريحّه هوالى سيستهم تهويه براى جلو گَيرى از اخلال كاركرد در اثر نوفه توليدشده توسط سيستهم تهويه،
 قرهز)، در مكانها و فضاهاى دالرالى پارتيشـنـ، لز جملـه فضـاهاى ادالرى، بـهدليـل

حساسيت بالاتر و امكان نصـب آن در الرتفاع پايين.
ت) برخى حستَرهاى حركتى موجوه، بهصورت تركيبى با حستَّر نورى (فتوسل)، علاوه بر فعال شدن در صورت تحركت افرالد، به مقدلر روشنايى محيط نيز حساس هسـتند، و در نتيجـهـ، حر صورت كافى نبونن شدت روشنايع محيط و وجود حركـت، فرمـان فعـال شـدن مــدار روشنايى را صادر مى كـنـنـ.
r-A-ヶ- - 19
 انديكاتور باشنـ، تا در شرايط نبود روشناييى مصنوعى در محل، قابل تشخيص كَّردند. علاوه بر اين، لازم است در فاصله حداكثر دو مترى از ورودى قابل دسـترس بـرالى افــراد نصـب شـوند. حــداكثر مساحت فضا يا فضاهاى تحت پوشش يكى تايمر مدالر روشنايى نبايد بيش از . . ا متر مربع باشد.

در صورت الستفاده لز سيستمههاى كاهش نور، بايد پيشبينـيهــاى لازم هـورت تَيــرد تـا كيفيـت روشنايى بيش از حد كاهش نيابد و عملكرد فضاى مورد نظر تحتالشعـاع قرالر نـّيرد.
 مربوط را قيد كند.

معيارهایى زير بايد در انتخاب لامپهاى مناسبـ برایى تأمين روشــنايى مصـنوعى فضـاهاى دالخلـى، محيط اطراف و محوطه تمامى ساختمانها رعا رعايت شوند:

الف) انتخاب لامپ ها بـا ,انـدمان (لـومن بـروات) مناسـب براسـاس نيـاز فضـاها و محـيط الطـرافـ ساختمان، مطابق جلول 19-ه- ها ه، متناسب با رتبهبندى انرثى ساختمان؛

ب) انتخاب مقدالر دماى رنتّى نور (CCT بر حسب كلوين) مناسب برایى لامـها، بــهمنظـور تـأمين كيفيت نور فضاها و محيط اطراف ساختمان؛
 اششياء و يا سطوحى كه نور بهة آن مى تابد؛

ت) الستفاده لز لامپها با طول عمر زياد، با توجه به نياز و شرايط طرح؛ ث) الستفاده لز بالاست الكترونيكى الستاندالر با تلفات بار كمتر، بهجـاى بالاسـت القـايع، كـهـه بـرالى لامپهایى فلورسنت معمولى يا كمـكِت مجاز نيست؛
 لامپپهاى فلورسنت معمولى يا كمِّكت، متال هاليد، بخار سديهه، بحار جيوه و نيز منابع تغذيـهـ
 ج) در نظر تَّرفتن نكات فنى مربوط به لامـپ LED، در صورت بهكارَّيرى آن:

- هحدود كردن نوسانات برق در لامپ LED، با هنبع تعذيه ولتازٌ پايين الكترونيكى، كه كاركرد
اين منبع را مختل مى كند و باءث كاهش عمر لامپ و ميزان نور آن مى تَّردد؛
- توجه به جريان هارمونيكى توليدشده در مدالر تغذيـه و مقــدلر اعوجـاج كـل جريـان (THD)
ناشیى از منبع تغذْ يه لامهـ.

در انتخاب لامپ برالى تأمين روشنايى مصنوعى فضاها، محيط اطرافـ و محوطه ساختمان، با هـدف صرفهجويى در مصرف برق، لازم الست موالرد زير مد نظر قرالر گّيرد：

 روشنايى فضاهاهى دالخلى، و محيط الطراف و محوطه ساختمان، حداقل بهرهنورى（لومن بر

 رتبههاى مختلف انرزى شاختمان بهشرح زير در جدول 9 أه－－هז طبقهبندى مىشود．

توان نامى لامبِ																	
لامب بخار سديم				لامب متال هاليد				（ لامی فلور					رتبه انرثى				
								(تيو!									
$\begin{aligned} & \hat{Z} \\ & \vdots \end{aligned}$	$\begin{aligned} & \hat{3} \\ & \dot{i} \end{aligned}$	$\begin{aligned} & \hat{B} \\ & \dot{\underline{s}} \end{aligned}$	$\begin{aligned} & \hat{i} \\ & \dot{>} \end{aligned}$					$\hat{\sum}$	$\begin{aligned} & \hat{3} \\ & \dot{3} \end{aligned}$	$\begin{aligned} & \hat{3} \\ & \underline{3} \end{aligned}$	$\begin{aligned} & \hat{z} \\ & \dot{>} \end{aligned}$	$\begin{aligned} & \hat{y} \\ & i \\ & i \end{aligned}$		$\begin{aligned} & \hat{3} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \text { § } \\ & \text { 亿 } \end{aligned}$	通	$\begin{aligned} & \text { § } \\ & \underline{\leq} \end{aligned}$
9 A	9r	Ar	1 人．	vv	va	vr	49	vv	v．	91	95	91	ساختمان منطبق با مبحث 19 （EC）				
$1 \cdot 1$	1．．	$9{ }^{9}$	$9{ }^{9}$	9.	A．	\wedge ．	99	\wedge.	v．	99	Vr	94	ساختمان كمانرثى （EC＋）				
ir．	$1 \cdot 1$	11%	9	9 A	A．	Ar	vr	\wedge.	va	99	v9	Vr	ساختمان بسيار كمانرثى （EC＋＋）				

عمر كمه به حساب مى آ يند.

تبصر:: مقادير لومن بر وات (راندمان) لامپهاى بندهایى فوقالذكر بدون لحاظط مصرف چچوكى يا بالاست و نيز تغذيه لامپ با ولتازٍ نامى، لرقام مبنا تلقى مىشوند.

19-

مقادير حداكثر چحتالى توان سيستْه روشنايه ساختمان براساس تأمين شدت روشـنايى مـورد نيـاز

 و نيز بررسىهاى آمارى و محاسباتى سيسته روشنايع، تعيين مى تَّردد. بر اين الساس، معيار و لرقام

 ساختمانذها در رتبدبنديه هاي مختحلف ساختمان

ساختمان بسيار كمهانرثى $(\mathrm{EC}++)$	ساختمان ك كا (EC+)	ساختمان منطبّ با مبحث 19 (EC)	كاربرى ساختمان
Δ_{i}.	V_{1}.	11,0	ادارى (به إستثناي اداره هستا
Δ, A	A, r	$1 H_{1}$	مركز دانشُكّاهیى
F,9	$g_{1} A$	11,4	آموزغّكّاه و مدرسه
9, ${ }^{1}$	$A, 9$	14,8	
F, A	F, Y	11.0	1 خوابكّاه
9.	Δ, r		ببمـارستان
$V{ }_{\text {F }}$	$1 \cdot{ }^{4}$	19,9	
Δ, r		1H.	
Δ,	V_{1}	11,9	
Δ_{i}.	V_{i} -	11,0	هتل
9, ${ }^{4}$	A, A	HFT	كاركّاه توليدى
Δ, r	V, ${ }^{\text {f }}$		موز0
F_{1}, λ	cy	11.	ترمينـال
r, V	Δ, t	A, Δ	انبار بزرّا
$\lambda_{,} \Delta$	11,9	18, 0	سالن هما يشّ و تثاتر
1,4	$1, A$	H.	
Δ, Δ	V, Y	17,8	اداره هست
Δ,	$V,{ }_{T}$	$1 H_{1}$	ورو\%)
Fig	H,V	9.	نماى ساختمان
- A	$1, T$	1,9	هاركينّا
Δ, r	V, H	IFr.	راهیله باز ساختمانِ
$1 /$.	$1, \Delta$	H, ${ }_{5}$	
$\cdot{ }^{1}$	$\cdot{ }^{4}$	$\cdot ¢$	فضاي سسبز ساختمان

س ($\boldsymbol{0}-\mathbf{~ - ~} 19$

در صورت طراحى به روش تجويزى، لازم است علاوه بـر ضـوالبط الجبـارى تعيــين شــده در بخـش

شدهاست.

بام قابل استفادم)

حداقل انرریى ساليانه توسط سامانه تجديديذير (كيلوواتساعت بر مترمربع بام)		
بيش از يك طبقه	يك طبقّه	
Het	14,	EC 19 ساختمان منطبقى با مبحث
Hr.	¢. ${ }^{\text {r }}$	EC+ ساختمان كمانرّا
fos	+AFP	EC++ ساختمان بسيار كم, انرّ

 اقدامات زير صورت تَّيرد:

- در سـاختمانهــاى منطبـق بـا مبحـث 19 (EC)، در نظـر گَـر فتن مقاومـتهـاى حرالرتـى
 براي بام با النواع دختلف عايقكارى حرالتى آن.
 منتفى است.

بعضى حالتهایى عايق كارى حرالرتى ساختمان هاى منطبـق بـا مبحــث 19 مقـررات ملـى ساختمان جوابتّو مىباشد.

 قانونى.
 صورت عدم استفاده از سيستمههاي بر يايه انروثي هاي تجديديدينير

$\begin{aligned} & 9 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	بام يا سققف مجاور فضاى خارح				$\frac{\hat{2}}{\frac{2}{2}} \frac{1}{4}$	
	عايق حرارتى بام يا سقفّ از داخل		باسقف إخارج	عايتق حرارتى بام		
	ديوار با عايقي داخلى يا همـتُن	ديوار با عايق خارجي يا ميانیى	ديوار با عايق داخلىي يا هم	ديوار با عاييق خارجي يا ميانىـ		[12
						3
$\Delta, \Delta \Delta$	$9, \Delta r$	غير مجاز	غير مجاز	$9, \Delta r$		1
r,99	f, r.	غير مجاز	غير مجاز	fre.	EC	r
r,98	f,r.	غير مجاز	غير مجاز	f,r.		r

19-9 روش موازنهاى (كاركردى)

 (فصل (V-19) يا روش كارايم انرثّى ساختمان (فصل A-19) صورت تيرد.
 خارجى ساختمان بر ضر يب انتقال حرارت ساختمان مد نظر قرالر مى يكيرد. در نتيجه، ضعف يكى از از
 نمود، تا ضريب انتقال حرارت كل يا بخشىى از ساختمان الز ضريب انتقال حرارت سـاختمان مرجـع
 مكانيكى و يا الكتر يكى امكان تخفيف تَرفتن براى يوسته خارجى سانتمان (يا بـالعكس) را فـراهمهم نمىسازد.

در عين حال، در روش موازنهالى (كاركردى)، همانـنــد روش تجـويزى، امكـان طرالحـى بخـشهــاى
 تجديذير)، بهصورت مستقل، وجود دالرد.

re-9-19 يوسته خارجى ساختمان

 محاسبئ ضر يب انتقال حرالرت طرح، و مقايسه آن با حداكثر مقــدار مجـاز (ضـريب انتقـال حـرالرت هرجع) تعيين شود.

 عايق كارى حرارتى پوستهٔ ساختمان در روشى كاركردى نشان داده شده است.

شكل 19-9- أ نمودار تّردشى مراحلل روشَ موازنهاي (كاركردي)

محاسبات بايد براى هر ساختمان منفرد و براى هر واحد آيارتمانى به صورت مستقل انجـام گَــردد. در صورت يكسان بونن واحذهاى سـاختمان الز نظـر مشخصـات حرالرتى، كــفى اسـت محاسـبات براساس بعضى والحدهاى شاخص صورت تگــرد. شـايان ذكـر اسـت واحــههاى يـكـ سـاختمان در صورتى يكسان تلقى مىشوند كه شرايط زير، بهصورت همهزمان، تأمين تَردد: - ابعادى تقر يباً مشابه (با تفاوت زير ه درصد) داشته باشند؛ - مشخصات حرارتى تمامى عناصر پوستئه خارجى والحدهاى ساختمان مشابهه باشد؛ - جهجت گّيرى و موقعيت جدالرها، خصوصاً جدالرهاى نور كّذر، يكسان باشد؛ - نوع سيستهم تَرمايش، سرمايش و تأمين آب تَّرم در تمامى والحدها مشابه باشل؛ - كاربرى والحدهاى ساختمان يكسان باشد.

طراحى يوسته خار ججى ساختمان در صورتى مورد قبول است كه شرإيط زير، بـهـهـورت هـهمزمـان، تأمين تَّرندن:

- ضريب انتقال حرارت طرح الز ضريب انتقال حرالرت مرجع كمتر باشد؛

 نياز غالب (كَرمايى يا سرمايع)، جهتت نما، و رده انرزّى ساختمان، بايد شرايط تعيـينشــنه

$$
\text { در جدول Y- } 19 \text {, } 9 \text { ج جوابتُو باشند؛ }
$$

 ساختمانهايى گروه نياز غالب (كَرمايى يا سرمايى)، ججهت نما، و رده انرزّى ساختمان، بايد شرايط تعيـينشــنـه

در صورت بيشتر بودن ضريب انتقال حرالر طرح لز ضريب انتقال حرالرت مرجـع، بايـــ بـا الهـلاح
 مساوى يا كمتر از ضريب انتقال حرارت مرجع، كاهشُ داد.

19-1-

ضريب انتقال حرارت مرجع ساختمان (H) بر حسب [W/K] برابر است با حداكثر انتقال حـرارت مجاز از يوستهٔ خارجى ساختمان، در شرايط پايدار و به الزالى يك درجه سلسيوس اختلاف دما بين هواى داخل و خارج.

انتقال حرارت از جدار هالى مختلف ساختمان مرجع برابر است با حاصلضرب ضريب انتقال حـرارت

 فضاهاهى كنترلنشده يا خاك بانشند.

براى تعيين ضريب انتقال حرارت مرجع ساختمان، لازم است ضر ايب انتقال حرارت تر مرجـع اجـزالى

در ضمن، لازم است مقادير اجزاى يوستئ خارجى ساختمان (ثامل مساحت خـالص كـل ديوار هـا،

 مرجع، تنها پِ حرارتى كفـ در تماس با خاك در نظر تّرفته ميشود.

پس از طى مراحل بالا، ضريب انتقال حرارت مرجع ساختمان (H) از طريـق رابطـه زيـر محاسـبه مىترّمد:

$$
\begin{align*}
\hat{H}= & \left(A_{W} \times \hat{U}_{W}\right)+\left(A_{R} \times \hat{U}_{R}\right)+\left(A_{F} \times \hat{U}_{F}\right)+\left(P \times \hat{U}_{P}\right)+ \tag{1-9-19}\\
& \left(A_{G} \times \hat{U}_{G}\right)+\left(A_{D} \times \hat{U}_{D}\right)
\end{align*}
$$

[m^{2}]
[W/m²K]
[m^{2}]
[$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]
[m^{2}]
[W/m²K] [m] محيط كل كفـ زيرين در تماس با خاكى، مجاور فضاى خارج P-
[W/mK] ضريب انتقال حرالرت خططى هرجع كفـ زيرين در تماس با خاكى نى
[m²] مساحت كل جدارهناى نور گّذر مجاور خارج (سطوح شيشه و قاب) A A -
 [m²] مساحت كل درهاى مجاور فضاى خارج AD-
[W/m²K]
$\left[\mathrm{m}^{2}\right]$
 كنـترلنشده

ا- سطوح تمام جدار هاى ساختمانى (Awb, AD . AF . AR , Aw) و محيط كفـ زيرين در تماس بـا خاكى (P) از طرف داخل ساختمان محاسبه مىشوند.
 إر Y-Y
r- منظور از "جدالر مجاور فضاى خارج" جدالرى است كه بين يـكى فضـاى كنتــرلشــده و فضـاى
 بين فضاى كنترلشده و فخاى كنترلنشده قرار تَرفتهباشد (ر.ك. به پيوست و). در محاسـبـه ضر يب انتقال حرارت مرجع، سطوح جدارهناى بين فضاى كنترلنشده و فضاى خارج در نظـر كرَّتنه نمى شود.

F جـ ضرب ضريب انتقال حرالرت مرجع الرائهشذه در جداول ايـن فصــل در ضـريب كـاهش انتقـال حرارت فضاهاهى كنترلنشده كه براى ساختمان طرح محاسبه مىشود.

محاسبهٔ ضريب انتقال حرارت طرح

ضر يب انتقال حرارت طرح مجموع انتقال حرالرت از جدالرهاى هختلـف پوسـتـه خـارجى سـاختمان طراحیشده، به ازالى يكى درجه سلسيوس الختلاف دما بين فضاى داخل و خارجه، در شــر إيط پايــدار الست.

حر محاسبه ضر يب انتقال حرارت طرح، طراح مىتواند يكـى الز روشهـاىى (الـف) يـا (ب) رال بـرالى محاسبه يا تعيين اثر پلهاى حرارتى بر روى ضريب انتقال حرارت ساختمان، در نظر بتّيرد.

الف) روش دقيق محاسبه پپهاى حرار تى براى تعيين ضريب انتقال حرارت طرح

 كفـها و تيغههالى داخلىي) با استفاده از دادههاى لرائهشلهه در يووست 1 الين مبحث انجام مىشود. در اين صورت، برالى محاسبه ضريب انتقال حرالرت مرجع لازم است مقادير الرائه شده براي ضـريب انتقال حرالرت رل، با رعايت الصول زير، از جداول استخراج شوند:

- ديولر با فرض عايقكارى حرالرتى از خارج
- بام يا سقف با فرض عايقكارى از خارج (در تقاطع با ديوار با عايقكارى حرالرتى از خارج) - كفـ روى هوا با فرض عايقكارى از خارج (در تقاطع با ديوالر با عايق كارى حرارتى از خارج) - كف مجاور خاكى مطابق ضوابط اين بخش ب) روش سادهسازى شده تعيين اثر پلهاى حرار تی

در اين روش، تعيين اثر پلهاى حرالرتى به روش سادهسازى شده، بـدون محاسـبة ضـرايب انتقـال حرارت خطى (تقاطع ديوارهانى خارجى با كفـها و تيغههانى داخلى) انجام مى تَردد. در اين صورت، براي محاسبه ضريب انتقال حرالرت مرجع ساختمان، لازم است مقادير ضرايب انتقال حرالرت مرجع عناصر ساختمانی ارائه شله در جدول 19-9-1 الى جدول 19-9-9 منطبـق بـا جزيـيات اجرايـى ساختمان طرح و بسته به نوع فضاى مجاور آن (كنترلششـده يـا كنتـرلنشــده)، روش عـايق كـارى حرالرتى ديوار، و همتخنين رده انوزى ساختمان استخراج شوند.

تعيين ضريب انتقال حرارت (سطحى) طرح، با محاسبه يا استخراج ضرايب انتقال حرالرت سـطحى تمامى اجزالى يوستهٔ خارجى صورت می يُّيرد.

(س-Y-Y-9-19

ضريب انتقال حرالرت (سطحى) جدالر هاى كدر ساختمان بايد با الستفاده از ضرايب هــدايت حـرارت مصالح متداول (يويست V) و مقاومت هاى حرالـى قطعات ساختمانى، لايههای هوا و سطوح دالخلى و خارجى يوستهٔ خارجى (پيوست A) محاسبه تَردد. لازم است ضــريب انتقـال حــرارت بازشـوها و جدالرهاى نور كّذر پوستهٔ خار جي ساختمان نيز براساس جدالول پيوست 9 اين مبحث تعيين تَردد. در صورتى كه جدلأهاى تشكيل دهنده يوسته خار ججى دالرالى قطعاتى باشنـد كه در توليـد يـا نصـب مورد نياز هستند و باعث ايجاد پِل حرالرتى مىشوند، لازم است ضريب انتقـال حــرالرت طــرح بـا در نظر تّرفتن الثر حرالرتى اين قطعات محاسبه يا تعيين شود.

در صورتى كه مقادير مربوط به بعضى مصالح، يا لجزالى خاص، در پيوستهاى مذكور نيامله باشد و يا سازندهاى مدعى باشد كه محصولاتى با مشخصات حرالرتى بهتر از مقادير مندرج در منابع معتبـر عرضه كرده است، لازم است تَّاهیى فنى معتبر محصول مورد نظر ضميمه مدالرك كَّردد. تُواههى فنى بايد حاوى دادهها و مقادير مربوط به ضرايب هدايت حرالرت يـا مقاومـتهـاى حرالرتـى هحصول، ضخامت هاى مورد استفاده در طراحی ساختمان، اصول فنـى نصـب (الجــرا)، و همحچنـين
 فني، تا زمان اعتبار آن، هلاكى طراحى و هحاسبات استى.

 كف هاى مجاور هوال، درها و ونحجرهاست، كه در مجاورت فضاى خارج، يا فضاهاى كنـترلنششده، قرلر تُرفتهاند. در محاسبه اين سطوح، بايد ابعاد دالخلى فضاها ملاكى قرالر تيرد.
(r-r-r-9-19
محاسبه ضر يب اننتقال حرارت طــرح، نيازمنــد محاسـبه ضـريب كـاهش انتقـال حــرالرت فضـاهاهى كنترلنشدهُ ساختمان الست. براى محاسبه ضريب كاهش انتقال حرارت فضاهاهي كنترلنشده، بايــد لز روش الرائه شده در پيوست 9 استفاده شود.
(H) محاسب4 ضريب انتقال حرارت طرح F-Y-Y-9-19

پس از مراحل فوق، بايد ضر يب انتقال حرالرت طرح (H) بـا محاسـبئ مجمـوع حاهـلضـربهـاى مساحت اجزالى مختلف پوسته در ضريب انتقال حرالرت و ضريب كاهش انتقالل حرالرت متنـاظطر هــر كدام الز آنها، و همحخنـين مجموع حاصلضربهای محيط پلهاى حرالرتى در ضريب انتقال حرارت خطى (در صورت الستفاده لز راه حل الف) و ضر يب كاهش انتقال حرالرت متنـاظر بـا آنهـا تعيـين كّردد، كه در رابطه زير بيان شده الست:

$$
\begin{aligned}
& \mathrm{H}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{~A}_{w i} \times \mathrm{U}_{\mathrm{w} i} \times \tau_{\mathrm{i}}\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{~A}_{R \mathrm{i}} \times \mathrm{U}_{\mathrm{Ri}} \times \tau_{\mathrm{i}}\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{~A}_{F i} \times \mathrm{U}_{F i} \times \tau_{\mathrm{i}}\right) \\
& +\sum_{i=1}^{n}\left(A_{G i} \times U_{G i} \times \tau_{i}\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{~A}_{D i} \times \mathrm{U}_{D i} \times \tau_{i}\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{P}_{\mathrm{i}} \times \Psi_{\mathrm{i}} \times \tau_{\mathrm{i}}\right) \\
& \text { در اين رابطه تعار يف مقادير فيزيكى به شرح زير است: }
\end{aligned}
$$

[W/m ${ }^{2} \mathrm{~K}$]
[m^{2}]
[W/m² ${ }^{2}$]
[m^{2}]
[W/m ${ }^{2} \mathrm{~K}$]
[m^{2}]
[W/m ${ }^{2} \mathrm{~K}$]
[m^{2}]
[W/m ${ }^{2} \mathrm{~K}$]
[m]
[m²] مساحت خالص هر يك از انواع ديوارهاي مجاور خارج يا فضاي كنترلنشدهه Awi

مساحت خالص هر يك از انواع ديوارهاي مجاور خارج يا فضاي كنترلنششده ضريب انتقال حرارت سطحی متناظر با هر كدام از انواع ديوارها مساحت خالص هركدام از انواع بام تخت يا شيببدار مجاور خارج يا فضار فيار

 ضريبب انتقال حرارت سطحى متناظر با انواع كف زيرين در تماس باس با هوا

 ضريب انتقال حرارت سطحى متناظر با انواع درهاي خارجيا

 حرارتىا
ضريب كاهثش انتقال حرارت هر جدار

- منظور لز "جدالر مجاور فضاى خارج"جدلرى است كه بين يكـ فضاى كنـترلشده و فضـاى خـارج
 فضاى كنترلشده و فضاى كنترلنشده قرا, گرفتهباشد (ر.ك. بـه پيوسـت و). در رابطـــٔ بـالا،
 نمىشود.
- در صورت استفاده لز راهحل ب، در محاسبئه ضريب انتقال حرارت طرح، تنهيا انتقال حرارت خطى كف در تماس با خاكى در نظر تّر فته ميشود.

ض-Y-Y-Y-19
الف- ضريب انتقال حرارت مرجع ديوار - ساختمان گَروه |

در مورد تمامي ديوارههاى ساختمانهایى تَّروه ل، لازم الست علاوه بر رعايت النظارات تعيينشــنه در بند
 (\hat{U}_{W})

لازم به ذكر است ضر يب انتقال حرارت مر جع ديوال (UW) به نوع فضاى مجاور آن (كنترلشــنده يـا كنترلنشده)، روش عايثى كارى حرارتى ديوالر، و همجنـين رده انرزی ساختمان بستگى دالرد.

ديوار مجاور فضاي كنترل نشده	ديوار مجارو فضاي خارج				©) انرانرا
	عايق حرارتىا همتُن	عايق حرارتىا ميانىـ	عايق حرارتىا داخخلى	عايق حرارتىا خارجیى	
				+1	
- At.	- ff.	- f. Δ	- f. Δ	- VTr.	EC
- GiV	- H 10	- ras	- ras	- $\Delta r \Delta$	EC+
- 40.	غير مجاز	غير مجز	غير مجاز	- 519	EC++

ب- مشخصات حرار تى-نورى مرجع براى جدارهاى نوركَذر - ساختمان كَروه

 گردد.

پ پ ضريب انتقال حرارت مرجع بام يا سقف - ساختمان گّروه |

 (كنترلشذه يا كنترلنشُهم)، روش عايق كارى حرارتى بام يا سقف، و همحتِنين رده انرثّى ساختمان بستّتى دارد.

بام يا سقف مجاور فضاي كنترل نششده	بام يا سقفّ مجاور فضاي خارح				انر)
	عايقّ حرارتى بام يا سقف از داخل		عايق حرارتى بام يا سقفّ از خارج		
	ديوار با عايقي داخلى يا هـ	ديوار با عايقي	ديوار با عاييق داخلى يا همكّن	ديوار با عايتي خارجى يا ميانىى	
- Afy	- ${ }^{\text {Fi, }}$	-191	-riA	- ${ }^{+1}$.	EC
- 9 ¢r	. 59.	- r. 9	- HTA	. 19.	EC+
- $\% \Delta A$	غير مجاز	غير مجاز	غير مجاز	. 511	EC++

مبحث نوزدهمـ
ت- ضريب انتقال حرارت مرجع كف مجاور هوا - ساختمان كروها
در مورد تمامى كفـهاى مجاور هوالى ساختمانهاى ترّروه ا، لازم است علاوه بـر رعايـت انتظـارات

 حرارت مرجع كف (ف) مبناى محاسبه قرالر كّيرد.
 (كنترلشده يا كنترلنشده)، ووش عايقكارى حرارتى بام يا سقض، و همچخنين رده انرزّى ساختمان

بستّى دارد.
 ساختمانض

ث - ضريب انتقال حرارت مرجع كف مجاور خاكى - ساختمان گروه ا ضريب انتقال حرارت مرجع كفـ مجاور خاك: ••W/m.K] I,F]

الف- ضريب انتقال حرارت مرجع ديوار - ساختمان گّروه

 (مبناى محاسبه قرال, گّيرد.

لازم به ذكر است ضريب انتقال حرازت مر جع ديوار (VW) به نوع فضاى مجاور آن (كنترلشــنـه يـا

ديوار مجاور فضاي كنترل نششده	ديوار مجاور فضاى خارح				
	عايق حرارتى هـمّن	عايق حرارتىا ميانىى	عايق حرارتى انحلى	غايق خرارجیا	
					ه) انرانیا
-94.	. Fry $^{\text {r }}$	- 099	- 099	-940	EC
- $V \triangle A$	- 181	- $4{ }^{(4)}$	- ffi	-9 1 .	EC+
- 049	- MTV	. H 10	- H10	$\cdot \beta \cdot \lambda$	EC++

ب- مشخصات حرار تى-نورى مرجع براى جدار هاى نوركَذر - ساختمان كَروه 「

信

 كَردد.

״- ضريب انتقال حرارت مرجع بام يا سقف - ساختمان كَروه 「

لازم به ذكر است ضــريب انتقـال حــرالرت مرجـع بـام يـا سـقف ((كنترلشده يا كنترلنشده)، روش عايقكارى حرالرتى بام يا سقف، و همعخنين رده انرزیى ساختمان بستگى دارد.

بام يا سقفت مجاور فضاى كنترل نشده	بام يا سقفّ محاور فضاى خارج				
	با با سقف از داخل	عايق حرارتى با	سقفّ از حارح	عايق حرارتى بام	
	ديوار با عاييق داخلى يا همك	ديوار با عايق خارجي يا	ديوار با عايق داخلى يا هـ	ديوار با عايقي خار جي يا ميانىـ	-0,
					انر)
U/r.	- $\Delta 1 \Delta$	- Haf	- ATV	- $\Delta 1 \Delta$	EC
- VAI	-r90	- HAT	$\cdot \mu \cdot 9$	- 198	EC+
- $\Delta \bar{r} r$	- Hev	- rer	. 5 H.	- Hev	EC++

ت-ضريب انتقال حرارت مرجع كف مجاور هوا - ساختمان كّروه 「

حرارت مرجع كفـ (ف) مبناى محاسبه قرال كيرد.
 (كنترلشده يا كنترلنشده)، روش عايق كارى حرارتى بام يا سقف، و همثخنين رده انرزي ساختمان بستّى دارد.
 ساختمان

ث ث-ضريب انتقال حرارت مرجع كف مجاور خاكى - ساختمان كروه ضريب انتقال حرارت مرجع كفـ مجاور خاك: : 1,9 [W/m.K]

ضرايب انتقال حرارت مرجع عناصر ساختمانى براى ساختمان گّروه سه
الف- ضريب انتقال حرارت مرجع ديوار - ساختمان كَروه 「
 بند
 (UWW)

لازم به ذكر است ضر يب انتقال حرارت مر جع ديوار (VW) به نوع فضاى مجاور آن (كنترلشــنده يـا

ديوار مجاور فضای كنترل نششده	ديوار مجاور فضاى خاردا				
	عايق حرارتى هـ	عايق حرارتىا ميانىى	عايق حرارتى داخلى	عايق حرارتىا خارجى	
			東		0) انرانري
$1, \cdot A Y$	- VAY	- V r	- Vr.	1, K1	EC
-At.	- $\Delta ¢ \Delta$	- $\Delta r \Delta$	- $\Delta r \Delta$	- VAV	EC+
- FiV	. 4 Hr	- H^9	- 409	- $\Delta 98$	EC++

ب- مشخصات حرار تى -نورى مرجع براى جدارهاى نور كذذر - ساختمان كروه 「٪
 تعيينشده در بند
撸
 حرارتى-نورى (ضريب بهره تَرمايى خورشيدى و ضريب عبور نور مرئى) جدالرهاى نور كَــذر رعايـت تَردد.

پ- پريب انتقال حرارت مرجع بام يا سقف - ساختمان كَروه 「

در مورد تمامى بامها يا سقفههاى ساختمانهــاى گّـروه ז، لازم اســت عــلاوه بـر رعايـت انتظــارات

 (كنترلشده يا كنترلنشده)، روش عايقكارى حرالتى بام يا سقف، و همحتنين رده انرزّى ساختمان بستّى دارد.

بام يا ستف مجاور فضاي كنترل نشده	بام يا سقفّ محاور فضاي خارج				0, انرانر\|
	عايق حرارتى بام يا سقفّ از داخل		عايق حرارتى بام يا سقفض از خارح		
	ديوار با عايق داخلى يا ن		ديوار با عايق داخلى يا همكِّ	ديوار با عايقي خارجي يا ميانى	
1,148	- $\Delta v \Delta$	- 49 V	- 49.	- $\Delta v \Delta$	EC
- Afy	- ti.	- HY9	- rat	- fi.	EC+
- , ¢H	- 199	- Hft	- raf	-199	EC++

ت-ضريب انتقال حرارت مرجع كف مجاور هوا - ساختمان گروه 「

 حرارت مرجع كف (t) مبناى محاسبه قرال گيرد.
 (كنترلشده يا كنترلنشده)، روش عايق كارى حرارتى بام يا سقف، و همجنـين رده انرزيى ساختمان بستّى دارد.
 ساختمان

كف مجاور فضاي كـترل نشده	كفى مجاور فضاي خارج				00, انرانر\|
	عايق حرارتى كا		عايق حرارتى كا		
	ديوار با عايقي داخلى يا هم	نيوار با عايقي	ديوار با عايو داخلىى يا هـمتّن	ديوار با عايق خارجي يا ميانىا	
1.94	- $\Delta \Delta 1$	- for	- AVT	. FiV	EC
$\cdot \mathrm{A} \cdot 9$	- ATM	- HTH	- Hft	- $40 \cdot$	EC+
-.949	- H11	.rry	. 489	. HT 4	EC++

ث - ضريب انتقال حرارت مرجع كف مجاور خاك - ساختمان كروه

(\quad, $r-r-9-19$
الزامات تعيينشده براى روشـنايى طبيعمى در روش موالزنـهالى مشـابه الزامــات تعيـينشــده روش

19-9-19 تأسييسات مكانيـكى

الزامات تعيينشده براى تأسيسات مكانيكى در روش مواززـهالى مشـابها الزامـات تعيـينشــده روش
 ج-

F-9-19

- 19-9 - 19

در صورت طراحى به روش موالزنهالى، لازم است علاوه بـر ضـوالبط الجبـارى تعيـين شــنـه در بخـش

 9-19 9 لارائه شدهاست.

برالى ساختمانهاى منطبق با مبحث 9 ا، در صورت عدم امكان تأمين مقادير تعيينشده در جدول

 ساختمانهاي كهمانرزَى و بسيار كمهالنرزی كاربرد اين راهحل مجاز نيست.

جدول 19-9- •1 ضر يب انتقال حرارت مرجح بام يا سڤف ساختمان بر حسب تروهو و رده انرثي ساختمان

	بام يا سقف مجاور فضاى خارج				$\frac{3}{\frac{3}{3}}$	
	عايق حرارتى بام يا سقف از داخل		عايق حرارتى بام يا سقف از خارح			
يا سقف مجاور فضاي	ديوار با عايقي داخلى يا هـ هـ	ديوار با عاييق خارجى يا ميانیى	ديوار با عايقي داخلمى يا هم	"يوار با عايقي		c
كنترل نشـده						等
-) 109	-1)	غير مجاز	غير مجاز	-10.	EC	
غير مجاز	EC+	1				
غير مجاز	EC++					
- HAV	-rra	غير مجاز	غير مجاز	- Hra	EC	
غير مجاز	EC+	r				
غير مجاز	EC++					
- HAY	- Hra	غير مجاز	غير مجاز	- Hra	EC	
غير مجاز	EC+	r				
غير مجاز	EC++					

روش نياز انرزى ساختمان V-19

در روش نياز انرزّى ساختمان ، علاوه بر در نظر گَرفتن ميزان انتقال حرارت ساختمانمان، كه در روش

 مىشود.

 مى شود طراحى بخششهانى مختلف (يوسته خارجى يا معمارى، تأسيسـات مكـانيكى و الكتريكـى و
 طراحى در بخش 19-Y-1 أ تشُريح شدهاست.

1-Y-19 اصول كلى

در اين روش، لازم است الصول زير رعايت تَّرده:
الف) ميزان نياز انرثى سالانه ساختمان طــرح و سـاختمان مرجـع بـهطـور مجــزا و بـه كمـكـ

1-1-Y-19، محاسبه شود؛
 نياز انرزی سالانه ساختمان طرح لز ميزان محاسبه شده براى ساختمان مرجع كمهتر شود؛ پ) دالدههاى اقليمى بايد دالراى مشخصات تعيينشده در بخش Y-1-Y-19 باشند؛ ت) برنامه زمانبندى حضور, الفراد، استفاده لز سيستهم روشنايع مصنوعى و تجهيـزلات، تهويـه و

ث) شرايط سايهانذلزى ساختْمان هاى مجاور و ديگّر موانع بايد با دقـت كـافى در شـبـيهسـازى لحاظظ تَردد؛

ج) در خصوص تأسيسات مكانيككى و الكتريكى و همحتنين سيسـتمههـاى بـر پايـه انـرزیىهـاى

نرمافزالر شبيهسازى مورد استفاده بايد صحهُ كَارى ششده و مورد تأييد نهـاد دار الى صــالاحيت قـانونى باششد. حداقل قابليتهايى كه نرمافزالر بايد دارا باششد عبارت الست از: - تعيين ميزان انتقال (جريان) حرالرت ساعتى در طول يكـ سال شبيهسازى شــنه در جــدار هـا (بهصورت تفكيكى) و كل ساختمان،

- تعيين ميزلن بهره خورشيدى و انتقال حرارت تات ساعتى جدار هارهاى نور تّذر،

تعطيلات، براى كاربرىهاى مختلف ساختمان، لز جمله:

- توان روشنايع مصنوعى و ميزان كاهش احتمالى آن در سـاعات مختلـف (در هـورت

تأمين بخشَى از نياز الز روشنايني طبيعى)،

- كاركرد سيستهه تهويه مكانيكي،
- ميزان استفاده از تجهيزات (خانكّي، الادرى، ...).
- استفاهه از آبتَرم بهداشتي.
- اثثر اينرسى (جرم) حرارتى در ذخيرهسازى و ايجاد تأخير فاز، - در نظر ترَتنت حداقل ده منطقه حرارتى،
 - تعيين نياز حرازتى/ابرودتى ساختمان، در مقاطع زمانى تعيينشده،
 صورت استفاده از اين نوع سيستمهانا).
r-I-V-19
فايلههاى آبوهوايیى مورد استفاده بايد در فرمت الستاندالرد و حـاوى دالدههـاى سـاعتى پارامترهـاى مورد نياز باشند. علاوه بر اين، فايلها بايد مورد تأييد حداقل يكى نهـاد دالرالى صــلاحيت قـانونى يـا مرجع معتبر جهانى باشند.

 برازششذه با تأيبد نهاد دالرالى صلاحيت قانونى صورت تَيرد.

(1-Y-19

در صورتى كه برنامههاى زمانى بهرهبردالرى و عملكــرد تجههيـزات بـا مقـادير مطـرح شــده در ايـن مقررات (پيوست ه) مغايرتهاى قابل توججهى داشتـه باشــد، امكـان السـتفاده لز برنامـههــاى زمـانى جايكَّزين برنامههاى الرائه شده در الين مبحث تنها با لر ائه دلايل توجيهـى كافى مجاز خواهد بود.

شبيـهسازى و انجام محاسبات Y-Y-19

در فرايند شبيهسازى و انجام محاسبات بايد اصول زير مورد ,عايت قرال, گّيرد:

1-Y-V-19
در تعر يف هندسه و جدلرهاى پوسته خارجى ساختمان، لازم الست الصول زير رعايت تَردد: - هندسه تعريفـشده براى ساختمانهالى طرح و مرجع بايد كاملاً يكسان باشلـ؛
 حدامكان سادهسازی، با تعريفـ سطوح معـادل، در جهــت كـاهش تعـداد سـطوح، صـورت
گّيرد.

هر يك لز جدارهناى نور كَّر ساختمان مرجع با هركز جدار هالى نور تَّذر ساختمان طرح بايد منطبق باشد.

- جدار هالى ساختمان مرجع بايد واجد خصوصيات زير باشند:
 جرم سطحى ساختمان طرح تفاوت داشته باشد؛

- محل قراز گّيرى عايق حرارنى ساختمان هرجع و ساختمان طرّ برح بايد يكسان باششد؛
 فيزيكى-حرإتى تمامى لايهها، تا حدامكان دقيق و مطابق مراجــع در نظـر تر ترفتـه

شده باششند؛
 خارجى ساختمانهالى مرجع و طرح بهصورت يكسان انجام شود، و تنها وجه تمايز

 شدهباشد، لازم است جدار ساختمأن مرجع نيز مشابه جدالر ساختمان طـرحّ، ولـى با ضخامتي متفاوت تعريف شود.

Y-Y-V-19 شبيهسازي و محاسبات عددي روشنايى طبيعى

در اين مقررات، روش شـبيـهـازى بـر مبنـاى شـاخص sDA (كفايـت نــور روز در فضـا) هــورت
 شدت روشنايى موردنظر در طول .ه ٪ \% ساعات معينشده تأمين مى تَردد.

 باشند تا حداقل شدت روشنايع موردنظر، در طول . ه ٪ ساعات معينشده، تأمين ترّرد.

جدول V-19 - ا مثادير درصد مساحت سطح كار منطبقي بر شاخصص SDA براي ردمهاي متختلف انرزي

شانص					,
V Δ	\geq	sDA	$>$	$\Delta \Delta$	EC
A Δ	\geq	sDA	>	V Δ	EC+
	\geq	sDA	$>$	$\lambda \Delta$	EC++

براى انجام شبيهسازىهاى روشنايى طبيعى، پيشفرض هاى زير بايد در نظر گّرفتهشود:
 تمامشده انجام شود.

- دوره زمانى كه براى محاسبات روشنايى در نظر تَّرفته مى شود، بايد بر الساس نوع كاربرى يـا تعداد ساعاتي كه مى تولن الز روشنايى طبيعى در طى روز بهرْمندشــد، تعيـين شـود. ايـن محدوده زمانى بايد مطابق با پيوست هادر نظر ״َّرفته شود.
- با توجه به شاخص بيانشده، محاسبات شدت روشنايى براى يكى فضا بايد بـر اســاس مقـادير
 شبكه فرضى در نظر گَرفته شوند. فاصله افقى حداكثر بين نقاط در مركز صفحه بايــد ور.
 شبكه نقاط بايد در لرتفاع سطح كار مطابق زيربند - نقاطى از شبكه فرضى كه در طول سال، دالرالى شدت روشنانی حذاكثر يكى لوكس هسـتنـد و در مجاورت نقاطى با مقادير بيشتر قرالرگّرفتهاند بايد لز محاسبات خارج تَردند. - بايد توجه دالشت كه فاصله بين نقاطط اين شبكه نبايد با فاصله بين منابع روشـنايى مصـنوعى يكسان باشد.
- ضر يب عبور نور مرئى شيشههاى الستفادهشده در ساختمان بايد مطابق بـا مقـادير واقعى در محاسبات لحاظ شود.
- تمامي موانع و سايهانداززهاى الطراف ساختتمان، كه فاصله آن ها الز نمـاى سـاختمان مـوردنظر كمتر يا مساوى با دو برابر لرتفاع موانع هستند، بايد در مدلسازى لحاظط شوند.
 مطابق با مقادير در نظر تَرفتـه شــنده در شـبيهسـازىهـا لحـاظ شـوند. در صـورت عـدن دسترسى به اين هقادير میتوان الز ضر يب זّ •، بهعنوان ضريب انعكاس استفاده نمود. - ضر يب انعكاس سطوح داخلى و خارجى بايد مطابق با مشخصات فنى در نظر تَّرفتهشده براى پوششش هاى جدالرهاى دالخلى و خارجى و مبلمان بهكاررفته در فضا در برنامه شبيهسـاز در نظر گّرفته شود. در صورت عدم دسترسى به مقادير ضريب انعكـاس، مـىتـــوالن از مقـادير پيشفرض در جدول Y- 19 - Y الستفاده نمود.

ضريب انعكاس	نوع سطح	
$\cdot{ }^{r}$	زمبن	خارجيا
- ${ }^{4}$	سطوح عمودى خارجي (سايه\|ندازها)	
- Δ	ديوار و سطوح عمونى	داخلى
- V	سقف	
- \cdot	T	
- Δ	- مبلهان	

- براى انجام شبيهسازى، بايد لز نرمافزلر معتبر كه دالى الكّوريتهم دقيق براى انجام محاسبات روشنايى است، الستفاده شود. كاربر بايد بتواند پارإمترهاى نسبتاً دقيقى را در نرمافزالر مربوطه تعيين نمايد. مههمرين پارامترها و مقادير آنها براى شاخل شاخص در

مقدار	يارامتر
9	تعداد بازتاب يراكنده بين سطوح (ab)
$1 \ldots$	(ad) تعداد اشعههاها ساطع شده از سطوح در محاسبلت
-	عدم لحاظط تابش مستقيم\| (dt)

 مانيتور و ... رخ مى دهد و المكان تغيير محل كاربر وجود ندالرد انجام شود و نشان داده شود كـه در اين فضاها در محل چֶشُه ناظر، خيرگّى آزالردهنده يا غيرقابل تحمل ايجاد نشُده است. مقادير مجاز خيرگّى مطابق جدول Y-Y-19 - 19 مى باشد. پس از انجام محاسبات خيرگّى، مقدلر اين شاخص نبايـــ

DGP مقدار					ميزان خيرّى
. 5	\geq	DGP			عدم وجود خ-
- 5 A	\geq	DGP	>	. 54	خيركّى قابلد درك
	\geq	DGP	$>$		خيركى آزاردهندهن
		DGP	$>$	- ${ }^{40}$	خيركّى غير قابل تحمل

(
نياز انرزّى سالانه يكى ساختمان با تعيين بـلان انرزیى ساختمان بهدست مى آيد. براى ايــن منظـور، لازم است موالرد زير، در الرتباط با نيازهاي انرزیى ناشى از پارامتـرهانى هختلف، با دقت لازم، محاسبه

تَردد:

- انتقال حرارت ناشى الز اختلاف دما در دورهمانى گّرم و سرد سال، - ميزان انرزیى كسب شده توسط تابش خورشيد، با در نظر ترفتن فرم ساختمان، سايهانــدلزى
 مشخصات نورى-حرالرتى سطوح مختلف كدر و نور گَذْر و تابش سطوح تَّرم خارجي؛
- ميزان انرزیى تابيدهشده به آسمان و سطوح سرد مجاور ساختمان؛ - ميزان انرزیى قابل دستيابى با سامانههايى مختلف فعال و غيرفعـال نصـبشــده روى پوسـته خارجى (گَلخانه خورشيلى، ديوالر ترمـب، ...)

نياز انرزى سالانه ساختمان طرح
لازم الست محاسبه نياز لنرزى سالانه ساختمان طرح با رعايت الصول زير انجام شود: - شبيـسازى و انجام محاسبات عددى، با استفاده لز نرمافزالر هاى مورد تأئيد؛ - انتخاب فايلههاى آبوهوايى و برنامههاى زمانى بهرهبردلارى و عملكــرد تجهيــزات منطبـقـ بـا شرايط پروزْ

نياز انرزى سالانه ساختمان مرجع Y-Y-Y-19
تعيين نياز انرزّى ساختمان مرجع نيز بايد با فرايندى مشابه ساختمان طرح و با رعايت الــول زيــر انجام شود:
 تعيين مصرف انرزَى ساختمان طرح، و با دادهمالى مشابه در خصوص شر ايط (فايـلهــاى) آبوهواليى و برنامههاى زمائى بهرهبردالرى و عملكرد تجههيزات.

- مشخصات هندسى كاملاً مشابه مشخصات ساختمان طرح
- دالدهالى مربوط به پوسته خارجى ساختمان مطابق مقادير إرائششله در بخش 19-ه-r - دالدههـاى مربـوط بـه تأسيسـات مكـانيكى سـاختمان مطـابق مقـادير ارأأــشـــنده در بخـش $r-\Delta-19$
- دالده هاى مربوط به سيستهم روشـنايى مصـنوعى و ديگــر تجهيـرات برقى سـاختمان مطـابق
F-D-19 مقادير لا, ائهشده در بخش
- براى ساختمان مرجع، كاهش نياز حاصل لز بهـرهگّيـرى از روشـنايى طبيعـى، سـايبانهــا و

 باشد، لازم خوالهد بود مقادير مربوط به آن در شبيهسازى ها و محاسبات ملاكى عمل قرالر تُيرد.

شرايط پـيرش نتايج محاسبات
طراحى صورت تَرفته زمانى قابل قبول تلقى مىشود كه ميزلن نياز انرڤّى سالانه محاسبهشده براى ساختمان طرح لز مصرف انرزیى ساختمان مرجع كمتر باشد.

Y-Y-19

الزامات مربوط به طراحى سيستهم تأسيسات مكانيكى روش نياز انرزّى مشابه الزامات روش تجويزى الست (. ك. به بخش 19- اه- ث).

D-Y-19 سيستهمهای بر پايه انرزیهای تجديدیذير

براى تعيين ميزلن تأثير روشنايى طبيعى و سيستمههاى بر پايهَ انززى هاى تجديدیذير، بر روى نيـاز انرزّى سالانه ساختمان، لازم الست الصول زير رعايت كَرده:

- در صورت الستفاده از گّلخانه خورشيدى، ديوار ترمـب يـا ديًّـر سيسـتمههـاى غيرفعـال قابـلـ الستفاده در یوسته خارجى ساختمان، در مناطقى با نياز تَرمايـي غالب، لازم است مشخصات هندسى هر يكى سيستمهها با دقت در مر حله تعريفـ ساختمان طرح در نرمافزال, والرد شـود. در ساختمان مرجع، مشخصات در نظر گّرفتهشده براى ساختمان مرجع مشابه مشخصـات تعيينشده در روش تجويزى استت.
 بهصورت مجزال، با استفاده لز نرمافزالر هاى تخصصى مورد تأييد محاسبه مى لحاظ كردن بازده هر يكى از سيسـتمههـا، لز نيـاز انـرزیى سـالانه سـاختمان طــرح كاسـته مىشود.
- در روش نياز انرزى ساختمان، امكان لحاظ كردن تأثير سيستهمهاى باز يافت، ذخيرهسـازى، و
 سيستهمها، بايد الز روش كارايه انرزی ساختمان الستمانمانه شود.

A-19 روش كارايى انرزى ساختمان

 كه ميزان انرزیى سالانه مصرفى ساختمان طرح از مقدلر آن براى ساختمان مرجع كمتر باشد.
 نياز انرزی ساختمان، بازدهى و كاراليى سيستمههالى مورد السـتمانه در تأسيسـات مكـانيكى و برقـى

 باششد.

در اين روش طراحى، ميزان انرّى اوليه مصرفى ملاكَ عمل طراحى قرار می گّيرد. تعيين ميزان انرزّى اوليه مصرفى ساختمان مرجع به دو روش امكانيذير است:

- شبيهسازى و انجام محاسبات عددى ساختمان مرجع، با استفاده الز نرمالفزار هالى مـورد تأيــد الستفاده شده براى تعيين مصرف انرزى ساختمان طرح، مطابق اصول تعيـينشــده در بنــد
 كمتر از ميزان انرثى اوليه مصرفى ساختمان مرجع باشد؛
 شدهاست.

در اين روش، لازم است الصول زير رعايت تَّردد:
الفـ) ميزالن انرزی اوليه سالانه ساختمان طـرح بـه كمـكـ شـبيهسـازى انــرزى، بـا السـتفاده لز
 در صورت الستفاده لز روش شبيهسازى و انجام محاسبات عددى ساختمان مرجـع، ميـزالن

انرزّى اوليه سالانه ساختمان مرجع نيز با الستفاده از اين نرمافزلرها هحاسبه شود؛
 ت) برنامه زمانبندى حضور افراد، الستفاده از سيستهم روشنايى مصنوعى و تجهيـزلات، تهويـه و

ث) شرايط سايهاندازی ساختمان هاى مجاور و ديتر موانع بايد با دقـت كــافى در شـبـيهسـازى لحاظ تَردد؛

ج) در صورت الستمُاده لز روش شبيهسازى براى محاسبه انرزیى اوليهه سـاختمان مرجـع، بـرالى
 ساختمان مرجع، شرايطط لرئه شده در بند
 شده در بند 19- 9 با

1-1-A-19 نرمافزار شبيهسازى
 حداقل قابليتهايى كه نردافزار ها بايد دارا باششند عبار تند از:

- تعيين ميزلن انتقال (جريان) حرالرت ساعتى در طول يكى سال شبيهسازى شــنه در جــدالرها
(بهصورت تفكيكى) و كل ساختمان،
- تعيين ميزلن بهره خورشيدى و انتقال حرالرت ساعتى جدالرهاى نور تّذر، - تنظيّه برنامه ساعتى پارامترهاى مختتلف، براى تمامى روزهاى هفتـه و روزهـاى آخــر هفتــه و تعطيلات، براى كاربرىهاى مختلفـ ساختمان، لز جمله:
- ميزان حضور و نوع فعاليت افراد در مناطق (زونهاى) هختلف ساختمان،
- توان روشناني مصنوعى و ميزان كاهش احتمالى آن در سـاعات مختلـفـ (در هـورت تأمين بخشى لز نياز از روشنايع طبيعى)،
- دماى تنظيمّم (ترموسثات) سيستمهماي تَرمايى و سرمايیى،
- كاركرد سيستهه تهويه مكانيكي،
- ميزالن استفاده لز تجههيزات (خانتّي، الدارى، ...)، - استفاده لز آبتَّرم بهدلشتي.
- الثر اينرسى (جرم) حرالرتى در ذخيرهسازى و ايجاد تأخير فاز، - در نظر تَرفتن حداقل ده منطقه حرارتى،
- تنظيّمْ بار حرارتى سيستهمهاى تَّرمايى و سرمايى متناسب با دما و تعداد تجهيزات،
 - تهيه گّزارشهانى ساعتى مصرف انرزّى به تفكيكى حاملها، - تعيين بار حرالرتى/برودتى تجهيزات تَّرمايى و تهويه مطبوع، ميزان دبى هوا و آب مـورد نيـاز در مقاطع زمانى تعيينشله،
 صورت الستفاده لز اين نوع سيستمهها).
r-1-A-19
 مورد نياز باشند. علاوه بر اين، فايلهما بايد مورد تأيبد حداقل يكى نهـاد دارالى صـلاحيت قـانونى يـا مرجع معتبر جهانى باشند.

 برازشششه با تأييد مراجع معتبر صورت گّيرد.
r-1- 19 - 19
در صورتى كه برنامههاى زمانى بهرهبردالرى و عملكــرد تجهيـزات بـا مقـادير مطـرح شـده در ايـن مقررات (پيوست ه) مغايرتهالى قابل توجهیى دالشته باشــد، امكـان اسـتفاده لز برنامـههـاى زمـانى جايتًّزين برنامههاى الرائه شده در اين مبحث تنها با لرائه دلايل توجيهى كافى مجاز خواهد بـود. در
 جايتّزين به هر دو ساختمان (طرح و مرجع) اعمال مى تِردد، و ديگّر نمىتولن مقادير مطلق مصرف
 طراحى قرار داد.

$$
\begin{aligned}
& \text { Y-А-19 شبيـهسازى و انجام مـحاسبات } \\
& \text { در فرايند شبيهسازى و انجام محاسبات بايد اصول زير مورد رعايت قرلر گّيرد: }
\end{aligned}
$$

19-1-
در تعريف هندسه و جدلرهاى پوسته خارجى ساختمان، لازم اسـت الهـول مطـرحشــده در بخـش

(
برای شببيهسازى و انجام محاسبات عددى روشنايی طبيعى، لازم است اصول مطرحشــنـه در بخـش据.

تr-r-А-19

مشخصات سيستمهماى تأسيسات مكانيكى و برقى ساختمان طرح بايد كاملاً مشابه شـرايط واقـى باشد. در صورت سادهسازى و معادلسازی، بايد توجيحات لازم در مدارى فنى الرائه شود. مشخصات سيستمههـاى تأسيسـات مكـانيكى و برقـى سـاختمان مرجـع بايــد مشـابه مششضصـات تعيينشده در روش تجويزى باشل.

(~-A-19 اصول، روشهاى طراحى و شرايط پذيرش نتايج محاسبات

در حالت طراحى بهروش كارايع النوزى، لازم است تعيين ميزالن انرزّى اوليه مصرفى ساختمان طرح
 بايد با رعايت تمامى موالرد مطرح شده در بخش 19-A-1 - انجام شود.

(1-1-ケ-A-19

 مصارف انرزّى اوليه حاملهاى مختلف، با استفاده لز خروجيىهاى مصرف انرزّى نهايى بهدستآمــنـه با شبيهسازى نرمالفزالرى محاسبه شوند.

انرثى اوليه مصرفى سالانه يك ساختمان برابر الست با حاصل جمع مصارف انرزیى اوليه الكتريكى و
 بهة راندمان توليد و توزيع حامل انرزیى مورد نظر الست.

در صورتى كه مقدلر راندمان توليد و توزيع انرزیى الكتر يكى توسط وزارت نيرو اعلام نتـــــدد، مقـدالر آن برابر با •r درصد در نظر تَرفتـه مىشود.

در صور تى كه مقدلر راندمان توليد و توزيع انـرزی غيرالكتريكـى (گّاز) توسـطـ وزارت نفـت اعـلام

(اصول طراحى بهروش قياسى
در اين روش، محاسبه مصرف انرزّى الوليه سالانه سـاختمان مرجـع، بـا رعايـت الهـول زيـر انجـام مىشود:

- شبيهسازى و انجام محاسبات عددى، با استفاده لز نرمافزلالهاى مورد تأيبد استفاده شذه براى تعيين مصرف انرزّى ساختمان طرح، و با دادهماى مشابه در خصوص شر ايط (فايـلـهـاى

> آببوهوايى و برنامههاى زمانى بهرهبردالوى و عملكرد تجهيزات؛

- مشخصات هندسى كاملاً مشابه مشخصات ساختتمان طـح؛
- دالدمهاى مربوط به پوسته خارجى ساختمان مطابئ مقادير لإئهشده هر بخش - دالدههانى مربـوط بـه تأسيسـات مكـانيكى سـاختمانـ، مطــابق مقـادير الرائـهشــده در بخـش $: T-\Delta-19$
- دالدمهاى مربوط به سيستهم روشنايى مصـنوعى و ديگــر تجهيــزات برقـى سـاختمانن، مطـابق مقادير لرائهشله در بخش
- عدم احتساب كاهش نياز حاصل از بهره گّيرى از روشنايیى طبيعى، سايبانها و سيستمههالى بر پايه انرزیىهاى تجديد پذير ساختمان.

» كمانرزی (EC+") و "بسيار كهابنرزى (EC++)" مى باشد.
 خواهد بود مقادير مربوط به حالت در نظر تَرفتهشده در شبيهسازى ها و محاسبات ملاكى عمل قرال كتيرد.

لازم است خروجيهاى مربوط به مصرف سالانه انرزى الكتر يكى و غير الكتريكى، بهصورت تفكيكـى لارائه شود، تا امكان محاسبه مصرف انرزّى اوليه فراهمهم آيد.

در اين روش، محاسبه مصرف انزرڤى سالانه ساختمان مرجع، با رعايت اصول زير انجام مىشود: - تعيين سطح زيربناى فضاهاهى كنترلشده؛

- تعيين مقادير مربوط به مصرف انرزى اوليه سالانه ساختمان، با الستفاده لز جدول 19-A-1
 (EC++) (EC+ (EC) " (Cl "

 مصرفى ساختمان لحاظط نمىشود.

طراحى ساختمان نزديكى صفر تنها با استفاده لز روش كارايع انرزى و معيار مصرف براى ساختمان مرجع امكان پْير است.

شرايط هذيرش نتايج محاسبات
حر هر دو روش (قياسى و معيار مصرف)، طرالحى صورت تَرفتـه زمانى قابل قبول تلقى مىشـــود كــهـ ميزلن دصرف انرزی اوليه سالانه محاسبهشده بـراى سـاختمان طــرح الز مصـرف الــرزى سـاختمان مرجع كمتر باشد.

(19-r-

 دفتر جهه محاسبات، لازم است موارد زير لرائه تَردد:

- خلاصهالى الز محاسبات و تحليلههاى انجامشده، شامل ميزان مصرف انرزّى سـالانه سـاختمان
مرجع و ساختمان طرح؛
- مشخصات نرمافزالرى كه براى محاسبات مورد استفاده قرال, تَرفته است؛
- معرفى اختصارى پروزڭه، با ذكر محل آن، تعداد طبقات، كاربرى (نحوه بهرهبردارى)، فضـاهانى كنترلشده و كـتـرلنشده، زمان هاى بهرهبردالرى از ساختمان؛
- فهرست امكانات و تجههيزات انرزیى بر در ساختمان، و تفـاوتهـاى احتمـالى مشخصـات فنـى آنهها با مشخصات الستاندالرد
- فهرست انطباق موارد مختلف با الزامات در نظر تَرفتهشده در اين روش طراحى؛ - روش مدل سازى و فرضيات در نظر تَرفتهشده؛ - اطلاعات خروجى هاى نرمافزلا و ميزلن مصرف انرزیى تفكيكـى روشـنايى، تجهيـزات دالخلـى،
 تهويه مطبوع (نظير پمـپها) باشلـ.

ييوست

فهرست وازگّان

(معادل انگَليسى)

وازهنامه فارسى - انگَليسى

Construction	احداث
Higher Thermal Value (HTV)	لرزش حرالرتى بالا (يا ناخالص)
Lower Thermal Value (LTV),	لرزش حرارتى پايّن (يا خالصن)
Total Harmonic Distortion (THD)	اعوجاج كلى جرين
Economizer	اكونومايزر
Renewable Energies	
Thermal Inertia	إينرسى حرإتى
Thermal Comfort	آسايش حرإتى
Opening	بازشو
Flat Roof	بام تخت
Pitched Roof	بام شيبدلر
Capacitor Bank	بانكى خازن
Energy Label	
Rehabilitation (Renovation)	بهسازى (و بازينوسازى)
Power Meter	پاورمتر
Thermal Bridge	پِل حرإتى
Plenum	پلنوم
Window with Improved Thermal Performance	پنجره با عملكرد حرالرتى بهابوديافته
Building Envelope	يوسته خار جا
Physical Envelope	يوسته كالبدى
Timer Light Switch	تايمر مدالر روشنا
Air Change (ACH)	تعداد دفعات تعويض هوا (در ساءت)
Change of Occupancy	تغيبر كاربرى
Active Power	توان اكتيو

Heating Degree Day
Prescriptive Method
Building Energy Performance
Method
Trade-Off Method
Energy Need Method
Building Usable Area
Near Zero Energy Building (Energy
Compliant Near Zero) (ECnZ)
Very Low Energy Building (Energy
Compliant ${ }^{++}$) (EC++)
Low Energy Building (Energy
Compliant +) (EC+)
Building in accordance with the regulations (Energy Compliant) (EC)
Existing Building
New Building
Time Switch
Dimmer
Net Area (of conditioned space)
Variable Speed Device/Drive (VSD)
Combined Cooling, Heat and Power (CCHP)
Combined Heat and Power (CHP)
Variable Air Volume (VAV)
Energy Management System (EMS)
Lighting Management System (LMS)
Building Management System (BMS)
Colour Rendering Index (CRI)
Heat Flux
Illuminance

$$
\begin{aligned}
& \text { روز - درجهُ تَّرمايى } \\
& \text { روش تجويزى } \\
& \text { روش كارايى انرزّى ساختمان } \\
& \text { روش موالزنهالى (كاركردى) } \\
& \text { روش نياز انرزى } \\
& \text { زيربناى مفيد } \\
& \text { ساختمان با مصرف انرزّى نزديكى صفر } \\
& \text { ساختمان بسيار كمهازثریى } \\
& \text { ساختمان كهازنر٪ى } \\
& \text { ساختمان منطبق با مبحث 19 } \\
& \text { ساختمان موجود } \\
& \text { ساختتمان نو } \\
& \text { ساءت فرمان مدالر روشنايع } \\
& \text { سامانه كاهنده (ديمر) روشنايع } \\
& \text { سطح خالص فضاى كنتـرلشده } \\
& \text { سيستهم (دستگًاه يا راهالنداز) تغيبر سرعت } \\
& \text { سيستهم توليد همهزمان برودت، حرالرت و برق } \\
& \text { سيستهم توليد همززمان حرالرت و برق } \\
& \text { سيستمه حجمه هواى متغير } \\
& \text { سيستهم مديريت النرزى } \\
& \text { سيستهم مديريت روشنايىى } \\
& \text { سيستهم مديريت هوشمند ساختمان } \\
& \text { شاخص نور } \\
& \text { شار تَرمايع (يا حرالـىی) } \\
& \text { شدت روشنايى }
\end{aligned}
$$

Spatial Daylight Autonomy (sDA)	كفايت نور روز در فضا
Switch	كليد قطع و وصل
Controllers	كنترلرها (كنتـرل كنـنـنهاها)
Programmable Logic Controller (PLC)	 (يى)
Building Usage	كاربرى ساختمانما
Floor	كف
Valid Technical Certificate	كُواهمى نامه فنى معتبر
Light Emitting Diode (LED) Lamp	لامـپ LED
Organic Light-Emitting Diode (OLED) Lamp	لامٌ OLED
Thermal Comfort Zone	محدودة آسايك
Energy Management System (EMS)	مديريت هوشمـند مصرف انرّ\%
Thermal Resistance	مقاومت حرارتى
Air Leakage	نشّ هوا
Accredited Legal Entity	نهاد دالرالى صلاحيت قانونى
Residential Unit	والحد مسكونى
Air Tightening	- هوابندى

پيوست

روش تعيين گروه اينرسى حرارتى ساختمان

برالى تعيين تَروه اينرسى حرارتى ساختمان، يا بخشى از آن، در وهلهُ اول لازم است جرم سـطحى مؤثر جدالرهاى مختلف آن محاسبه تَّردد. ميزان جرم جدار، كه در تعيين تَّروه اينرسى حرالرتى در

پيوست، روش محاسبه جرم سطحى مؤثر جذلر در حالتها و موقعيتهاى مختلف لارائه مى گَّردد.
(M) يس از تعيين جرم سطحى مؤثر جدارهاى مختلف، جرم مؤثر كل ساختمان يا بخشـى از آن
 ميشود.

پץ-1 تعيين جرم سطحى مؤثر جدار

پپ-1-1 جدار در تماس با خارج

 مىشود.

التّ جدلا, دالرالى عايق حرارت باشل، تنها جرم بخشى از جدل, كه در طرف رو به داخل عايق حرالتى است در محاسبهٔ جرم مؤثر جذالر منظور مىشود.
 باشد، به همين مقدالر اكتفًا ميشود.
 جرم سطحى مؤثر بخش مجاور خاكى ديوار، كفـ روى خاكى يا تَّربهرو يا فخاى بستئه مجـاور خـاكى،
 صورتى كه جدلر دالرالى عايق حرالرت باشلد، تنهيا جرم سطحى بخششى از جــدلر كــه در طـرف رو بـهـ دالخل عايقق حرارت الست در محاسبهٔ جرم سطحى مؤثر جدار منظور مى شود. الّر جرم سطحى مؤثر

 صورت، برابر با جرم سطحى بخشى لز لايههاى جدلر كه در طرف رو به دالخل عايق حرالرتـى اســت،
در نظر يُرفته مى شود.

 شدهاست كمتر از . . ك كيلوتّرم در مترمربع باشل، جرم سطحى مؤثر مساوى با جرم سطحى جدار است؛؛ در غير اين صورت، جرم سطحى مؤثر مساوى با . . مىشود.

پ پ-r جرم سطحى مؤثر ساختمان در واحد سطح زيربناي مفيد

ابتُر مربوط به آن باشد، جرم مؤثر ساختمان برابر است با: $\mathrm{M}=\Sigma\left(\mathrm{m}_{\mathrm{i}} . \mathrm{A}_{\mathrm{i}}\right)$
 مفيد ساختمان (يا بخشى از آن) Ah، براساس رابطهُ زير محاسبه مى مكردن: $\mathrm{m}_{\mathrm{a}}=\mathrm{M} / \mathrm{A}_{\mathrm{h}}$

كّروه اينرسیا	$\mathrm{m}_{\mathrm{a}}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$
105	10. ${ }^{\text {- }}$ 1
متوسط	
زياد	مساوى يا بيش از

پيوست

گونهبندى درجه انرزیى (گَرماييى-سرمايي) سالانه
شهر ها

مبحث نوزدهمـم

 هوالشناسىاند، درج شده است. در صورتى كه نام شهر محل استقرال ساختمان در اين پيوست نيامده باشد، لازم الست مشخصات نزديكـترين شهر به آن، با آب و هواي مشابه، ملاكى عمل قرال تَيرد.

ييوست

مبحث نوزدهـمـ

بيوست ץ : گَوندبندى درجه انرڭى (گَرمايى - سرمايى) سالانه شهرهها

|A|

مبحث نوزدهمـ

ييوست

نياز غالب		(انریى	نام شهه,	هـمار0
سر مايش	كر مايش			
-	-	متوسط	-	11.
	-	زيان	0,0	111
		زباد	دزفول	115
	-	00^{5}	دشت ناز	11%
-		متوسط	دوتّنبلن	HF
	-	متوسط	O00 صومعه\$	110
-		زيان	دهلر	119
	-	15	ديهو\%	IIV
	-	10^{5}	,	$11 A$
		زيان	,المهرهز	119
-	-	10^{5}	رشت	It.
	-	متوسط	روانسر	It
	-		رودبار كّحيلان	Itr
			زالبل	IHT
			;	1ty
		متوسط	زردّحّل سرخ آباد	150
		متوسط	زرقن	154
	-	زيان	زر ينـه الوباتو	ITV
	-	زيكا	زنجان	ItA
-	-	متوسط	ساوه	159
	-	متوسط	سبزول,	
-	-	متوسط	سِـيّ دشت	IH
	-	متوسط	سد دوونز	Hr
-	-	متوسط	سر پل ذهاب	Irr

مبحث نوزدهـم

جيوست ץ : گُونهبندى درجه انرزى (تُرمايبي - سترمايى) سالانه شهر ها

نياز غالب		درجهـ انرزی	نام شههر	هـمار
سر بايش	كّرمايش			
-		متوسط	طرق كرتيان	$10 A$
		متوسط	عباس آباد قهم	109
		زياد	عدل	15.
		متوسط	فردونس	191
		متوسط	فسا	195
		05	فومن	$19+$
		زيان	فيروزآباد	194
		15	قائمشـهر	190
		متوسط	قائن	195
		10	قرآن تالا	19 V
		0	قرالخـل قائمشهه	19λ
			قروه	199
		متوسط	قره آغانج	18.
			قزوين	\|V1
		S	قصر شيرين	IVt
		زبا	قطور جا	IVr
		متوسط	ق\%	IVF
		متوسط	قمشُه (شهر\|	1V8
		متوسط	قوحّن	lvg
		متوسط	كازن	IVY
		متوسط	كاشان	IVA
		متوسط	كاشمر	1Y9
		متوسط	كبوترآ بال	A
		متوسط	كرج	$\|\lambda\|$

مبحث نوزدهـم

بيوست ץ : گَوندبندى درجه انرڭى (گَرمايى - سرمايى) سالانه شهرهها

نياز غالب		انرثرجى	نام شهر	شماره
سر عايش	كر مايش			
-	-	زياد	نوزيان	H.
	-	105	نوشهر	H
	-	متوسط	نهبندلن	rrim
	-	00^{5}	نى ريز	Hr
	-	متوسط	نيشابور	rif
	-	متوسط	ورامين	ros
	-	متوسط	ورزنهنه	reg
	-	متوسط	ولد آباد	rry
		متوسط	هفـت تٌه	rra
-	-	زياد	همدان	ra
	-	متوسط	همعِّين	TH.
	-		همند آبسرد	THI
			هوتن (حات)	Het
			هويزه	Hre
		متوسط	ياسوج	mef
		متوسط	يزن	HMS

Fيوست

> گَونهبندى كاربرى و گروه ساختمانها

پ پ F-1 گَونهبندي كاربري ساختمانها

 اين تَّونهبندى براساس سه عامل زير تعيين شده الست:

1- تداوم استفاده لز ساختمان در طول سال و در طول شبانهروز؛ Y- شـ شت اختلاف دماى احتمالى بين دالخل و خارج ساختمان؛「- اهمميت تثبيت دماى فضاهایى داخل ساختمان.

خوابتاه، زايشُّاه، سردخانهـ،	نوع كاربرى الف
سـاختمان الدارى، سـاختمان تجـارى، فروشــاًاه، سـاختمان آموزشـى، تلويزيون، مركز الصلى يا فرعى مخـابرات، مر كـز الصـلى يـا شـعبئ بانـكـ، پليس و آتشنشانى، رستوران و سالن غذالخورى.	نوع كاربرى ب
ترمينال فرود ّاّه بينالمللى يا داخلى، ترمينال راهآهن، الستاديوم ورزشـى سريوشيده، تعمير گّاه بزرگّ، كارخانه صنعتى (غير لز موارد ذكر شـنده در ساختمان ايستگًاه وسايل نقليئ زمينى.	نوع كاربرى
 طبقات، آشيانئ حفاظتى هواليـيما، ساختمان ميدالنهـاى ميـوهو و تـرهبـار، ايستگّاه مترو، پناهِّاله.	نوع كاربرى

بيش الز 9 طبقه يا زيربناى مغيد بيشتر لز ＋．．．	9 طبقه يا كمتر زيربناى مفيد كمتر يا مساوى ．．．．	درجه انروّى محل استقرار ساختمان （از از يبوست ז）	گَونهبندى كاربرى ساختمان
l		；ياد	
「0，		متوسط	
r		ω^{5}	
lor	ror	زياد	
「 ${ }^{\text {r }}$	「	هرهو	
「	rosk	10	
rors		；	
r0，${ }^{5}$		متوسط	
rogr		105	
＋0， 0		；	
＋${ }^{\text {\％}}$		متوسط	
F		105	

هييوست ه

برنامه زمانى بهرهبردارى ساكنين و عملكرد تجهيزات

دماى تنظيـم سيستمرم سرمايیى ديكّكر مناطق		دماي تنظيهمه سيستتم سرمايمـا اقليبم تّرمورمرطونـ		دماي تنـظيسما		بهرهبردارى سـاكـنـين		
$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	令	زمان
FA	「 1	¢ 0	ro	Y．	r．	1	－	$\cdots \cdot \cdots-\cdot 1: \cdot$
YA	「A	「 Δ	「 Δ	Y．	Y．	1	1	$\cdots \cdot 1: \cdot \cdots \cdot r: \cdot \cdot$
YA	†A	¢ Δ	¢ Δ	Y．	r．	1	1	
「	「人	¢ 0	H0	r．	r．	1	1	
「A	「人	¢0	¢ 0	r．	H．	1	1	
「A	「A	YS	「S	\％	\dagger ．	1	1	
そん	「人	Y 0	Y 0	r．	Y．	1	－A	－f：\cdot－$V_{:} \cdot \cdot$
「A	「人	¢ 0	¢ 0	r.	r．	1	$\cdot{ }^{\text {b }}$	－$V_{:} \cdot \cdots-h_{i} \cdot \cdots$
「A	「A	「 ${ }^{\text {H }}$	YS	F．	Y．	1	$\cdot{ }^{4}$	－成：•－＊9：．
HA	「A	¢ Δ	r Δ	r.	Y．	1	$\cdot{ }^{T}$	－9：．－－1•：．
「A	「A	¢ Δ	TS	r.	r．	1	$\cdot{ }^{-1}$	$1 \cdots \cdots-11: \cdots$
「A	「A	ro	FS	r．	r．	1	$\cdot{ }^{4}$	11：\cdot－ 1 H：＊
YA	FA	H0	TS	F。	\dagger ．	1	$\cdot{ }^{*}$	
「A	rh	ro	HD	Y．	Y．	1	$\cdot{ }^{-1}$	
HA	「A	YS	HS	r ．	Y．	1	$\cdot{ }^{4}$	1F：\cdot－ $1 \Delta_{0} \cdot \cdots$
「A	「	ros	ro	r．	Y．	1	－A	10：＊－19：＊
「	「A	YS	Y ${ }^{\text {a }}$	r．	r．	1	$\cdot \hat{A}$	19：＊－1V：＊
YA	「	YS	「S	Y．	Y．	1	$\cdot \wedge$	IV：$\cdot \cdots-1 \mathrm{~A}: \cdot$
YA	「	「S	Ho	r．	Y．	1	－\wedge	1A：＊－19：＊
「A	「 λ	YS	「S	r．	F．	1	－λ	19：＊－ケ・：＊
「A	「A	「S	ra	r．	r．	1	1	Y•：＊－r）：＊
HA	「入	「 Δ	ro	r．	Y．	1	1	
「A	「A	「 Δ	HS	F．	F．	1	1	HT：•－HM：\cdot
HA	「	「0	YS	r．	r．	1	1	

		تكهويه		روشنايیا		زمان
$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	3 3 j	3	3	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
-	-	1	1	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	$\cdots \cdot \cdots \cdot \cdot 1: \cdot$
-	-	1	1	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot 1: \cdot \cdots \cdot Y_{: ~}^{*} \cdot$
-	-	1	1	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	
-	-	1	1	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	
-	-	1	1	$\cdot \cdot \Delta$	$\because \Delta$	$\cdot F_{i} \cdot \cdots \cdot \cdot \Delta_{:} \cdot \cdot$
-	-	1	1	$\cdots \Delta$	$\cdot \cdot \Delta$	$\cdot \Delta: \cdot \cdots \cdot 9_{1} \cdot \cdot$
-	-	1	1	$\cdot \cdot \Delta$	$\cdot \hat{} \cdot 1$	$\cdot 9_{:} \cdot \cdot-\cdot V_{i} \cdot \cdot$
-	-	1	1	$\cdot \cdot \Delta$	$\cdot \mathrm{A}$	$\cdot V_{:} \cdot \cdots \cdot \lambda_{: ~} \cdot \cdot$
-	-	1	$\cdot \beta$	- 4	- \wedge	$\cdot \wedge: \cdot \cdots \cdot 9_{1} \cdot \cdot$
-	-	1	$\cdot \beta$, 4	- ${ }^{\text {r }}$	-9:*-1•! ${ }^{\text {a }}$
-	-	1	$\cdot \beta$	$\cdot{ }^{4}$	$\cdot r$	$1 \cdot \because \cdot 11: \cdot$
-	-	1	$\cdot \stackrel{\Delta}{ } \cdot$	- 4	$\cdot \mathrm{r}$	11:*-1Y:••
-	-	1	$\cdot \Delta$	-1)	$\cdot{ }^{\prime}$	
-	-	1	$\cdot \beta$	-14	$\cdot{ }^{-r}$	HT:••-1F:••
-	-	1	$\cdot \beta$	- 4	$\cdot{ }^{4}$	1f: $\cdot \cdots-10: \cdot \cdot$
-	-	1	1	- 4	$\cdot \hat{}$	10: \cdot-19:••
-	-	1	1	$\cdot 90$	$\cdot /$	$19_{:} \cdot \cdots-1 V_{i} \cdot \cdot$
-	-	1	1	- 90	$\cdot \wedge$	1V: $\cdot \cdots-1 \mathrm{~A}: \cdot \cdot$
-	-	1	1	$\cdot 9.90$	$\cdot 9.90$	1A: $\cdot \cdots$-19:••
-	-	1	1	$\cdot 9.9$	-98	
-	-	1	1	- 980	. 980	F•:•-Yו:*
-	-	1	1	$\cdot 9.90$. 9.90	FI: \cdot - MY:.
-	-	1	1	$\cdot 9.90$. 9.90	
-	-	1	1	$\cdot 90$. 980	

\# "نرخ تهويه بر اساس مقادير تعيين شده در مبحث

 در غير اينصورت، ديكِّر مقادير در نظر تَرفته شده تنها با لرائه دلايل توجيهى قابل قبول مجاز خواهد بود.

دماي تنظليما سيستنم سرماييـ ديكّكر مناطقّ			دماي تنظيسم سيـستـم سرمايــ ｜قليهم｜ كّرمومرطونب			دماي تنظيهم سيستتم تَرمايـي			بهر دبردارى ساكنـين		زمن
$\begin{aligned} & \frac{3}{3} \\ & y \\ & 2 \\ & 3 \\ & 9 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$$	$\begin{aligned} & \frac{3}{3} \\ & 9 \\ & 4 \\ & 2 \\ & 3 \\ & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & a \\ & 2 \\ & 7 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \frac{3}{3} \\ & 9 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 3 \\ \underset{\sim}{n} \\ 3 \\ 3 \\ 3 \\ 3 \end{gathered}$	$\begin{aligned} & \frac{3}{3} \\ & 9 \\ & \frac{2}{2} \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & \underset{\sim}{n} \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
「A	H	H	$\dagger \Delta$	$\stackrel{r}{ }$	$\stackrel{r}{ }$	Y．	10	10	－A	－	$\cdots: \cdot \cdots \cdot 1: *$
「A	Hr	H	FS	$\stackrel{H}{ }$	「．	H．	10	10	－λ	－	
「A	Hr	H	ra	$\stackrel{H}{ }$	$r \cdot$	H．	10	10	－λ	－	
「A	Hr	Hr	H Δ	$\stackrel{r}{ }$	r．	r．	10	10	－A	－	－Y：＊－＊F：＊
「A	H	$\stackrel{\mu}{ }$	ra	$\stackrel{H}{ }$	「A	Y．	10	10	－A	－	
$\stackrel{\mu}{ }$	Hr	$\stackrel{\mu}{ }$	「A	$\stackrel{\mu}{ }$	「A	F．	10	IV	$\cdot{ }^{-} \Delta$	－	
$r \cdot$	H	$\stackrel{r}{ }$	HA	$\stackrel{r}{\text { r }}$	「A	Y．	10	IV	－${ }^{\circ}$	$\cdot 1$	
「A	H	「A	ra	$\stackrel{H}{ }$	「 Δ	Y．	10	F．	$\cdot \beta$	$\cdot{ }^{-} \Delta$	
HA	H	YA	ra	$r \cdot$	Y	Y．	10	Y ．	$\cdot 9,90$	$\cdot 98$	
「A	H	「A	ra	F．	「 0	F．	10	r．	$\cdot, 9 \Delta$	$\cdot 90$	－9：＊－1•：＊
「A	H	「A	Y ${ }^{\text {a }}$	$\stackrel{r}{ }$	「 ${ }^{\text {ra }}$	\uparrow ．	10	F．	$\cdot \cdot 9 \Delta$	$\cdot 98$	1•：＊－11：＊
YA	H	HA	HS	$\stackrel{H}{ }$	ro	F．	10	Y．	－，9 ${ }^{\text {a }}$	$\cdot 98$	11：＊－1H：＊
$\stackrel{r}{ }$	H	$\stackrel{r}{r}$	FA	r ．	「A	IV	10	IV	$\cdot{ }^{-}$,	$\cdot{ }^{-} \Delta$	
$r \cdot$	H	H．	YA	r r．	YA	IV	10	IV	－$/ \Delta$	$\cdot{ }^{\circ} \mathrm{\Delta}$	
YA	H	HA	「 Δ	r r．	「 ${ }^{\text {r }}$	Y．	10	Y．	$\cdot 9,90$	$\cdot 90$	1F：＊－10：＊
YA	H	「A	「 Δ	F．	FS	r．	10	IV	－98	－98	10：＊－19：＊
YA	H	$\stackrel{r}{ }$	ra	r.	「A	$F \cdot$	10	IV	$\cdot, 9 \Delta$	$\cdot \Delta$	19：＊－1V：＊
「A	H	r ．	ra	r F．	「A	$F \cdot$	10	IV	－\wedge	－r^{\prime}	IV：$\cdot \cdots-1 \mathrm{~A} \cdot \cdots$
YA	H	Hr	ra	r ．	F．	Y．	10	10	－A	$\cdot 1$	1A：＊－19：＊
r．	H	H	HA	r ．	$\stackrel{r}{\text { r }}$	IV	10	10	$\cdot{ }^{\text {，}}$ ，	$\cdot 1$	19：＊－r•：＊
YA	H	Hr	H Δ	$r \cdot$	$r \cdot$	Y．	10	10	－A	$\cdot 1$	F•：＊－Y）：＊
YA	H	H	ra	r F．	$\stackrel{r}{ }$	Y．	10	10	－A	－	HI：＊－MH：＊
YA	H	Hr	Y Δ	$r \cdot$	r F．	Y ．	10	10	－A	－	HK：\cdot－MH：\cdot
「A	H	H	ra	r F．	r F．	r．	10	10	－A	－	HM：＊－MF：＊

			تهويه			روشناييـ			
$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & \sqrt{2} \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \frac{3}{3} \\ & 4 \\ & 2 \\ & \frac{3}{3} \\ & 9 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 8 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & \sqrt{2} \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \frac{9}{3} \\ & 9 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	زمان
$\cdot \wedge$	$\cdot \cdot \Delta$	$\bullet \cdot \Delta$	1	-	-	$\cdot 9$	$\cdot \cdot \cdot \Delta$	$\cdots \cdot \Delta$	$\cdots \cdot \cdots-1: \cdot$
\cdot - ${ }^{\text {A }}$	$\cdot \cdot * \Delta$	$\cdot \cdot \Delta$	1	-	-	-9	$\cdot \cdot \Delta$	$\cdots \cdot \Delta$	-1:*- Y:*
$\cdot \wedge$	$\cdot \cdot \Delta$	$\cdots \Delta$	1	-	-	$\cdot 9$	$\cdot \cdot \cdot \Delta$	$\cdots \cdot \Delta$	
$\cdot \mathrm{A}$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	1	-	-	$\cdot, 9$	$\cdot \cdot \cdot \Delta$	$\cdots \cdot \Delta$	
$\cdot \beta$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	1	-	-	$\cdot{ }^{-9}$	$\cdot \cdot \cdot \Delta$	$\cdots \cdot \Delta$	- $F_{:} \cdot \cdot \cdot \cdot \Delta_{:} \cdot \cdot$
$\cdot{ }^{9}$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	1	-	-	- V	$\cdot \cdot \Delta$	$\cdots \cdot \Delta$	- $\Delta_{:} \cdot \cdots \cdot \cdot 9_{:} \cdot \cdot$
$\cdot{ }^{9}$	$\cdot \cdot \Delta$	$\cdot 1$	1	-	$\cdot{ }^{-}$,	- V	$\cdot \cdot \cdot \Delta$	$\cdot 1$	- $9_{:} \cdot \cdot-\cdot V_{: *} \cdot$
$\cdot \wedge$	$\cdot \cdot \cdot \Delta$	$\cdot{ }^{\circ}$	1	-	$\cdot{ }^{-}$,	$\cdot 9$	$\cdot 1 \cdot \Delta$	$\cdot 1$	- $V_{:} \cdot \cdots-h_{:} \cdot$
1	$\cdot \cdot \Delta$	1	1	-	1	$\cdot, 9$	$\cdot \cdot \cdot \Delta$	$\cdot 9$	-只••-*9:••
1	$\cdot \cdot \Delta$	1	1	-	1	-9	$\cdot \cdot \Delta$	$\cdot 18$	-9:*-1•:*
1	$\cdot \cdot \Delta$	1	1	-	1	$\cdot 9$	$\cdot \cdot \Delta$	- 8	$1 \cdot: \cdots-11: \cdots$
1	$\cdot \cdot \Delta$	1	1	-	1	. 9	$\cdot \cdot \Delta$	-9	11:*-1Y:*
1	$\cdot \cdot \Delta$	1	1	-	1	- V	$\cdot \cdot \Delta$	$\cdot 9$	
1	$\cdot \cdot \Delta$	1	1	-	1	. V	$\cdot \cdot \cdot \Delta$	$\cdot 18$	HF:*-1F:*
1	$\cdot \cdot \Delta$	1	1		1	- 9	$\cdots \cdot \Delta$	- 8	1F:*-10:*
1	$\cdot \cdot \Delta$	1	1		1	$\cdot 9$	$\because \cdot \Delta$	$\cdot{ }^{-9}$	10:*-19:*
1	$\cdot \cdot \Delta \Delta$	- ${ }^{5}$	1	-	1	$\cdot, 9$	$\cdot \cdot *$	$\cdot 9$	19:*-1V:*
$\cdot{ }^{\prime}$ A	$\cdot \cdot \Delta$	$\cdot 1$	1	-	$\cdot{ }^{-} \Delta$	- 9	$\because \cdot \Delta$	$\cdot 1$	1V:*-1A: \cdot
$\cdot \wedge$	$\cdot \cdot \Delta$	$\cdot 1$	1	-	$\cdot{ }^{\circ}{ }^{\Delta}$	$\cdot 9$	$\cdot \cdot \Delta$	$\cdot 1$	1A:*-19:*
$\cdot \frac{8}{}$	$\cdot \cdot \Delta$	$\cdot \cdot \cdot \Delta$	1	-	$\cdot{ }^{-}$,	$\cdot 9$	$\cdot \cdot \cdot \Delta$	$\cdot 1)$	19:*-Y•:*
$\cdot \wedge$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	1	-	$\cdot{ }^{\text {, }}$,	$\cdot 9$	$\cdot \cdot \Delta$	$\cdot 1)$	H•:*-HI:*
$\cdot \wedge$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	1	-	-	$\cdot{ }^{-9}$	$\cdot \cdot \cdot \Delta$	$\cdots \cdot \Delta$	
$\cdot \mathrm{A}$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	1	-	-	-9	$\cdot \cdot \Delta$	$\cdots \cdot \Delta$	HK: \cdot - HM: \cdot
$\cdot \wedge$	$\cdot \cdot \cdot \Delta$	$\cdot \cdot \Delta$	1	-	-	$\cdot 9$	$\cdot \cdot \Delta$	$\cdots \cdot \Delta$	H:*-HF:.

if W/m²

 مجاز خواهد بود.

دماي تنظيمرم （Tinenen سرمايیى ديكّكر مناطقّ				تماي تنظيمهم		بهرهبردارى ساكنين		زمان
$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\frac{3}{3}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\frac{3}{3}$	
H	Hr	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	－	$\cdots \cdot \cdots \cdot \cdot 1: \cdot$
Hr	Hr	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	－	$\cdot 1: \cdot \cdots \cdot Y_{: ~}^{*} \cdot$
Hr	H	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	－	－r：•••r：••
H	Y	$\stackrel{r}{ }$	$\stackrel{r}{r}$	10	10	\cdot	－	
Hr	Hr	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	．	－	$\cdot F_{:} \cdot \cdots \cdot \cdot \Delta: \cdot$
H	Hr	r ．	r．	10	10	－	．	$\cdot \Delta: \cdot \cdots \cdot 9_{1} \cdot \cdot$
Hr	$\stackrel{r}{r}$	r－	「A	10	IV	－	－	－里：$\cdot \cdot \cdot V_{i} \cdot \cdot$
Hr	$\stackrel{r}{ } \stackrel{ }{ }$	$\stackrel{r}{ }$	「	10	IV	－	－ Y	$\cdot V_{:} \cdot \cdots \cdot A_{:} \cdot \cdot$
H	YA	r－	ro	10	r r．	－	$\cdot 90$	$\cdot \Lambda: \cdots \cdots 9: \cdot \cdot$
H	¢A	r－	ra	10	r．	．	． 9.9	－9：＊－1•！\cdot
H	YA	r ．	r ${ }^{\text {r }}$	10	r．	．	－ 90	1•••－11：••
Hr	YA	$\stackrel{r}{ }$	ro	10	r．	－	$\cdot 190$	11：＊－15：••
Hr	YA	r ．	ra	10	IV	－	$\cdot 90$	IT：\cdot－IF：\cdot
Hr	$\stackrel{r}{ }$	r ．	「A	14	IV	－	$\cdot{ }^{-1}$	HK：•－1F：••
Hr	H	r.	r．	10	10	－	－	If：$\cdot \cdots-10: \cdot \cdot$
Hr	Hr	$r \cdot$	$r \cdot$	10	10	－	－	10：\cdot－ $19: \cdot \cdot$
H	H	$\stackrel{r}{ }$	r．	10	10	－	－	19：＊－1V：$\cdot \cdot$
Hr	H	$\stackrel{r}{ }$	$\stackrel{r}{ } \stackrel{ }{ }$	10	10	－	－	$1 V_{:} \cdot \cdots-1 A_{:} \cdot \cdot$
Hr	Hr	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	－	1A：$\cdot \cdots-19: \cdot$
Hr	Hr	$\stackrel{r}{ }$	Γ ．	10	10	－	－	19：．$\cdot \boldsymbol{r} \cdot \ldots \cdot$
H	H	$r \cdot$	r ．	10	10	－	－	Y• $\cdots \cdot r \mid: \cdots$
Hr	Hr	r ．	r ．	10	10	－	－	FI：P－MY：\cdot
Hr	Hr	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	－	ME：\cdot－MM：\cdot
H	H	r－	r－	10	10	－	－	HM：•－MF：\cdot

*************)		تهويه		روشنـايـي		
$\begin{aligned} & 3 \\ & j \\ & 3 \\ & 3 \\ & 3 \end{aligned}$?	$\begin{aligned} & j \\ & j \\ & j \\ & j \\ & j \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & j \\ & j \\ & j \\ & j \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 8 \end{aligned}$	3
		-	-	$\cdot 1$	$\cdot 1$	$\cdots: *-\cdots 1: *$
	$\cdot \cdot \cdot \mathrm{H}$	-	-	$\cdot 1$	$\cdot 1$	-1:*- Y:••
$\because \cdot \%$	$\cdot \cdot \%$	-	-	$\cdot 1$	$\cdot 1$	
$\cdot \cdot \cdot$	$\cdot \cdot \cdot \%$	-	-	$\cdot 1$	$\cdot 1$	- $H_{:} \cdot \cdot \cdot \cdot Y_{:} \cdot \cdot$
$\cdot \cdot \cdot \%$	$\cdot \cdot \cdot \%$	-	-	$\cdot 1$	$\cdot 1$	- $F_{:} \cdot \cdot-\cdot \Delta: \cdot \cdot$
$\cdot \cdot \cdot \%$	$\cdot \cdot \mid$	-	-	-1	$\cdot 1$	$\cdot \Delta_{: *} \cdot \cdots \cdot \xi_{: *}$
$\cdot \cdot \%$	$\cdot \cdot \cdot \stackrel{H}{ }$	-	-	$\cdot 1$	$\cdot 1$	-库:*-*V:*
$\because \cdot \mu$	$\cdot{ }^{+}$	-	1	${ }_{\cdot 1}{ }^{1}$	$\cdot 9$	- $V_{:} \cdot \cdots-\Lambda_{:} \cdot \cdot$
	$\cdot 9$	-	1	$\cdot 1$	- 8	
$\because \cdot \%$	$\cdot 9$	-	1	$\cdot 1$	$\cdot 9$	-9:*-1•:•
$\cdot \cdot \%$	$\cdot 9$	-	1	$\cdot 1$	$\cdot 19$	1•:*-11:*
$\because \cdot \%$	$\cdot 9$		1	$\cdot 1$	$\cdot 9$	11:*-1Y:*
$\because \cdot \%$	$\cdot 9$	-	1	$\cdot 1$	-9	H:*- Mr:*
$\cdot \cdot \mu$	$\cdot{ }^{+}$.	1	$\cdot 1$	$\cdot 9$	H:* - MF:*
$\cdot \cdot \%$	$\cdot \cdot \leqslant$.	$\cdot 1$	$\cdot 1$	1f:*-10:*
$\cdot \cdot \mathrm{H}$	$\cdot{ }^{+}$	-	-	$\cdot 1$	$\cdot 1$	10:*-19:*
	$\cdot \cdot \stackrel{H}{ }$	-	-	$\cdot 1$	$\cdot 1$	$19: \cdots-1 V_{: *} \cdot$
$\cdot \cdot \%$	$\cdot \cdot \mid$		-	$\cdot 1$	$\cdot 1$	1V:*-1A:*
		-	-	$\cdot 1$	$\cdot 1$	1A:*-19:*
$\cdot \cdot \cdot \mu$	$\cdot \cdot \cdot \mu$	-	-	$\cdot 1$	$\cdot 1$	19:*-Y•:*
	$\cdot \cdot{ }^{+}$	-	-	$\cdot 1$	$\cdot 1$	H•:*-Y: $\cdot \cdots$
$\cdot \cdot \%$	$\cdot \cdot \mid+$	-	-	$\cdot 1$	$\cdot 1$	H:*-Hr:*
$\cdot \cdot \cdot \%$	$\cdot \cdot \mid$	-	-	$\cdot 1$	$\cdot 1$	HK: . - M : \cdot
$\cdot \cdot \%$	$\cdot \cdot+$	-	-	$\cdot 1$	$\cdot 1$	HM:*-HF:.

** نرخ تهويه بر اساس مقادير تعيين شده در مبحث
\& W/m² ${ }^{2}$ *) ميزان حداكثر توان تجهيزات به طور متوس

 مجاز خواهد بود.

مناطقّ		دماي تنظيمر سـيستمّم سرمايمى اقليم كّرمومرطوبت				كنـين	بهر بر	زمان
$\}$	3	\mathfrak{j}	3 3 7 3 3	\mathfrak{j}	3	$\}$	3 3 3 3	
H	H	r ．	$\stackrel{r}{ }$	10	10	－	－	$\cdots \cdot \cdot \cdot \cdot \cdot 1: \cdot$
H	H	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	－	$\cdot 1: \cdot \cdots \cdot r: \cdot \cdot$
H	H	r．	r ．	10	10	－	－	－Y：•••鱿••
Hr	H	r ．	r ．	10	10	－	－	
H	H	r－	$\stackrel{r}{ }$	10	10	．	．	$\cdot F_{1} \cdot \cdots \cdot \cdot \Delta: \cdot$
H	H	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	\cdot	$\cdot \Delta: \cdot \cdot \cdot \cdot \varepsilon_{:} \cdot \cdot$
r．	$\stackrel{r}{ }$	「A	「A	IV	IV	－	\cdot	－9：••••V：••
r．	r ．	「	「	IV	IV	$\cdot 1$	， 4	$\cdot V_{i} \cdot \cdots \cdot \lambda_{:} \cdot \cdot$
「A	YA	「	「 Δ	r．	「．	$\cdot \cdot \Delta$	$\cdot 9$	
「	「A	rs	ra	r．	r．	$\cdot \beta$	$\cdot 9$	－9：••－1• $\cdot \cdot$
「A	「A	ro	r Δ	r．	r．	$\cdot{ }^{\text {，}}$ ，	$\cdot 9$	$1 \cdot \because \cdot-11: \cdot$
「A	YA	rs	r ${ }^{\text {r }}$	$r \cdot$	$r \cdot$	－Δ	$\cdot 9$	11：＊－1Y：••
「	「A	ra	ro	IV	r．	－β	$\cdot 9$	IT：\cdot－Mr：\cdot ．
r．	「A	「A	r Δ	IV	IV	$\cdot 1$	$\cdot 1$	Hr：＊－lfi．
Hr	「A	r．	ro	10	r．	．	$\cdot 9$	If：$\cdot \cdots-10: \cdot \cdot$
Hr	「A	$\stackrel{r}{ }$	ro	10	r．	－	$\cdot 9$	10：$\cdot \cdots-19: \cdot$
Hr	「	$\stackrel{r}{ }$	rs	10	r．	－	$\cdot 9$	19：＊－\V：\cdot
H	「A	r ．	rs	10	IV	－	$\cdot 9$	IV：$\cdot \cdots-1 \mathrm{~A}: \cdot$
Hr	$\stackrel{r}{ } \stackrel{ }{ }$	$\stackrel{r}{ }$	「	10	IV	－	－ 4	1A：••－19：••
Hr	Hr	r ．	r ．	10	10	－	－	19：＊－r• $\cdot \cdots$
Hr	H	r ．	r ．	10	10	－	－	
H	Hr	r．	$\stackrel{r}{ }$	10	10	－	－	
H	H	r ．	r ．	10	10	－	－	HK：．．－TM：．
Hr	H	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	－	－	HM：．，－HF：••

***********)		\% تهويه		روشنايى\|		3
\mathfrak{j}	3	\mathfrak{j}	$\begin{aligned} & 3 \\ & 3 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	3	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
$\because \cdot r$	$\cdot \cdot r$	-	.	$\cdot 1$	$\cdot 1$	$\cdots \cdot \cdots \cdot \cdot 1: \cdot$
\cdots	$\cdot \cdot \cdot \mu$	-	-	. 11	$\cdot 1$	$\cdot 1: \cdot \cdots \cdot r_{:-}$
$\cdot \cdot \cdot \stackrel{r}{ }$	$\cdot \cdot \cdot r$	-	-	-1	$\cdot 1$	
\cdots	$\cdot \cdot \cdot \mu$	-	-	$\cdot 1$	$\cdot 1$	
$\cdot \cdot \cdot$	$\cdot \cdot \mu$	-	-	, 11	$\cdot 1$	$\cdot F_{i} \cdot \cdots \cdot \Delta \cdot \Delta \cdot \cdot$
$\cdot \cdot \cdot$	$\cdot \cdot \cdot$	-	-	-1	, 1	$\cdot \Delta: \cdot \cdots \cdot \varphi_{1} \cdot \cdot$
$\cdot \cdot \cdot r$	$\cdot \cdot \mu$	-	-	$\cdot \hat{}$	$\cdot 1$	$\cdot 9_{:} \cdot \cdots \cdot V_{:} \cdot \cdot$
$\cdot{ }^{r}$	$\cdot{ }^{\mu}$	$\cdot \beta$	1	$\cdot 9$	$\cdot 9$	$\cdot V_{i} \cdot \cdots \cdot \Lambda_{1} \cdot \cdot$
. 9	$\cdot 9$	1	1	$\cdot 9$	$\cdot 9$	
$\cdot \beta$	$\cdot 9$	1	1	$\cdot 9$	$\cdot 9$	-9:••-1•:••
. 9	$\cdot 9$	1	1	$\cdot 9$	$\cdot 9$	1•:*-11:*
. 9	$\cdot 9$	1	1	+ 9	. 9	11: $\cdot \cdots-1 Y: \cdot$
. $\%$	$\cdot 9$	1	1	$\cdot 9$	$\cdot 9$	
$\cdot{ }^{\prime}$	$\cdot \mathrm{r}$	$\cdot \beta$	1	$\cdot 9$	$\cdot 9$	Mr:*-1f:••
	$\cdot 9$.	1	. 1	-9	1f:*-10:••
$\cdot \cdot \cdot{ }^{+}$. 9	-	1	-1	$\cdot 9$	10: $\cdot \cdots-19: \cdots$
$\cdot \cdot \cdot \stackrel{r}{ }$. 9	\cdot	1	-1	$\cdot 9$	19:*-1V:••
$\cdot \cdot \cdot \mu$	$\cdot 9$.	1	, 11	. 9	IV: $\cdot \cdots-1 \mathrm{~A}: \cdot \cdot$
$\cdot \cdot \cdot r$	$\cdot{ }^{4}$	-	1	$\cdot 1$	$\cdot 9$	1A: \cdot - $19: \cdot$
$\cdot \cdot \cdot \frac{1}{}$	$\cdot \cdot \cdot \%$.	-	. 11	$\cdot 1$	19:*-Y••••
$\cdot \cdot \cdot \mu$	$\cdot \cdot \cdot \mu$	-	.	-1	$\cdot 1$	Y: $\because \cdot \cdots-r \mid: \cdots$
$\cdot \cdot \cdot$	$\cdot \cdot \mu$	-	-	, 1	$\cdot 1$	HI: \cdot-rri.
$\cdot \cdot \cdot \stackrel{r}{ }$	$\cdot \cdot \cdot \%$	-	.	$\cdot 1$	$\cdot 1$	HM:. - - M
$\cdot \cdot \cdot{ }^{+}$	$\cdot \cdot \%$	-	-	, 1	$\cdot 1$	HM:•- Mf:.

f W/m² ${ }^{2}$ ميزان حداكثر توان تجهيزات به طور متوسط
 در غير الينصورت، ديتُر مقادير در نظر تَرفته شده تنها با لارائه دلايل توجيهـه قابل قبول مجاز خواهد بود.

دماي تنظيمه سيستنم سرماييـ ديتّكر مناطقو			دماي تنظيهم سيستتم سرماييـ ｜قليهم كّرمومرطونب			دماي تنظليم سيستتم تُرمايحـ			بهرهبر دارى ساكنين			زمان
ξ	3		\mathfrak{j}	3	$\begin{gathered} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 8 \end{gathered}$	ξ	3	$\begin{gathered} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 8 \end{gathered}$	3	3	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	
H	H	H	$\stackrel{r}{ }$	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	10	－	－	－	$\cdots \cdot \cdots \cdot \cdot 1: \cdot \cdot$
H	H	Hr	r．	F．	H．	10	10	10	－	－	－	－1：＊－＊r：＊
Hr	H	H	H．	$r \cdot$	H．	10	10	10	－	－	－	
H	H	Hr	H．	$r \cdot$	「．	10	10	10	－	－	－	－r：＊＊－$F_{:} \cdot \cdot$
H	H	H	$\stackrel{r}{r}$	$\stackrel{r}{ }$	$\stackrel{r}{ }$	10	10	10	．		－	－$F_{:} \cdot \cdots-\cdot \Delta: \cdot$
H	H	H	H．	$\stackrel{H}{ }$	$\stackrel{H}{ }$	10	10	10	－	－	－	
H	H	H	H．	$r \cdot$	H．	10	10	10	－	．	－	－G：＊－－V：＊
$\stackrel{r}{*}$	$\stackrel{H}{ }$	H	「A	FA	$\stackrel{r}{ } \stackrel{ }{ }$	10	10	10	－	－	－	$\cdots V_{i} \cdot \cdots \cdot A_{1} \cdot \cdot$
$\stackrel{r}{ }$	$\stackrel{H}{ }$	$\stackrel{H}{ }$	rA	「A	FA	IV	IV	IV	－	－	－	－人：＊－＊昂••
「．	H．	$\stackrel{H}{ }$	「A	「A	「A	1 V	IV	IV	$\cdot{ }^{4}$	$\cdot 1$	$\cdot 1$	－9：＊－1•：＊
FA	YA	YA	ro	ra	「 Δ	F．	F．	F．	$\cdot{ }^{\mu}$	－	－${ }^{\text {r }}$	1•：＊－11：＊
FA	「A	YA	ro	「 ${ }^{5}$	「 Δ	F．	$广$ ．	F．	$\cdot{ }^{-9}$	－$\%$	${ }_{\cdot}{ }^{\Delta}$	11：＊－1Y：＊
「A	YA	HA	ro	FQ	YS	F．	F．	Y．	$\cdot \frac{8}{9}$	$\cdot \frac{8}{6}$	$\cdot{ }_{\cdot}, \Delta$	IH：\cdot－ $1 H_{:} \cdot \cdot$
HA	YA	YA	ra	r ${ }^{\text {r }}$	「S	F．	Y．	Y．	－λ	$\cdot \beta$	${ }_{\cdot}{ }^{\Delta}$	HY：＊－1F：＊
「A	YA	「A	YQ	F0	YS	F．	Y．	Y．	$\cdot \mathrm{A}$	－Vo	$\cdot{ }^{6}$	1F：＊－10：＊
「A	YA	YA	「 Δ	r ${ }^{\text {r }}$	「 Δ	F．	F．	F．	$\cdot \lambda$	－ $\mathrm{V} \Delta$	$\cdot{ }^{4}$	10：＊－19：＊
「A	「A	「A	Y ${ }^{4}$	Y ${ }^{4}$	Y ${ }^{\text {F }}$	F．	Y．	Y．	$\cdot \mathrm{A}$	－V $V \Delta$	${ }^{\cdot} \cdot \Delta$	19：＊－1V：＊
「A	YA	YA	ra	ra	「 Δ	F．	Y．	Y．	$\cdot 19$	－9	$\cdot{ }_{\cdot} \Delta$	IV：$\cdot \cdots-1 A, \cdots$
「A	「A	YA	ra	「 Δ	「 Δ	F．	Y．	F．	$\cdot 19$	$\cdot 9$	－V／	1成：＊－19：＊
「A	YA	HA	ra	ra	Y ${ }^{\text {r }}$	F．	H．	Y．	$\cdot 9$	－ 9	－V／	19：＊－r•：$\cdot \cdots$
「A	「A	YA	ro	ra	「 Δ	F．	Y．	Y．	$\cdot 19$	$\cdot 19$	$\cdot \cdot \lambda$	F：$\cdot \cdots-Y /: \cdots$
FA	「A	HA	ro	「 Δ	「 Δ	F．	H．	F．	$\cdot 9$	$\cdot 9$	$\cdot{ }_{\cdot} \cdot \lambda$	H：$\cdot \cdots-H_{1} \cdot \cdots$
「A	「A	F．	ra	「 Δ	「A	IV	IV	IV	$\cdot 19$	$\cdot 19$	$\cdot{ }^{\text {b }}$	
「．	「．	$\stackrel{\mu}{ }$	rA	「A	「A	IV	IV	IV	$\cdot{ }^{\text {，}}$ ，	$\cdot \mathrm{V}$	－	HM：＊－HF：＊

تجارى تجند منظوره بيـثن از •＊مترمريع

***************)			**********)			روشنايیا خار جا	روشنايها			زمان
\mathfrak{j}	3		\mathfrak{j}	3	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & \text { a } \\ & \frac{1}{3} \\ & 3 \end{aligned}$	\mathfrak{j}	3		
$\bullet \cdot \Delta$	$\cdot \cdot * \Delta$	$\because \cdot \Delta$	-	-	-	1	$\cdot 1$	$\cdot 1$	$\cdot 1$	$\cdots \cdot \cdots-\cdot \mid: \cdots$
$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	-	-	-	- ${ }^{\text {, }}$	$\cdot 1$	$\cdot 1$	$\cdot 1$	- 1:*-•r:*
$\cdots \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \cdot \Delta$	-	-	-	- ${ }^{\text {, }}$	$\cdot 1$	$\cdot 1$	$\cdot 1$	- $F_{:} \cdot \cdots-H_{:} \cdot \cdot$
$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	-	-	-	$\cdot{ }^{\text {, }}$,	$\cdot 1$	$\cdot 1$	$\cdot 1$	-H:*-•F:••
$\cdots \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	-	-	-	- ${ }^{\text {S }}$	$\cdot 1$	$\cdot 1$	$\left.\cdot{ }^{\prime}\right)$	-F:*-* $\square_{\text {: }} \cdot$
$\cdots \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \bullet$	-	-	-	$\cdot{ }^{-}$,	$\cdot 1$	$\cdot 1$	$\cdot 1$	
$\cdot \cdot \Delta$	$\cdot \cdot \Delta \Delta$	$\cdot \cdot \bullet$	-	-	-	-	$\cdot 1$	$\cdot 1$	$\cdot 1$	-G:*--V:*
$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	-	-	-	-	$\cdot 1$	$\cdot 1$	-1)	-V:*- $\lambda_{\text {: }} \cdot \cdots$
$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	-	-	-	-	$\cdot 1$	$\cdot 1$	$\cdot 1$	- $\lambda_{1} \cdot \cdots-\cdot 9: \cdot$
$\because \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot \cdot \Delta$	$\cdot{ }^{-} \Delta$	- ${ }^{\text {A }}$	- ${ }^{\text {S }}$	-	$\cdot{ }^{\mu}$	$\cdot{ }^{H}$	$\cdot{ }^{\mu}$	-9:*-1•:*
- ${ }^{\text {r }}$	- ${ }^{\text {r }}$	$\cdot{ }^{-1}$	$\cdot{ }^{-} \Delta$	- Δ	- Δ	-	$\cdot{ }^{-} \Delta$	$\cdot{ }^{-} \mathrm{\Delta}$	$\cdot \beta$	1•:*-11:*
$\cdot \mathrm{A}$	$\cdot{ }^{-1}$	- A	1	1	1		1	1	$\cdot 9$	11:*-1F:*
- λ	$\cdot \wedge$	- λ	1	1	1	-	1	1	$\cdot 9$	
$\cdot 9$	- λ	- λ	1	1	1	-	1	1	$\cdot 9$	H: $\cdot \cdots-1 F: \cdot$
$\cdot 9$	$\cdot 9$	$\cdot \mathrm{A}$	1	1	1	-	1	1	$\cdot 9$	1F:*-10:*
$\cdot 9$	$\cdot 9$	- A	1	1	1	-	1	1	$\cdot 19$	10: \cdot-18:*
$\cdot 19$	$\cdot 19$	$\cdot \beta$	1	1	1	-	1	1	$\cdot 19$	19:*-1V:*
$\cdot 9$	$\cdot 9$	\cdot - λ	1	1	1	- Δ	1	1	$\cdot 9$	1V: $\cdot \cdots-1 A^{\prime} \cdot \cdots$
$\cdot 19$	$\cdot 9$	-9	1	1	1	1	1	1	$\cdot 9$	1A:*-19:*
$\cdot 9$	$\cdot 9$	$\cdot 9$	1	1	1	1	1	1	$\cdot 19$	19:*-ケ・:*
$\cdot 9$	$\cdot 9$	$\cdot 9$	1	1	1	1	1	1	. 9	F•:*-Y):*
$\cdot 18$	$\cdot 18$	$\cdot 9$	1	1	1	1	1	1	$\cdot 9$	
$\cdot 9$	$\cdot 9$	$\cdot \mathrm{A}$	1	1	1	1	1	1	$\cdot 9$	HK:*-HM:*
- λ	$\cdot 9$	$\cdot \cdot \Delta$	1	1	-	1	$\cdot \mathrm{A}$	$\cdot \mathrm{A}$	$\cdot 1$	HK: •-HF: •

橉

پييوست 9

روش محاسبئ ضريب كاهش انتقال حرارث طرح

پ〒-1 محاسبئ ضريب كاهش انتقال حرارت فضاهاي كنترلنشده
در محاسبهٔ ضريب انتقال حرارت طرح، در صورت وجود فضا يا فضاهاى كنتـرل نشــده، لازم اسـت ضريب كاهش انتقال حرارت مربوط به آنها تعيين شود. با توجه به آنكه الختلاف دماى فضاى داخل با فضاهاى كنترلنشده كمتر از اختلاف دماى فضـاهاى داخل و خارج است و در نتيجه مقدالر انتقال حرارت الز جدار هالى مجاور فضاى كنترلنشده كمتر از الز مقدار انتقال حرارت الز جدالرهاى مجاور خارج استا، لازم است اين موضوع، با الستفاهه لز يكى ضريب كاهش، در محاسبات لحاظ شود.

به اين ترتيب، تعيين ضريب كاهش انتقال حرالرت هر يـكـ الز فضـاهاى كنتـرلنشـشـدة سـاختمان و منظور كردن آن در محاسبئ انتقال حرارت اجزاى مجاور اين فضاها، ضرورت مى يابد. در جهت سادهسازی طراحی، مى تـوالن از محاسـبئ دقيـق ضـريب كـاهش انتقـال حـرالرت فضـاى كنترلنشُده صرفنظر كرد. در اين صورت، ضريب كاهش انتقال حرارت آن فضا برابر يـكـ (., ال) در نظر كَرفته خواهد شد. ضريب كاهش يك فضاى كنترلنشُده با استفاده الز رابطه پ و-1 بهدست مىآيد:

$$
\tau=\frac{\sum \mathrm{A}_{\mathrm{e}} \mathrm{U}_{\mathrm{e}}}{\sum \mathrm{~A}_{\mathrm{e}} \mathrm{U}_{\mathrm{e}}+\sum \mathrm{A}_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}}
$$

ح : ضريب كاهشت انتقال حرارت فضاى كنترلنشـده
[m^{2}]
Ae
[W/m²K] ضريب انتقال حرارت سطحى جدار بين فضاى كنترلنشده و خارت : Ue
[m^{2}] A
[W/m²K] ضريب انتقال حرارت سطحى جدار بين فضاى كنترلنشده و فضاى كنترلشده : Ui
توضيحات:
ا- ضريب كاهش انتقال حرارت جدارهالى مجاور فضاى خارج برابر يك است.

$$
5.9
$$

 ضريب كاهش انتقال حرارت محاسبهشــنه بـرالى آن فضـاى كـنتـرلنشــنـه السـت. در صورت عدم تمايل به انجام محاسبئ فوق، ضريب كـاهش انتقـال حــرارت جــدالرهاى مجاور آن فضا بايد برابر يك در نظر تَرفته شود.
 حرالرتى نمايد، در محاسبئ ضريب انتقال حرالرت طرح مىتوانــد بـه جـاى جــدالرهاى ميان آن فضاى كـنترلنشده و فضاهاى كـنتـرلششـده، تمـام جــدالرهاى ميـان فضـاى كنترلنشده مذكور و فضاى خارج را در رابطهُ فوق قرال دهد. در اين حالت، در مـورد جدلر هاى ميان آن فضايى كنـترلنشـده و خارج، بايد به جـاى ضـريب كـاهش انتقـال حرإرت

$$
\tau_{i} \cdot A_{i} \cdot U_{i}=\left(1-\tau_{i}\right) \cdot A_{e} \cdot U_{e}
$$

 استقاده لز رابطه پ צ-؟ بهدست میى آيد:
$\frac{\sum A_{e} U_{e}+0.34 n . V}{\sum A_{e} U_{e}+\sum A_{i} U_{i}+0.68 n . V}$
تعداد دفقات تعويض هواى فضاى كنترلنشده از طريق فضاى كنترلشده
$\left[\mathrm{m}^{3} / \mathrm{h}\right]$ ميزان تويض هواي فضاي كنترلنشده از طريق فضاي كنترلششده : V

V یيوست

ضرايب هدايت حرارت مصالح متداول

ضرايب هدايت حرارت مصالح متداول

مقادير مندرج در اين پيوست در محاسبات هر دو روش طراحى عايقـارى حرارتى（الــــــو ب）بـهـ
 ديكّرى براى مصالح، تعيين كرده باشد．

ضريب هدايت حرارت مؤئر ［W／mK］	وزن مـخصوص خشكــ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
$\begin{aligned} & 1, A \cdot \\ & 1,4 \cdot \\ & 1, \cdots \\ & \cdot A \cdot \\ & \cdot, V \\ & \cdot \Delta \Delta \\ & \cdot, 4 \cdot \\ & \cdot, 4 \cdot \end{aligned}$		1．اندود و ملات آهكى يا سيمانى
$\begin{aligned} & 5, \cdots \\ & 1,8 \Delta \\ & 1,4 \Delta \\ & 1,1 \Delta \\ & 5,4 . \\ & r, \Delta . \end{aligned}$		T．T．بتن و فر آورد00هاي بتنـي －متراكما －متخلخل －مسلح：＇ درصد ميلزَرد：بين ا اتا ابرصد

ضريب هدايت حرارت مؤثر ［W／mK］	وزن مخصوص خشكـ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
$\begin{aligned} & 1,4 \\ & \cdot, i \\ & \cdot, \gamma \end{aligned}$		بتن با سنكَدانه سرباره كَوره آهن گّدازیى： －متراكمه： －با ماسهُ رودخانهايى يا معدنىى －با سرباره داندان －متخلخل： با كمتر از • ا درصد ماسهٔ رودخانه
		 －با ذرات ريز يا با ماسه －بدون ذرات ريز و بدون ماسه －با رس منبسط يا شيست منبسط ： －با ماسةٔ رودخانه بدون ماسكة سبكى －با ماسdٔ سبكى و حداكثر • بـ \％ماسه رودخانه －با ماسهٔ سبكا و بدئون ماسه رودخانانه irs． －بدون ماسه و با عيار سيمان كمـم
－r1	A．．تا $4 \times$	بتن با سنكُددانةٔ بسيار سبكا： －متشكل از يرليت يا ورميكوليت（از ّ ت تا و ميليمتر）اجرايى درجا： －نسبت： 1 به

．

ضريب هـرات حرارت مؤثر [W/m.K]	وزن مخصوص حشكـ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
$\begin{aligned} & \hline .14 \\ & ., 19 \end{aligned}$	$\begin{array}{lll} \hline 9 \cdots & \text { f.. } \\ \text { fo. } & \text { ت } & \text { ب.. } \end{array}$	- نسبت: 1 بهد
	ATS LVA VV WVA VTo VTA L GVA gVo GTO 9To L $\Delta V \Delta$ L $\Delta T \Delta$ $\Delta T \Delta$ GVo fro fro bro	بتن هوادار اتوكلاو شدها' : 4. . - - .
-19	90. ت 40.	بتن با خرده خیوبا: - ساخته شده با تراشههاي چوبوب و سيمان
$\begin{aligned} & 1,90 \\ & 1,40 \end{aligned}$		- مهزاييك
	IT.. 140. Vo. 14. IT.. γ. γ.	 سيليكون خالص سيليكون خميرى سيليكون اسفنجيا يلى يورينان يلحي يورتان اسفنتجى بلحىاتيلن اسمنجحى

'. AAC
". Thermal break

پييوست Y ：ضرايب هدايت حرارت مصالح متداول

ضريب هدايت حرارت مؤثر ［W／m．	نig مـخصوص خشكــ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
		F＊＊．
－仿	41.	كائو
$\cdot 1 \cdot 9$	γ ．	＇كائو جو اسفنجحى
$\cdot 1 \mathrm{~V}$	IT．．	كائو حو سخت
$\cdot \mathrm{H}$	9r．	ليلحايزو بونيونيلن
－$)^{\text {c }}$	1v．．	بلحىاسولفور
$\cdot \mathrm{H} \Delta$	9λ ．	بوتاديان
\cdot \％．	$1 \cdot \Delta$ ．	آكريليك
$\cdot \mathrm{H} \Delta$	110.	（بلحيآميد（نايلون）
－$\%$ \％	14．．	رزين فنلـيا
$\cdot 19$	14．．	رزين بلحياستر
$\cdot \Delta \cdot$	9λ ．	（HD）（\％لحىانيلن
－	95.	（بلحا⿴囗十⺀大
$\cdot{ }_{\cdot} \cdot T$	91.	
－ 4Δ	IT．．	
$\cdot 19$	$1 \cdot \Delta \cdot$	لحلىاستايـنايرن
$\cdot 1$ A	11λ ．	（PMMA）（آلتو ¢لاس،
$\cdot 1 \mathrm{~V}$	149．	
－HK	ITY．	بلحاكلروبرن（نيّورن）
－HF	15	بوتيل（ايزو بوتن）
－ 50	110.	
－ 50	Tr	
－ \boldsymbol{H}	IT．．	رزين إيوكّسىا
$\cdot{ }^{4} \mathrm{H}$	IT．．	لبلحيورنان
$\cdot{ }_{\cdot} \mathrm{H}$ ．	14．	ليلىاستاتاتِ
－ H 。	H．．	بلى

ضريب هدايت حرارت مؤئر ［W／m．K］	وز مخصوص خشكـ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
		ها حوب و فراوردمههاي تياهیى ？قوبهاي طبيعىا： －بلوط، الشّ، زبان كَنجشك، زيزفون، قان ياغوشه، درختان ميودارار： －تُكالى نرمال متوسط － kg／mr －كاج نترمای، كاج سواحل دريا s．． －تبريزی، اكومه
$\begin{aligned} & \cdot . \Delta F \\ & \cdot, r q \\ & . r g V \end{aligned}$		قوبوهاى طبيعى خاص： ｜بالز －جوببهاي سنگّين
		صفحات بايه چحوبىا： －صفحات تخته چندلا －صنحات با تراشههاي يولكما جهتيافتنه（OSB） －صنحات با نرات خوبا（نيوپان）

بيوست V : ضرايبب هدايت حرارت مصالح متداول

ضريب هدايت حرارت مؤثر [W/mK]	نو مـخصوص خشكــ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
$\begin{aligned} & \hline \cdot 11 \\ & \cdot, 1 \\ & \cdot, ~ \end{aligned}$		- وانل هاي ساختهش شا
$\begin{aligned} & \cdot 1 \cdot \\ & \because \cdot \psi q \\ & \cdot \cdot \Delta \Delta \end{aligned}$		\qquad
- ${ }^{\text {H }}$		كاه فشرده
$\begin{aligned} & r_{1} \\ & 1, \Delta \\ & 1,1 \end{aligned}$	TT•• ت اV.• 1A.. تا تا r... ت ivy.	و. خاك و خشت شن و واسه رس يا لآى (سيلت)
		Y
1.9 .98	rr.. ت ت ت	
-9r	Tr.. ت ri.	TT..
- As	rl.. L.	\%\%
- 19	r... 19.	\%\% \%\%
- Vf	19	
-.99	1A.. تا 18.	\%
-94	18... تا 19..	
- 9.	19.. 18.	\%قكاللى اسمّا
$\cdot \Delta \Delta$	10.. تا $19 .$.	
$\cdot \beta \cdot$	1ヶ...	14...
-48	\%r.. تاr..	
-it	\%r.. 11.	\% 7 \%
- 4 H	$11 . .1$ - 11.	\% $11 .$.
. 44	كمتر از	. $1 . .$.

بيوست V : ضرايبب هدايت حرارت مصالح متداول

ضريب هدايت حرارت مؤثر [W/m.K]	وزن مخصوص خشكـ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
$\begin{aligned} & \cdot \cdot \mu H \\ & \cdot \cdot \mu 4 \end{aligned}$	$\varphi \lambda$	بلىوينيل كلرايد (PVC) منبسط شـه
		اسفنج يلى يور تان يا يلمىايزوسيانورات هطابق استانتارد ملى ايران: - صنحات ممتت منبسط شده با تَاز HCFC و / يا هنتان: - بين يوششش انعطافـيذير نوْوذيذير - بين يوششن انعطاف يذير آلومينيومیى با ضخامت بيش از . هيكرون يا نفوذ نايٍّير در برابر تَاز يا پنتـنان - صفحات با عايق تريزيقشده بهصورت ممتند بين دو ورو فلزى: - منبسط شده با كاز HCFC و و ايا ينتان - منبسط شده با حفرهمايى ير شده از هوا يا كاز كاربنيكى
		rir عايق.هاي حرارتى معدنى
$\begin{aligned} & \because \Delta \Delta \\ & \because \cdot F V \\ & \cdot \cdot \mu F \\ & \cdot \cdot F / \\ & \cdot \cdot \mu q \\ & \cdot \cdot \psi A \\ & \cdot \cdot \mu q \\ & \cdot \cdot F \cdot \end{aligned}$		

بييوست Y ：ضرايب هدايت حرارت مصالح متداول

ضريب هدايت حرارت مؤئر ［W／mK］	نj مخشصوص خشـــ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	مصالح
$\begin{aligned} & \cdot \gamma \\ & 1,10 \\ & \cdot, 14 \end{aligned}$		Kr． قير خالص آسفالت（قير ماسهدار）
VY Δt ΔF H． 19. rA． け． ro 11.	VAV． VVA． Yo．． TY．． TA．． $\lambda q{ }^{\mu}$ ． AY．． 11ty． VT．．	
		كُج سخت با حداقل ميزان آب لازم گیج اندود داخلى（زنده يا كشتهه） 5 گّج با سبكادانه يا با الياف معدنىيا

پ

مقاومت حرار تى لايههاى هوا و قطعات ساختمانى

پ ^

مقادير لارائهشده در اين پيوست در روشهانى طراحیى پوسته خارجى مبناي هحاسبه قرالر مى گيـرد،

كرده باشنـد.

پ-1-1 مقاومت حرارتى لايئ هواي مجاور سطوح داخلى و خارجى
در اين قسمت، مقادير مقاومت حرارتى بين سطوح دالخلى و خارجى پوستئه خارجى و هوالى محيط دالخلى يا خار جیى به زاوئه جدالر نسبت به سطح افقى، جههت جريان حرالرت و نوع فضابي كـهـ جــدار بـا آن در تمـاس

 ديتُر، لائه هوا مانند فخاى خارج تلقى مى شود، با الين تقاوت كه مقاومت حرالرتـى Re بـين سـطح

 جدارهها

جـدار در تماس با فضاى كـنترل نششده			جدار در تماس با فضاى خارج			جهت جريان حرارت	زاويةُ جدار نسسبت به سسطح افقّى	
ع لا لاهها	لا لا هو اي تارن	(1) هواي دانخلى	? Lالy	لائه هواي خار	§ . 12			
$\cdot H$	$\cdot 11$	$\cdot 11$	$\cdot 1 \mathrm{~V}$	$\cdot 1 \cdot 9$	$\cdot 11$	\pm افتحى	كمـون يا با زاويةُ بيـث از -	
$\cdot 1 \wedge$	$\cdot \cdot 9$	$\cdot / \cdot 9$	$\cdot{ }^{\prime}{ }^{\prime}$	$\bullet \cdot \Delta$	$\bullet \cdot 9$		\|فقّى	
- HF	$\cdot 1 \mathrm{~V}$	$\cdot \mathrm{iV}$	- HK	$\cdot \cdot \Delta$	$\cdot \mathrm{TV}$	بايون به	8)	

پ -
 خارجى، بسته به زاويه جدار و ضخامت لائ هوا، آمكه است.

ضخامت لاية هوا (ميلىيمتر)							جريان هرارت	زاويهُ لايهُ هوا نسبـتـ به سطحح افقّى
$\Delta 1$ تا	ro b	$\begin{aligned} & 14 \\ & \text { ت } \end{aligned}$	$\begin{gathered} 11,1 \\ 6 \end{gathered}$	$\begin{aligned} & 9,1 \\ & 5 \end{aligned}$	$\begin{gathered} V, 1 \\ ت \end{gathered}$	$\begin{aligned} & \Delta \\ & \text { تا } \end{aligned}$		
1..	Δ.	if	ir	11	9	V		
$\cdot 19$	$\cdot 19$	$\cdot 19$	$\cdot 10$	- ${ }^{\text {If }}$	$\cdot{ }^{\prime}$	$\cdot 11$	ا $⿻ \mathrm{l}$	sung يا با با زاوئُ بيش از
$\cdot 14$	$\cdot{ }^{\prime}$	$\cdot 14$	$\cdot 1 \%$	- $\boldsymbol{\prime}$	- \dagger H	$\cdot 11$	بالغ	
$\cdot \pi \cdot$	$\cdot 1 \wedge$	$\cdot 19$	$\cdot 10$	- ${ }^{\prime \prime}$	-菏		\%و بها	در

rre

در اين بخش، مقادير مقاومتهاى حرالرتى برخي لايههاى غيرهمگّن عناصر ساختمانى متـداول بــر
حسب [حـ
پی-
جدول „ـ

پپ-
 عرض : •ا تا 1 | السانتيمتر

جدول طـA-A مقادير مقاومت حرار تى لائة ساختمانى آجر توير در ديوار

 عرض : • ا تا || سانتىمتر

جدول پA－A مقادير مقاومت حرار تى لايئ ساختمانى آجر سوراخدار در ديوار

ضخامت جدلر（سانتىمتر）			شكل آجر چجينى مقطع افقى
ro	r	$1 \cdot 10$	
		－IT	寅
	－YA		驄
－fr		a	

پ－پ－
جدول بA－9 مقادير هماومت حرار تـى بلوك سفالى در ديوار

ضخامت جدلر（سانتىمتر）						شكل بلوك مقطع افقى
F．	r	10	$15 / 0$	$1 \cdot 10$	V, Δ	
				－Y．	－19	畐
		，r．	－rv			吕
－ VA	－，49					

پ-

ضخامت جدار (سانتىمتر)					شكل بلوك مقطع افقى
4.	5.	10	$1 \cdot / \Delta$	γ / Δ	
			$\bullet \bullet \cdot 9$	$\bullet * V$	昌
	$\cdot 19$	- If			田
-ry				-	

پپ- -
 ضخامت بدنئ سفالى بلوك : X تا • م ميليمتر وزن مخصوص خشُك مادؤ سفالى بلوك : . . اV تا . . .

لإ تفاع بلوك (سانتىمتر)		شكل بلوى مقطع افقى
50	r.	
	-19	\#10
- 140		\#\#

فاصلئ محور تا محور تير چچهها : • Δ سانتتيمتر
ضخامت بدنئ سفالى بلوك : 1 ا تا • • ميليمتر

الر تفاع بلوك (سانتى,		شكل بلوى مقطع افقى
ro	r.	
	-10	
- 14		\square

$1_{\mathrm{e}}(\mathrm{cm})$	فاصلفٔه محور بها محور تير جها			$\begin{gathered} \text { إتفاع بلوك } \\ \mathrm{d}_{\mathrm{e}}(\mathrm{~cm}) \end{gathered}$
$1{ }_{1}>84$		s. $>1 l_{\mathrm{e}}>\Delta \Delta$		
- VV	- VF	-91	$154>12>9 \Delta$	
-91	-90	- 109	If. $>11_{\text {e }}>150$	
-9.	- As	- V9	$154>12>9 \Delta$	
- 79	-1/9	-99	IF. $>1_{1}>150$	
$1,1+$	-99	- 91	$154>12>9 \Delta$	
- 91	- $\lambda \boldsymbol{\lambda}$	- $\vee 9$	IF. $>11_{\text {e }}>150$	

1 l (cm)	فاصلفٔه محور به محور تير جها		عرض $1_{0}(\mathrm{~mm})$	الرتفاع بلوك لز روى پاششنه $\mathrm{d}_{\mathrm{e}}(\mathrm{cm})$	
$1 \mathrm{e}<84$	$<1_{\mathrm{e}}<9$ gr	$<1_{\mathrm{e}}<\boldsymbol{q} .$ $\Delta \Delta$			
1,94	1,9.	$1, A Y$	$1 H F>1 l_{\text {e }}>90$	It	$r \cdot$
$1, A{ }^{4}$	$1, \lambda$.	I,Vr	$>1_{e}>15 \Delta$		
$r \cdot \mathrm{~A}$	r_{6}	1,94	$1 H F>1 l_{\text {e }}>9 \Delta$	10	
1,94	1,49	y,AY	$>1_{e}>15 \Delta$		
ris	rı	$\mathrm{Y}_{1} \cdot \ldots$	$1 F F>1_{e}>9 \Delta$	IV	
$H_{H}+$	1,4A	$1, A 1$	$>1{ }_{\text {e }}>150$		
ris	r19	$r_{1}+1$	$1 H F>11_{e}>9 \Delta$	r	
Y,	1.6	1,90	$>1_{\mathrm{e}}>150$		
ricos	r,iver	rise	$15 F>1 l_{\text {e }}>90$	ro	
ric.	1,10	Y, 11	$>1_{\mathrm{e}}>150$		
r,gr	r, $\Delta \boldsymbol{H}$	rict	$1 H Y>11_{\mathrm{e}}>9 \Delta$	r.	
r,	1, \%	Y,yy	$>1_{e}>15 \Delta$		
r, 19	r/10	river	$1 H F>1_{\mathrm{e}}>9 \Delta$	it	F.
$r \cdot 9$	$r_{1}+\omega$	1,9V	$>1_{e}>150$		
Y, HK	r, Ma	rror	$1 H F>l_{\text {e }}>9 \Delta$	10	
Hr	Y, iV	r, A	$>1_{e}>1 r \Delta$		
rers	Y,iv	ris	$1 H F>1_{e}>9 \Delta$	IV	
rim	r, Me	ric	$>1_{e}>15 \Delta$		
$r, \Delta{ }^{\prime}$	Y, 4	Yro	$\mid H F>1_{e}>9 \Delta$	r.	
Yuッ	¢,	Mr	$>1{ }_{2}>15 \Delta$		
rive	r,ge	Y, HF^{+}	$I H F>1_{e}>9 \Delta$	ro	
$r, 09$	r, $\langle\boldsymbol{r}$	Yr	$>1_{e}>15 \Delta$		
r, \%	$r, \lambda \omega$	rivr	$1 H F>1_{e}>9 \Delta$	$r \cdot$	
riv	r, V.	$r ; \Delta A$	$>1_{e}>150$		

$\mathrm{l}_{\mathrm{e}}(\mathrm{cm})$	فالصلئ محور به محور تيرپها		$\begin{gathered} \text { پاشنـهُ تيرضه } \\ \mathrm{l}_{0}(\mathrm{~mm}) \end{gathered}$	الرتفاع بلوك از روى پֶاشَنة $\mathrm{d}_{\mathrm{e}}(\mathrm{~cm})$	
$1_{e}<9^{F}$	SH $<11_{2}<8$	$\Delta \Delta<1_{\mathrm{e}}<\boldsymbol{q}$.			
riper	γj^{6}.	Y,Y	$1 H 4>1 l_{\text {e }}>90$	It	Δ.
H, \% ${ }^{\text {\% }}$	rit.	Yir	$>1_{e}>150$		
ry.	r, $\Delta \omega$	r, ${ }^{\text {cod }}$	$1 H 4>12>90$	10	
rieq	Y/ew	Yrw	$>1 l^{2}>150$		
$r / p a$	rFr	Y/D	$1 H F>1_{e}>90$	IV	
r, DV	$\gamma{ }^{\prime} \omega^{\text {a }}$	ripa	$>1_{e}>150$		
r / λ.	γ, rr	$r{ }^{5}$	$154>1 l_{e}>90$	r	
riper	Y,08	riev	$>1_{e}>150$		
$r_{j}+{ }^{\text {r }}$	Y,98	$r / \lambda 1$	$1 H Y>1 l_{\text {e }}>90$	ro	
	γ / λ -	$r ; \beta$	$>1 l_{\text {e }}>15 \Delta$		
HYO	H/V	$\mathrm{H}_{5} \mathrm{r}$	$1 H 4>1 l_{\text {e }}>90$	r	
$\mathrm{r}_{\mu}+9$	$\mathrm{r}_{1}+1$	$r / \lambda \lambda$	$>1_{e}>150$		
r / p	r / F	$r, \Delta \omega$	$1 H F>1_{\mathrm{e}}>90$	It	G.
$r, \Delta A$	r/ar	Yect	$>1{ }_{2}>150$		
VAM	YVA	rya	$1 H F>1_{e}>90$	10	
Y, ${ }^{\text {r }}$	r/VV	r, AV	$>1{ }_{2}>150$		
YqY	r / λ	- riva	$1 H F>l_{e}>90$	IV	
Y / λ.	rinc	rFw	$>1 l^{2}>15 \Delta$,	
$r_{1}+{ }^{+}$	rov	$r / \lambda \omega$	$1 H Y>1 l_{\text {e }}>90$	r.	
ral	γ, λ^{+}	rr	$>1 l_{\text {e }}>15 \Delta$	F	
r, \%	H/r	$r_{1} \cdot q$	$1 H 4>1 l_{\text {e }}>90$	r	
$r, 10$	$r_{j}+\lambda$	Y, ${ }^{4}$	$>1 l_{0}>150$,	
$r, \Delta r$	r, ere	H,	$1 H \mathrm{~F}>1_{\mathrm{e}}>90$	r.	
$r, H A$	r, ${ }_{\text {r }}$	r ${ }^{\prime}$	$>1{ }_{\text {e }}>150$		

پيوست 9

ضرايب انتقال حرارت جدارهاى نورگَذر و بازشوها

پ 9 ضرايب انتقال حرارت جدارهاى نور گَذر و باز شوها

مقادير درجشده در اين پيوست براي هر دو روش طراحى عايقكــارى حرارتـى (الــف و ب) مبنـاى
 رعايت استانداردهاى ملى، تعيين شده باشد. همئ مقادير بر حسب W/m².K هستند.

پף-1 ضريب انتقال حرارت شيشهها

 الست، مربوط به شيشههاى با ضخامت F F ميلميمتـر، در دو حالـت عمـونى و افقـى، السـت. مقـادير
 در جدول محاسبه كرد.

 غير اين صورت، لازم است مقادير مربوط به هوا ملاكى قرالٍ گّيرد.
 تأيـد يكى نهاد دالراى صلاحيت قانونى رسيده باشد. در غير اين صورت، نبايد گّسيلندگّى كـمـ بـراى شيشه منظور شود.
 شيشه، يا بر فيلمى كه روى شيشه خحسبانده مى شیون، نشاند.

در مورد شيشههاى ساده (تكجدال,ه)، براى هر ضخامت، ضريب انتقال حرأرت برابر است با:

$$
\begin{array}{ll}
\mathrm{U}_{\mathrm{gl}}=0, \lambda\left[\mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)\right] & \mathrm{L} \text { در حالتى كه جدالر عمودى التى كه جدلر الفقـى است } ا \text { است }
\end{array}
$$

$\mathrm{U}_{\mathrm{gl} 1}\left[\mathrm{~W} /\left(\mathrm{m}^{2} . \mathrm{K}\right)\right]$									ضخامت لاية هورا [mm]
								شيشههای	
- f.	- 40	$\cdot{ }^{\mu} \cdot$	$\cdot r \Delta$	$\cdot r \cdot$	$\cdot 10$	\cdot,	$\cdot \cdot \Delta$	عادى	
r, 8	7, 8	r, A	r, A	Y, Y	Y,	Y,	r, Δ	H,	9
r, V	5, \%	r, Δ	r, Δ	t,	Y,	r, r	$r_{1} 1$	r_{1}	\wedge
r, Δ	Y, 4	T, r	Y,	Y,	$r_{1} 1$	r.	1,9	Y, 8	1.
r, \%	T, K	r, r	r_{1}	r.	1,9	$1 / 1 /$	1, ${ }^{2}$	r, A	ir
r,	r,	r,	r_{1}	1,9	1, A	bV	1,4	Y, Y	If
H/K	H/h	\%	1/9	1/A	I/V	$1 / 9$	1/9	YY	19
H, ${ }_{\text {r }}$	r,	$r_{1} \cdot$	1,9	$1, A$	$1, V$	1,9	1,4	Y,	14
r,	Y,	$r \cdot$	1,9	$1, A$	1, V	1,9	$1, \Delta$	Y,	r.

$\mathrm{U}_{\mathrm{gl}}\left[\mathrm{W} /\left(\mathrm{m}^{2} . \mathrm{K}\right)\right]$					ضريبب انتقال حرارت				ضخامت لايةٔ هوا [mm]
								شيشهههاي	
$\cdot{ }^{+5}$	$\cdot{ }^{4} \mathrm{H}$	$\cdot r \cdot$	$\cdot 7 \Delta$	$\cdot{ }^{\prime} \cdot$	$\cdot 10$	${ }^{\prime}{ }^{1} \cdot$	$\cdot \cdot \Delta$	عادى	
\dagger		r, Δ	FiF	Fis	r r	F,	$r_{1} 1$	r_{1}	¢
He	ζ	r, r	F,	r_{1}	$T_{i} \cdot$	1,9	1,A	H,	\wedge
F,	Y	r,	r_{1}.	1,9	1,A	1,7	1,0	T_{1},	1.
F_{1}	r_{1}	F\%	1,9	$1, A$	$1, V$	1,0	1,4	H,V	IT
r_{1}	Y_{1}.	1,9	$1, A$	1,V	1,0	1,4	1,5	\dagger	If
$F_{1} \cdot$	r_{1}.	1,9	$1, A$	1,8	1,0	1,4	1,5	H,F	19
$F \cdot$	r_{1}	1,9	1,A	1,7	1,0	1,4	1,5	\dagger	is
r_{1}	Y_{1}.	1,9	$1, A$	1,V	1,0	1,4	1,5	\dagger	r.

$\mathrm{U}_{\mathrm{g} 1}\left[\mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$									ضخامت لايئ هوا [mm]
								شيـشههاي	
- f.	- rs	$\cdot{ }_{\cdot} \mathrm{H}$.	$\cdot \mathrm{H} \Delta$	$\cdot r \cdot$	$\cdot 10$	$\cdot 1 \cdot$		عادى	
r, r^{*}	r, r	$\left.r_{1}\right)$	H.	1,9	$1, A$	$1, \mathrm{~V}$	1,8	Γ, A	9
r,	r.	1,9	1, 1	$1, \mathrm{~V}$	1,9	1,0	1,4	Y, V	\wedge
r.	1,9	1, 1	1,V	1,9	1,0	$1, \%$	1,4	\dagger	$1 \cdot$
$F \cdot$	1,9	1,A	$1, \mathrm{y}$	1,9	1, 0	1,4	1, ${ }^{1}$	\dagger	IT
$r \cdot$	r_{1}.	1,9	$1, A$	1,9	1,0	1,4	1,5	T,	14
F_{r}	r_{1}	1,9	$1, A$	1,V	1,0	1,4	1,5	\dagger	19
$r, 1$	r_{1}.	1,9	$1, \lambda$	1,V	1,0	1,4	1, ${ }^{2}$	T,	1/1
F,	$\Gamma_{i} \cdot$	1,9	$1, A$	$1, \mathrm{~V}$	$1, \Delta$	1,4	1,	r,	「.

$\mathrm{U}_{\mathrm{gl}}\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$							ح	ضريب	ضخامت لاية هوا [mm]
								شيشنههاي	
$\cdot{ }^{4}$.	$\cdot r \Delta$	- $\mathrm{H}^{\text {. }}$	- 50	$\cdot \mathrm{r} \cdot$	$\cdot 10$	$\cdot 1 \cdot$	$\cdots \cdot 0$	عادى	
H,	r r	r,	re	r_{1}	r,a	ζ, A	r,y	H,	9
re.	$r, 9$	r, λ	r, λ	F,V	r, g	r, Δ	H,	$r_{1} \Delta$	\wedge
r, q	T, 4	r, λ	T,V	Hegr	H,	T,	+, \%	H,4	1.
r, 9	Ψ,	r, A	Y,	ζ	r, Δ	H,	+, \%	H,4	IT
r, 9		r, V	Y, V	$r, \%$	r, Δ	H,	r, \%	H, 4	14
r, 8	r H	$r, ~$	r,	$r, \%$	r, Δ	F,r	r rrer	H,4	19
r, 9	$Y_{1} \lambda$	FY	r,	r, Δ	ret	F,r	r, r	H, 4	is
r,	ζ, λ	Y Y	\dagger,	ζ / Δ	H,	F,r	F,	H,	H.

پף-Y ضرايب انتقال حرارت جدارهاي نوركّنر

باشل، ضريب انتقال حرارت متوسط بازشو برابر است با:

$$
\begin{array}{ll}
\mathrm{U}_{\mathrm{G}}=\Delta_{i} \lambda\left[\mathrm{~W} /\left(\mathrm{m}^{2} . \mathrm{K}\right)\right] & \mathrm{د} \text { در حالتى كه جد جالر عمودى التى كه جدالر افقــى است }
\end{array}
$$

 كاربرد آن با شيشئ تكـجدلراه، ضوايب همانيند قابهاى فولادى و آلومينيـومى سـاده بــه كـار بـرده ميشود.

 علاوه بر مقدالر ضريب انتقال حرارت متوسط بخشَ شيشهالى (U) بازشو (Ufi) نيز مشخص شود. در تعيين ضرايب انتقال حرارت جدالرهاى نور تَّر، نكات زير بايد در نظر قرا, كَيرد:

- برای ضر يب انتقال حرارت متوسط قاب بازشو فلزى با حـرارتشــكن، سـه مقـدلر . . (W/(m².K)] Δ_{i}. تُواهمىنامه فنى ارائه نشُده باششد، ضريب انتقال حرارت متوسط قاب فلزى با قطع حرالرتـى،
برابر •
 : در نظر تُرفته شده اسدت. در هـورتى كـهـ مشخصـات حرالرتـى قـابهـا در [W/(m².K)]
 [W/(m².K)]
 در نظر گَّرفته شده الست. در صورتى كه مشخصات حرالرتى قابها در گّواهمىنامه فنى الرائـهـ
 تَّرفته مىشود.

 [W/(m².K)]
 جدالر نور كّذر با برونيابى اعداد لرائهشده تعيين مىشود.

			$\begin{gathered} \text { بخش نور كَ } \mathbf{U}_{\mathrm{Il}} \\ {\left[\mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}\right]} \end{gathered}$	نوع جدار نوركَذر
$\mathbf{U}_{\mathbf{f r}}=\Delta_{i}$.	$\mathbf{U}_{\mathbf{f r}}=\psi_{i} \cdot$	$\mathbf{U}_{\mathbf{f r}}=\mathrm{r}_{1} \cdot$		
r, ${ }_{\text {a }}$	r, Δ	H,	1,	جنجره
r, 4	H,	Her	1, ${ }_{1}$	
r	TY	r,	1,4	
r_{r}	Y, V	Y, ${ }_{4}$	$1, \Delta$	
$r, 1$	r, A	Y, Δ	1,9	
H,	r, ${ }^{\text {r }}$	Y, Δ	$1, \mathrm{~V}$	
H,	r, 9	r, F	$1, A$	
H,	r	Y, V	1,9	
H, ${ }_{4}$	r	Y, Y	r	
Hef	r	T, V	(r)	
H,	r_{1}	Y, A	r r	لولايیى
r, Δ	r, r	r,	r,	
r,	rror	r,9	res	
r,	H, \%	r	r, Δ	
HV	H, ${ }_{\text {r }}$	r	- $r,{ }_{\text {r }}$	
Y, A	r,t	r,	Y, Y	
H, A	r, Δ	r,	r, A	
r, ${ }_{\text {r }}$	H,	H,	r, ${ }^{\text {r }}$	
Y, Y	Yf	$r_{H} r_{1}$	1,5	در دنجرهاى
r, A	r, Δ	Frrer	1,4	
Y A	r, Δ	r,r	1,4	
Y, 9	T, H^{4}	Y,	$1, \Delta$	
r	r, V	Y, 4	1,9	
r	ry	Y, Δ	$1, Y$	
H,	r,	Y, Δ	$1, A$	
H,	Y, 9	Y,	1,9	
H,	r, ${ }^{\text {r }}$	Y, F	r	
H,	Y, 9	Y,	$r{ }_{r}$	
H,	r	Y, V	Y, r	لولايى
H,	r_{1}	Y, A	Y, r^{\prime}	
H, ${ }_{4}$	r_{r}	Y, 9	Y, ${ }_{\text {r }}$	
r, Δ	H, r	Y, 9	r, Δ	
r,	H,	r	Y,	
r,	Hifer	r,	Y, V	
YY	H, ${ }_{\text {F }}$	H,	Y A	
r, A	r Δ	H,	r,	

جيوست 9 : ضرايبب انتقال حرارت جحدارهاى نوريَذْ و بازشوهها

				نوع جدار نوريَذر
$\mathbf{U}_{\mathbf{f r}}=\Delta_{1}$.	$\mathbf{U}_{\mathbf{f r}}=\mathrm{F}_{1}$.	$\mathrm{U}_{\mathrm{fr}}=\mathrm{F}_{1} \cdot$		
$5 / 9$	F, \%	-	$1, T$	جنجره
F/F	F,F	-	1,4	
H/V	r, Δ	-	1,4	
F/A	ζ, Δ	-	1,0	
5/9	$r_{\text {F }} /$	-	1,9	
F/9	TV	-	$1, Y$	
H	Y / λ	-	$1, A$	
H/	r,	-	1,9	
H/M	r, ${ }^{\text {P }}$	-	Y	
r_{1}	Y, ${ }_{\text {P }}$	-	r_{1}	
Hr	Y, ${ }^{\text {r }}$	-	Fr	كشويبى
H	r	-	r r	
H, F	H	-	r, ${ }_{\text {r }}$	
H, ${ }_{5}$	H,	-	r, Δ	
$\Gamma_{\mu} \Delta$	H	-	FF	
H	H	-	FY	
H, Y	H,	-	r,	
H, Y	r, Δ	-	H, 8	
F,r	H,	-	1,5	در جنجر0ا
F,F	Tr	-	1,4	
r, Δ	Frr	-	1,4	
Fr	Tr	-	$1, \Delta$	
F,V	r, Δ	-	1,8	
FY	T, Δ	-	$1, \mathrm{~V}$	
r, A	r,	-	$1, \lambda$	
r, 8	Y, V	-	1,9	
r	r, λ	-	Y	
H	r,	-	r_{1}	
H	r,	-	Y,	كشوبي
H,	Y,	-	r	
Hr	r	-	H, F	
H, \%	r_{1}	-	r, Δ	
H, H^{*}	H,	-	ζ_{F}	
H, ${ }_{\text {H }}$	H,	-	F, Y	
r, Δ	H,	-	r / λ	
r,	H, ${ }^{4}$	-	Y, 8	

				نوع جدار نوركَذر
$\mathrm{U}_{\mathrm{fr}}=\mathrm{r}, \Delta$	$\mathbf{U}_{\mathbf{f r}}=1, A$	$\mathbf{U}_{\mathbf{f r}}=1, \Delta$		
Y	1,V	1,9	1,	بنجره
$r{ }_{1}$	1,1	1,V	1, ${ }^{1}$	
$r, 1$	1,9	1,V	1,4	
1, ${ }^{\text {r }}$	1,9	$1, \mathrm{~A}$	$1, \Delta$	
H,	r	1,9	1,9	
T, T	r	r	1,V	
H, ${ }_{\text {r }}$	$r, 1$	r	$1, \mathrm{~A}$	
Y, ${ }_{\text {r }}$	r, r	r_{1}	1,9	
r, Δ	Y, r^{\prime}	r_{1}	r	
r, Δ	Y,	$r, 1$	(r)	
r, Δ	r, M	r, rer	Tr	لولايى
Y,	Y, ${ }_{\text {c }}$	T, M	r, r	
Y,	Y, ${ }_{\text {r }}$	Y, \%	rit	
YY	r, Δ	Y/i	r, 0	
r, A	Y, $r^{\text {r }}$	r, A	- $r,{ }^{\text {r }}$	
Y, 9	Y,	Y, $\%$	Y, Y	
r, ${ }^{\text {r }}$	Y, Y	Y,	r,	
r	r, A	r, V	r, 9	
r	1,y	1,9	1, ${ }^{1}$	در بنجر0
r	1,1	1, Y	1,4	
r,	1,9	1,V	1,4	
Y, ${ }_{\text {r }}$	1,9	$1, A$	1, ${ }^{1}$	
r, r	r	1,9	1,9	
Y, ${ }_{\text {r }}$	r	r	1,V	
Y, $H_{\text {r }}$	r,	Y	$1, A$	
Y, ${ }_{\text {r }}$	T, Y	r,	1,9	
r, Δ	Y, $H^{\text {r }}$	$\left.r_{1}\right)$	r	
r, Δ	Y, Y	$r, 1$	r r	لولايى
r, Δ	Y, T	r, r	Y, ${ }_{\text {r }}$	
Y,	Y, ${ }_{\text {r }}$	Y,	Y, H_{T}	
Y, $\%$	Y, $H^{\text {r }}$	Y, H^{\prime}	Y, $r_{\text {r }}$	
Y, Y	r, Δ	Y, H_{4}	r, Δ	
Y, A	Y,	T, Δ	Y,	
r, ${ }^{\text {r }}$	Y,	Y, $\%$	TY	
r, ${ }^{\text {r }}$	YY	Y,	r,	
r	Y,A	Y, Y	r, 9	

بيوست 9 : ضرايبب انتقال حرارت جدارههايى نورَّذر و بازشوها

ادامئُ جدول بي -

			$\begin{gathered} \text { بخش نور كَذ } \mathbf{U}_{\mathrm{ll}} \\ {\left[\mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}\right]} \end{gathered}$	نوع جوركذر
	$\mathrm{U}_{\mathbf{f r}}=1, \mathrm{~A}$	$\mathrm{U}_{\mathbf{f r}}=1, \Delta$		
r_{1}	1,A	1,9	1,5	در ينجهرإي
r_{1}	$1, A$	$1, \mathrm{~V}$	1,4	
H,	1,9	$1, A$	1,4	
Fr	1,9	$1, A$	1,0	
H, H	H	1,9	1,9	
Fris	r_{1}	1,9	$1, Y$	
H, ${ }_{\text {F }}$	r_{1}	r	$1, \lambda$	
r, Δ	Fr	r_{1}	1,9	كشوبي
r, Δ	Fr	r_{1}	F	
r, Δ	r r	$r_{1} 1$	r_{1}	
r, Δ	F,r	Fr	H,	با آستـانه
HF	F, H	Fr	H, H	
H,V	H, F	F,r	Hir	
HY	r, Δ	Her	r, Δ	
F/A	Y, Δ	H, ${ }_{\text {F }}$	D r_{1}	
r,	F/F	$r, 0$	FY	
Y, 8	Y, Y	F,F	r,	
r	HV	F,	H,9	

$\lambda_{\text {tr }} \mathrm{U}_{\mathrm{gl}}$ جدول يو

		ربخش نور كَذر [$\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}$]	نوع جدار نوركَدر
$\lambda_{\text {fr }}=, 1 / \lambda$	$\lambda_{\text {fr }}=.1 \%$		
1,9	1,1	1,4	جنجرة لولايى
r	1,1	1,5	
r_{1}	1,9	1,4	
r r	r	1,0	
Y,	r	1,9	
Y,	r,	1,V	
H,	Y, rer	$1, A$	
Y, ${ }_{\text {H }}$	Y,	1,9	
Y, ${ }_{\text {H }}$	T,	r	
Y, ${ }_{4}$	Y,	- \quad H	
Y, Δ	Y,	r,r	
H, Δ	Y, ${ }_{\text {r }}$	r,re	
Y,	r, Δ	Y,	
Y, Y	Y,	r, Δ	
r, A	Y,	T, 8	
Y, A	Y, Y	Y,	
Y, 9	TA	P, A	
r	Y,A	r, 8	
1,9	$1, \%$	1,5	2
1,9	1, 1	1,4	
r	1,9	1,4	
r_{1}	Y	1,0	
r r	r	1,9	هنجرهاي
Y,	r,	1,V	
H,	rrer	$1, A$	لولايى
Y, ${ }_{\text {H }}$	Y, ${ }_{\text {r }}$	1,9	
Y, ${ }_{\text {r }}$	Y, r^{\prime}	r	بدون
Y, 4	Y,	Y, ${ }_{1}$	
r, Δ	Y,	r, r	آستانه
r, Δ	H,	Y, r	
r,	r, Δ	Y, $r_{\text {r }}$	ᄂ
Y, V	Y,	r, Δ	
r, A	Y, V	Y,	كشويى
Y, A	Y, Y	YY	
r, 9	r, A	Y, A	
r	Y, 9	Y, 9	

$\lambda_{\text {fr }} \mathrm{g}_{\mathrm{gl}} \mathrm{D}_{\mathrm{l}}$

		U [W/m $\left.\mathrm{m}^{2} . \mathrm{K}\right]$	نور كَدْر جدار
$\lambda_{\text {fr }}=\cdot, 1 \lambda$	$\lambda_{\text {fr }}=\cdot, 1 \%$		
Y	$1, A$	1,5	2
r_{1}	1,9	1, ${ }^{5}$	
r,	Y	1,4	
F, Y	r	1,0	
$r{ }_{r}$	r_{1}	1,8	
F, H	r_{1}	$1, \mathrm{~V}$	هنجرها
F, ${ }^{4}$	FT	$1, A$	
Fre	Frr	1,9	لولايبي
H, ${ }_{\text {H }}$	H, r	K	
H, ${ }_{\text {H }}$	F,r	r_{1}	با
r, Δ	Frr	Fr	
r_{1}	H, ${ }_{\text {F }}$	Hr	
FF	r, Δ	Y, ${ }^{\text {r }}$	آستانه
r, Y	F, ${ }^{\text {r }}$	r, Δ	
Y, V	H,g	F,F	
r / A	r, V	YY	
Y, ${ }_{\text {P }}$	F,V	F / λ	
Y,9	F,A	Y,	

ي q-r مثال هاي تعيين ضريب انتقال حرارت جدارهاي نوركّذر
مثال () تعيين ضريب انتقال حرارت يكى پنجره با مشخصات زير:

- نوع قاب: پیوىسى، لولايع
$\mathrm{U}_{\mathrm{fr}}=1, \lambda\left[\mathrm{~W} /\left(\mathrm{m}^{2} . \mathrm{K}\right)\right]:$ ضريب انتقال حرارت قاب مطابق تَواهیىنامهُ فنى -
- نوع شيشش: دوجداره
 - فاصلهُ داخلى بين دو شيشُه: • 1 ميلىمتر

 جدول،

 (1-9ヶ

مىشود.

مثال ب) تعيين ضريب انتقال حرارت پنجرْاى با مشخصات زير:

- نوع قاب: آلومينيومى حرالرتشكن، لولايى
- ضريب اننقال حرالرت قاب مطابق گّوامهىنامه فنى: نامشخص
- نوع شيشه: دوجداره

- فاصله دالخلى بين دو شيشُه: $1 T$ ميلىمتر

 تعيين مى تَردد.
 9-r، كه مربوط به قابهای فلزى حرالرتشكن الست، پرداخته مىشود. در بخش پنجرههاى لولايى اين جدول، به رديـفـ مربـوط بـه شيشـهٔ دالرالى ضـريب انتقـال حـرارت • • مى شود. در اين رديف، سه ضريب انتقال حرارت متفاوت درج شــنده بـرالى پنجـره مربـوط بـهـ سـهـ

 تعيين مى تّردد.
پ F-9 ضرايب انتقال حرارت درها

مقادير داده شده در اين بخش مربـوط بـه درهـاى متــداول اسـتا در حـورتى كـهـه بـرالى درهـا الز عايقههاى حرالرتى خاصى استفاده شود و در تَّواهیىنامهٔ فنى معتبر نيز ضرايب انتقال حـرالرت الرائـه شده باشذ، آن ضرايب مىتواند ملاكى محاسبه قرال, تَيرد. در غير اين صورت، لازم است مقادير داده شذه در جدول پף-•• ا مورد استفاده قرار گّيرد.

جدول يq--ا ضرايب انتثال حرارت درها

ضريب انتقال حرارت در $\mathbf{U}_{\mathrm{D}}\left[\mathbf{W} / \mathbf{m}^{2} . \mathrm{K}\right]$	نوع در	جنس در
r,	توير	در حوبّى معمولى
F_{1}.		
F/,		
r,		
$\Delta_{i} A$	تمام فلز	در فلزي معمولى
$\Delta_{i} \lambda$		
$\Delta_{i} \lambda$		
$F_{i} A$		
Δ, A	با شيشُٔ تكاجهاره	در تمامشيشهاي

پيوست •1

> سا يهبانها

پ •1 • سايهبانها

 كشور، لإائه مى كَّرد. در جدول هاى مندرج در اين پيوست، براى هر شهر، زاويهٔ سـايهبـان افقـى و زالوئه سايهبان عمودى، براى حالتهاى مختلف جهتحّيرى پنجره، بيان شده است. با الستخراج اين

 نشان دالده شده است.

نماى يُنجر0 و سايهبان

جهت

مقهلم افققى - زاويهٔ سايهبان عمودى شكل ي•أ-ا زوايايى جهت پنجره و زاويةُ سايدبان افقى و عمودى

برای الستفاده لز جدولهايى مندرج در اين پيوست، بايد مولرد زير در نظر گَّرفته شود: - "ش" مخفف »شرقي" است و بيانتًا آن است كه سايهبان عمونى بايد فقط در سمت شرق ينّجره قرال گیيرد.
 ينّجره قرار گّيرد.

- "ل" هخفف 》شمالى " است و بيانگِ آن است كه سايهبان عمودى بايد فقط در سمت شمال ينّجره قرال گّيرد.
 جنوب ينجره قرار گّيره.》 قرار تَيرن.
" "ع.م" جانشين عبارت "سايْهبان عمودى متحركى مقابل تمام پنجره" است.
 دو نوع سايهبان استقفاده گَردد.
 سايهبانهاى مربوط به نزديكـترين شهر را ملاكى كرفت.
- در صورت ذكر نشدن زاويئه جهت تّيرى پنجره در جدولها، مقادير زوأياى سايهبـان آن بايـــ
 - در شهر هايى كه باعلامت * مشخص شلهاند، با توجه به عمـق زيـاد سـايهبـانهـا، توصـيه مى شود ضمن رعايت زواياى سايهبان الرائهشده، روى تمام نماى ساختمان سايه إيجاد شود.

1	笭	1	1	1	1	1	等	笭	等	\％	等	＇	，	1	1	等	عكودى	
\bigcirc	1	1	\cdots	ธ	3	$\stackrel{\rightharpoonup}{6}$	1	1	1	1	1	\bigcirc	1	\bigcirc	ऽ	，		
1	$\stackrel{\square}{\circ}$	1	$\stackrel{3}{\circ}$	1	$\stackrel{3}{r}$	$\stackrel{\rightharpoonup}{2}$	等	\％	$\stackrel{3}{\circ}$	$\stackrel{\square}{\text { ¢ }}$	的	1	1	1	＇	$\stackrel{\square}{\text { cos }}$	5	
a	1	1	，	\bigcirc	1	1	，	，	＇	1	1	7	1	3	\bigcirc	1	افقى	
1	$\stackrel{\%}{2}$	1	$\stackrel{3}{\circ}$	1	$\stackrel{3}{r}$	$\stackrel{\square}{8}$	1	$\stackrel{\sim}{\circ}$	$\stackrel{3}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{3}{8}$	1	，	＇	1	$\stackrel{\square}{r}$	soces	
7	＇	1	＇	B	1	1	7	1	＇	，	1	7	，	7	8	，	افقى	
m	等	1	＇	1	\％	$\stackrel{\text { m }}{\sim}$	\％	\％	$\stackrel{\text { \％}}{ }$	等	\cdots	1	1	m	1	\％	عهودى	
\cdots	3	1	7	B	\cdots	7	$\stackrel{1}{7}$	3	б	$!$	\cdots	5	1	？	B	б	افقى	
，	墭	1	\％	1	？	1	\cdots	\％	\％	等	\％	＇	，	1	，	\％	ى	
B	\cdots	1	\bigcirc	\bigcirc	B	1	$\stackrel{\square}{\square}$	\rightarrow	3	\rightarrow	S	\bigcirc	1	B	\bigcirc	$\overrightarrow{5}$	افقى	
＇	1	，	，	1	1	।	1	1	\cdots	1	1	4	1	，	1	？	S	
\cdots	\bigcirc	1	$\check{\circ}$	द	\％	x	\leqslant	\bigcirc	－	B	\bigcirc	r		？	¢	\bigcirc	افقى	
莫	1	1	＇	，	1	1	1	1	＇	1	1	1	1	管	，	，	ى	coit $\frac{5}{6}$
1	$\stackrel{\square}{0}$	1	ς	।	\leqslant	¢	\cdots	¢\％	？	\times	B	¢	1	1	1	？	افقى	
，	，	＇	，	，	1	1	1	＇	1	\checkmark	1	\checkmark	，	，	＇	，	ى	
1	$\check{\sim}$	1	ъ	，	ъ	¢	\％	\bigcirc	\cdots	5	$\stackrel{\square}{7}$	亏	，	1	，	？	افقى	
，	1	1	＇	1	1		1	1	，	，	f	1	1	，	1	，	ى ${ }^{\text {coser }}$	
1	\leqslant	1	\geqslant	，	خ	\cdots	1	¢	き	\leqslant	¢	，	1	1	1	き	افقى	
1	1	＇	¢	＜	＇	1	＇	，	，	，	＇	1	，	1	1	，	E	\％
，	ζ	＇	＇	，	1	1	4	亏	\pm	\cdots	¢	，	＇	1	，	$\underset{ }{7}$	افقى	
，	1	1	1	I	1	is	1	1	＇	1	1	＇	1	1	1	1	ى Soc	
1	\geqslant	1	＇	1	1	＇	1	1	¢	1	\cdots	＇	1	1	1	¢	افقى	E．
，	令	1	笭	，	$\stackrel{\text { m }}{\substack{\text { m }}}$	，	1	\％	\％	\％	\％	＇	，	，	1	管	E	
\cdots	1	1	＇	，	1	：	\bigcirc	1	＇	1	，	1	1	\cdots	，	，	افقى	ε
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	\underline{E}	G		占		C	E	$\begin{aligned} & \frac{5}{6} \\ & \stackrel{6}{6} \\ & \underline{E} \end{aligned}$	$\stackrel{E}{\mathrm{E}}$	䨋	$\begin{aligned} & \frac{a}{a} \\ & \stackrel{\rightharpoonup}{r} \\ & \underline{q} \end{aligned}$	E	$\stackrel{\circ}{\text { \％}}$		c		\％
₹	¢	б́	\％	亿	二	$=$	－	\bigcirc	＞	＜	\checkmark	－	\cdots	7	1	－	ريف	

答	1	等	1	1	1	1	$\underset{7}{7}$	\％	等	\％	7	1	1	＇	1	等	808ودى	
1	$\stackrel{\square}{7}$	1	$?$	§	3	$\hat{\square}$	1	1	1	1	1	？	1	$\%$	ऽ	1	افقى	
\％	r	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{\text { r }}$	1	$\stackrel{3}{\text { rin }}$	$\stackrel{\square}{r}$	等	$\frac{\mathrm{m}}{\mathrm{D}}$	$\stackrel{3}{r}$	$\stackrel{\rightharpoonup}{\text { r }}$	$\stackrel{\rightharpoonup}{r}$	1	1	1	1	$\stackrel{3}{r}$	S	
1	1	1	1	\bigcirc	1	1	1	1	1	1	1	7	1	${ }_{5}$	\bigcirc	1	افقى	
$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\sim}$	1	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\square}{\sim}$	1	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\text { r }}$	$\stackrel{\rightharpoonup}{\text { rim }}$	$\stackrel{\rightharpoonup}{\sim}$	1	1	1	1	$\stackrel{\square}{\circ}$	عكars	¢
1	1	1	＇	B	＇	1	$?$	1	1	1	1	$?$	1	7	B	1	افقى	
\cdots	$\underset{\sim}{m}$	$\underset{i}{r}$	1	1	\cdots	\cdots	\％	\mathfrak{m}	\cdots	$\frac{m}{x}$	\cdots	1	1	$\frac{r_{i}}{i}$	1	\cdots	عكمودى	$\begin{aligned} & \frac{h}{4} . \\ & k . \\ & i \\ & i \\ & i \end{aligned}$
$?$	E	$?$	$\underline{1}$	8	－	1	\downarrow	1	¢	1	\cdots	E	1	？	g	\％	افقى	
mis	？	ris	mi	1	管	1	\％	$\underset{\sim}{\mathrm{m}}$	$\frac{m}{5}$	$\frac{m}{7}$	\cdots	1	1	1	1	$\frac{\pi}{5}$	عهودى	$\begin{array}{ll} \frac{6}{5} \\ 6 . & 5 \\ c & 5 \\ 4 & 5 \end{array}$
\rightarrow	\bigcirc	¢	\bigcirc	\bigcirc	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\square}{8}$	？	\rightarrow	\square	\cdots	\square	？	1	B	$\stackrel{r}{ }$	\square	افقى	
1	1	1	1	1	＇	1	1	1	mi	1	1	1	1	1	1	？	ת	\％
r	\checkmark	8	¢	\leq	\％	r	\leqslant	r	\bigcirc	8	\bigcirc	¢	＇	\cdots	ζ	\bigcirc	اكقى	
1	1	1	I	1	1	1	1	1	1	\％	1	1	1	1	1	1	S	$\begin{aligned} & q_{0} \\ & \frac{j}{y} \\ & i \\ & i \end{aligned}$
\bigcirc	\leqslant	\leqslant	\％	$?$	$?$	\leq	$?$	\bigcirc	＜		\checkmark	\leqslant	\bigcirc	ธ	$?$	？	افقى	
।	1	1	疑	1	1	1	－	1	1	1	I	1	1	1	1	1	ى	$\begin{aligned} & \xi_{0}, \frac{y}{c} \\ & \text { E. } \\ & i=1 \end{aligned}$
\bigcirc	そ	\leqslant	7	\cdots	\cdots	3	－	\bigcirc	そ	1	＜	\leq	\leqslant	§	1	1	افقى	
1	1	1	I	1	1	1	\cdots	1	1	1	1	1	1	＇	1	1	ع	E．
¢	\leqslant	＜	$?$	？	\％		$\stackrel{B}{8}$	\leqslant	\leqslant	\checkmark	＜	¢	\leq	\cdots	1	1	افقى	
1	$\begin{array}{\|l\|} \hline \text { c } \\ \text { 号 } \\ \hline \end{array}$	1	1	$!$	1	1	1	1		＇	1	1	1	f	1	1	，	$\begin{aligned} & q_{6} \\ & \varepsilon_{0} \\ & c_{0} \\ & \varepsilon_{0} \end{aligned}$
る	1	そ	7	8	3	1	2	ζ	1	I	ל	\geqslant	\geqslant	1	1	1	إفى	
1	¢ ${ }^{\text {c }}$	1	$\begin{array}{\|l\|} \hline \xi_{0} \\ \hline \end{array}$	1	1	M	1	1	镸	1	1	1	1	＇	1	1	vore	
।	1	1	，	\bigcirc	\％	1	\bigcirc	そ	1	I	1	1	1	1	1	1	افقى	
令	ふુ	§	そ	\mathfrak{r}	\％i	1	$\underset{i}{*}$	\％	ふ⿵	1	$\underset{8}{\text { m }}$	$\underset{z}{m}$	冎	令	1	1	ver	$\stackrel{\square}{5}$
1	1	1	$\stackrel{\sim}{\circ}$	1	1	1	1	1	1	\cdots	1	1	1	1	1	1	افقى	
¢	$\begin{aligned} & \frac{C x}{e} \\ & \frac{e x}{i} \end{aligned}$	E	$\frac{r^{*}}{i c}$		曾	$\underline{\text { b }}$	$\begin{aligned} & \hat{c}^{*} \\ & \underline{E} \\ & \underline{E} \end{aligned}$	$\underset{\underline{E}}{\underline{5}}$	$\begin{aligned} & \text { 总 } \\ & \text { 蒠 } \end{aligned}$		$\begin{aligned} & \frac{c}{\sqrt{6}} \\ & \frac{\sigma_{6}}{\sigma_{0}} \end{aligned}$	点	饮	$\begin{aligned} & \text { 淢 } \\ & \cdot \frac{6}{E} \\ & \hline \end{aligned}$	\％	鸰		\％
3	4	孝	3	$?$	］	$\stackrel{7}{7}$	を	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\rightharpoonup}{0}$	$\underline{6}$	$\underline{4}$	$\underline{7}$	1	\cdots	\％	＞		

等	等	等	\％	\％	\％	等	等	笭	等	等	1	等	等	管	1	\％	\checkmark^{2}	
，	1	1	，	1	1	1	1	1	＇	1	\bigcirc	1	，	，	\cdots	，	افق	
\cdots	\％	永	\％	\％	\％	\cdots	$\stackrel{\square}{\sim}$	$\stackrel{\square}{\sim}$	1	$\stackrel{\rightharpoonup}{\sim}$	1	$\stackrel{\square}{\sim}$	1	$\stackrel{\sim}{r}$	$\stackrel{\square}{2}$	答		
1	，	1	1	＇	1	＇	1	1	\cdots	1	7	1	\cdots	1	1	，	إنق	
\％	\％	$\stackrel{\square}{8}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{m}$	\cdots	\％	$\stackrel{\square}{\circ}$	$\stackrel{\square}{m}$	1	$\stackrel{\square}{n}$	1	$\stackrel{\square}{\circ}$	1	\％	\cdots	枵	S	
1	1	1	，	1	1	1	1	，	\cdots	1	3	，	？	1	1	1	إتى	
\％	\％	\％	\cdots	\％	\cdots	\cdots	\％	\％	1	，	，	\％	1	\％	巛	\％	ver	
5	万	\cdots	\cdots	$?$	\cdots	7	I	1	＊	＜	\％	¢	\cdots	S	\cdots	$?$	النقى	乐 ${ }^{\text {a }}$
バフ	旌	M	$\stackrel{\text { \％}}{7}$	\％	\％	答	m	？	1	1	1	\％	1	\％	\％	笭	S Somer	
\cdots	5	\cdots	き	${ }^{1}$	\cdots	¢	\％	${ }^{*}$	\bigcirc	7	\％	5	－	？	®	\cdots	إتقى	
\％	\％	答	管	\％	\％	1	1	1	1	1	1	\because	1	1	1	，	vor	
${ }^{-1}$	\bigcirc	？	2	？	$\stackrel{1}{1}$	\bigcirc	\bigcirc	\bigcirc	¢ั	¢	ธ	\bigcirc	${ }^{\circ}$	r	\％	r	إفى	
1	1	$\frac{¢}{\text { ¢ }}$	管	＇	1	＇	1	1	1	1	1	1	，	1	，	\checkmark	ع	
\bigcirc	$\stackrel{\square}{\square}$	2	圭	\bigcirc	\because	\leqslant	\bigcirc	¢	ธ	¢	र	\bigcirc	ธ	\leqslant	\leqslant	$\check{\square}$	إنقى	
，	1	¢	¢	，	¢	1	1	，	1	।	1	1	।	1	，	1		
$\stackrel{3}{0}$	\cdots	－	D	®	7	\leqslant	r	\leqslant	\cdots	§		\cdots	？	＞	ヶ	欠	انقى	
1	1	$\stackrel{\square}{r}$	$\stackrel{3}{r}$	1	1	＇	1	\checkmark	\％	1	1	1	管	1	1	1	ع	
$\stackrel{*}{0}$	き	1	1	7	\cdots	$₹$	\div	ऽ	1	\％	，	き	，	そ	そ	〕	إقى	
1	1	$\stackrel{\square}{r}$	$\stackrel{3}{r}$			1	1		1	1	，	1	1	1	，	।	S Sorer	
マ	\cdots	1	1	$\stackrel{1}{8}$	\％	द．	¢	$\grave{\square}$	，	\geqslant	1	\pm	1	1	1	亏	إفقى	
，	1	${ }_{\text {¢ }}^{4}$	粦	1	辰	1	；	，	＇	1	，	1	，	，	，	，	E	
\bigcirc	\％	1	，	饣	，	1	と	1	1	1	1	\＆	1	1	1	，	انقى	E．
恧	莫	5．	5	\％\％	管	笭	等	ぞ	等	等	？	＊	等	等	笭	令	E	
，	，	，	，	，	¢	1	1	，	1	1	，	，	1	1	，	，	افتى	
		$\frac{e_{k}^{*}}{{\underset{k}{k}}_{6}^{2}}$	$\begin{aligned} & c^{*} \\ & k \\ & k \\ & k \end{aligned}$	$\frac{\varepsilon_{k}^{*}}{y_{k}^{*}}$	動		a	$\begin{aligned} & \stackrel{y}{c} \\ & c \\ & c \\ & \Gamma \end{aligned}$	華	c	E．	$\begin{gathered} \kappa \\ \underset{x}{6} \end{gathered}$	$\begin{aligned} & \text { 总 } \\ & \text { E } \\ & \vdots= \end{aligned}$		$\frac{c}{c}$	衰		i
\bigcirc	\bigcirc	3	ご	2	\％	$\stackrel{1}{0}$	7	1	7	3	\cdots	3	7	き	\％	S		

1	等	1	等	等	\％	ऊ	\％	\％	M	1	1	等	等	1	等	等	عمودى	
$?$	1	？	1	1	1	1	1	1	1	$?$	7	1	1	7	1	1	افقىى	
$\stackrel{3}{\circ}$	$\stackrel{\square}{\circ}$	1	$\stackrel{3}{r}$	$\stackrel{3}{\circ}$	\cdots	$\stackrel{y}{0}$	$\stackrel{\square}{\text { cis }}$	$\stackrel{\square}{\text { cis }}$	$\stackrel{3}{\sim}$	$\stackrel{\square}{\sim}$	$\stackrel{3}{2}$	$\stackrel{3}{2}$	$\stackrel{3}{\text { cis }}$	$\stackrel{3}{\sim}$	$\stackrel{3}{8}$	$\stackrel{\square}{r}$	عمودى	
1	1	$\frac{7}{1}$	1	1	1	1	＇	1	1	1	1	1	1	1	1	1	افقى	
$\stackrel{3}{3}$	$\stackrel{3}{3}$	1	$\stackrel{3}{8}$	$\stackrel{3}{\circ}$	枵	iे	$\stackrel{3}{\circ}$	$\stackrel{3}{0}$	$\stackrel{3}{3}$	$\stackrel{3}{3}$	$\stackrel{\rightharpoonup}{3}$	$\stackrel{3}{\circ}$	$\stackrel{\square}{m}$	$\stackrel{3}{\text { m }}$	$\stackrel{3}{3}$	$\stackrel{\square}{i}$	عمودى	
1	1	$?$	1	1	1	1	1	1		1	1	1	1	1	＇	1	افقى	
1	\cdots	1	1	\cdots	$\frac{m}{\infty}$	\％	1	1	1	\cdots	$\stackrel{m}{7}$	\cdots	\because	1	\bigcirc	\cdots	عمودى	
7	T	吕	$\stackrel{\square}{\square}$	亿	$\stackrel{\rightharpoonup}{0}$	\cdots	$\stackrel{\square}{5}$	E	\cdots	\cdots	7	1	$\stackrel{\rightharpoonup}{0}$	？	－	$?$	افقى	
1	mi	1	1	\because	$\frac{m}{5}$	$\frac{\pi}{5}$	1	।	$\stackrel{\square}{0}$	\％	1	$\frac{\mathrm{ni}}{0}$	\cdots	m	\bigcirc	\％	Eres	
9	$\stackrel{\square}{0}$	\bigcirc	$?$	D	$\stackrel{\square}{0}$	\square_{0}	$?$	？	$\frac{m}{2}$	T	－	B	\rightarrow	？	$?$	\cdots	افقى	
1	1	।	1	min	1	1	1	1	1	1	1	4	1	1	$\underset{\sim}{6}$	1	عمودى	
\leqslant	\bigcirc	\mathfrak{r}	¢	$\underline{7}$	8	\bigcirc	\％	¢ ${ }^{\circ}$	¢	\％	¢	\bigcirc	B	¢	？	\bigcirc	افقى	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$\begin{gathered} 8 \\ 8 \\ \hline \end{gathered}$	1	عمودى	
？	\bigcirc	〕	＜	\％	\bigcirc	\leqslant	§	§	\bigcirc	\leqslant	\％	\leqslant	\bigcirc	¢	\bigcirc	\bigcirc	افقى	
1	1	1	1	1	1	1	1	1	1	1	，	1	1	1	$\begin{array}{\|c\|} \hline \frac{C}{D} \\ \hline \end{array}$	1	عمودى	¢ ${ }_{\text {cose }}$
る	r	b	〕	है	$\stackrel{\square}{\circ}$	ζ	\cdots	\cdots	\bigcirc	\checkmark	¢	\leqslant	B	＜	$\underline{ }$	$?$	افقى	
।	1	1	1	＇	1	1	$-$	1	1	1	1	1	1	1	$\stackrel{3}{\circ}$	1	ى	
3	ni	1	\cdots	\square_{0}	\cdots	\vec{r}	そ	そ	\bigcirc	\geqslant	\geq	々	8	\geqslant	1	r	افقى	
1	1	1	突	＇	1	1	1	1	1	1	$\xi_{\underline{\xi}}$	1	1	C	$\underset{\substack{\varepsilon_{1} \\ \gtrless}}{ }$	1	ع عوّى	¢ \％E
1	\leqslant	1	，	$\stackrel{1}{8}$	र	1	\checkmark	1	؛	1	1	द	\bigcirc	，	\square	\％${ }^{\circ}$	افقى	E
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	عمودى	¢0．E
1	b	1	＇	아자	1	1	1	1	1	1	1	1	ऽ	1	，	＞	افقى	ε_{1}
\％	等	1	ぞ	${ }_{i}^{2}$	そ	\％	\％	$\underset{~}{\Im}$	\mathfrak{c}	$\stackrel{\Im}{3}$	ぞ	永	\％	ぞ	${\underset{i}{i}}^{i}$	ふi	عمودى	5
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	افقى	
$\begin{aligned} & \varepsilon_{i}^{\varepsilon} \\ & \varepsilon_{1} \\ & i \end{aligned}$	$\begin{aligned} & c_{\mathrm{k}} \\ & \mathrm{~g}_{1} \end{aligned}$	$\begin{aligned} & \mathfrak{c}_{\varepsilon_{1}} \end{aligned}$			$\begin{aligned} & \xi \\ & \stackrel{\xi}{\square} \\ & \stackrel{\circ}{\square} \end{aligned}$	気	$\begin{aligned} & 5 \\ & c_{5}^{5} \end{aligned}$			$\overline{i c}$	泣	$\begin{aligned} & c \cdot \\ & \stackrel{c}{\dot{C}} \\ & \hat{G} \end{aligned}$	$\begin{aligned} & E \\ & i \\ & i= \\ & E \\ & E \\ & E \\ & i \end{aligned}$			¢		$\begin{aligned} & \text { 我 } \\ & 8 \\ & 8 \end{aligned}$
\geqslant	そ	ヶ	\bigcirc	\bigcirc	r	r	\bigcirc	？	¢	3	२	8	8	\％	${ }_{8}$	$\stackrel{\square}{7}$	رديف	

7	等	等	\％	等	等	\％	等	管	，	，	，	，	等	答	等	1	ى	
।	1	1	1	，	，	1	，	1	\cdots	7	号	¢	，	，	1	．	افقى	
$\stackrel{\circ}{\sim}$	1	$\stackrel{\sim}{r}$	\cdots	$\stackrel{3}{8}$	$\stackrel{\rightharpoonup}{\sim}$	\％	$\stackrel{\rightharpoonup}{n}$	\％	1	$\stackrel{\rightharpoonup}{r}$	\％	，	$\stackrel{\rightharpoonup}{\circ}$	\％	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{\text { m }}$	vor	
1	\cdots	1	1	1	1	1	1	＇	\cdots	1	1	7	，	1	1	，	افقى	
$\stackrel{8}{\circ}$	1	$\stackrel{\rightharpoonup}{n}$	$\stackrel{\square}{0}$	$\stackrel{\square}{8}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{\sim}$	$\stackrel{3}{2}$	$\stackrel{3}{\circ}$	＇	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\square}{0}$	1	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{8}$	的	ى	
1	\cdots	1	1	，	，	1	，	＇	7	1	1	\cdots	，	1	1	1	ا⿴囗قى	
\％	1	笑	\％	\％	1	※	\％	$\stackrel{\square}{\circ}$	，	？	\％	\％	管	管	\％	1	5	
二	\cdots	\cdots	\cdots	\cdots	S	\cdots	\div	，	7	\cdots	${ }^{1}$	B	7	\cdots	б	7	افقى	
\％	1	管	答	答	1	$\stackrel{m}{>}$	๕	${ }_{5}^{5}$	，	\％	？	\％	$\stackrel{\square}{6}$	\％	$\stackrel{\text { m }}{\substack{5}}$	\％	\checkmark	
¢	$\stackrel{\square}{\square}$	\cdots	き	1	\bigcirc	き	\cdots	\cdots	2	\bigcirc	？	，	\rightarrow	？	7	$?$	افقى	
\％	1	1	管	\％	1	答	管	？	，	1	1				\％	1	\checkmark	
$\underline{7}$	¢	B	${ }^{*}$	$\stackrel{\square}{\square}$	\bigcirc	2	$\stackrel{\square}{\square}$	\bigcirc	\leqslant	\leqslant	\bigcirc	ζ	\bigcirc	\bigcirc	B	®	افقى	
，	1	1	笭	，	1	管	告	管	1	।	1	1	，		，	Y	STac	
\bigcirc	ธ	\bigcirc	\cdots	8	\bigcirc	$\underline{7}$	\cdots	$\stackrel{\square}{\square}$	\cdots	\cdots	\leqslant	\therefore	$\underset{\sim}{\square}$	\bigcirc	\bigcirc	今	افقى	
，	1	1		，	，	疑	惑	¢，				1	，		＇	，	STocer	
$\stackrel{1}{1}$	？	$\%$	洁	$\stackrel{\square}{\square}$	\leq	$\stackrel{\square}{0}$	\cdots	－	\geqslant	\cdots	々	1	\bigcirc	と	$\stackrel{\square}{0}$	々	افقى	
1	管	1	$\stackrel{\circ}{\circ}$	1	1	$\stackrel{\square}{n}$	$\stackrel{\square}{2}$	$\stackrel{3}{\circ}$			1	，	，		1	，	STac	
S	1	¢		\because	＜			1		त	\leqslant	，	\bigcirc	\leqslant	T	\geqslant	افقى	
，	।	1	$\stackrel{\square}{\circ}$		＇	$\stackrel{\square}{r}$	¢	$\stackrel{3}{r}$	，	1	等	，	，		1	¢	STac	
$\stackrel{1}{6}$	1	2	1	$\stackrel{\square}{1}$	＇	1	1	，	，	，	，	，	¢\％	ธ	そ	，	افقى	
，	1	1	${ }_{\text {¢ }}^{6}$	＇	，	¢	嚳	¢	＇	1	¢	，	，	¢	1	，	SToc	
$\stackrel{\square}{\square}$	1	\leqslant	1	そ้	1	1	，		1	1	1	，	¢	1	\bigcirc	1	افقى	
管	等	\％	$\stackrel{5}{5}$	跋	等	5\％	\％	$\stackrel{5}{5}$	等	管	\％	1	草	管	\％	笭	¢	
，	，	1	1	＇	，	＇	，	，	，	，	，	，	，	，	，	，	افقى	
	$\frac{c}{\sqrt{4}}$	$\frac{6}{4}$	$\frac{\stackrel{2}{*}_{i=}^{*}}{i^{*}}$		F			\hat{V}_{V}^{*}					$\begin{aligned} & \varepsilon_{1} \\ & c \\ & c \\ & t \\ & t \\ & c_{1} \\ & t \\ & t_{1} \end{aligned}$		$\begin{aligned} & a^{*} \\ & \varepsilon_{i}^{*} \\ & \varepsilon_{i} \end{aligned}$			\＄
3	\％	云	\geqslant	\geq	\cdots	¢	§	३	々	ऽ	؛	¢	〕	\leq	＜	\bigcirc		

1	，	等	笭		\％	管	等	1	\％	等	等	等	\％			1	等	1	5	
1	＇	＋	1		1	1	1	ธ	，	1	，	1	1	？	\square	？	，	，	افقى	
1	，	$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\text { ¢ }}{\sim}$	\therefore	$\stackrel{3}{2}$	$\stackrel{\square}{\text { ¢ }}$	1	\％	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{2}$	$\stackrel{\text { m }}{\sim}$	$\stackrel{\sim}{2}$		，	$\stackrel{\square}{\text { r }}$	1	1	
＇	，	1	，		1	，	1	\bigcirc	1	＇	1	1	，	1		S	，	，	افقى	
1	，	$\stackrel{\square}{\circ}$	$\stackrel{\square}{r}$	$\stackrel{\text { ¢ }}{\sim}$	\therefore	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{r}$	1	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\circ}{\text { c }}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\rightharpoonup}{r}$	．	$\stackrel{\rightharpoonup}{c}$		1	$\stackrel{\square}{r}$	1	ى Sac	
1	，	1	，		1	1	1	B	1	1	1	1	\ldots	1		7	，	，	افقى	
，	，	\cdots	\％		กั	1	\％	1	\cdots	\％	\％	\％	管	1		笭	\％	，		
1	＇	7	1		\cdots	万	－	B	\cdots	7	б	7	\cdots	？	\cdots	－	б	，	افقى	
＇	1	答	\％		$\stackrel{\square}{7}$	1	管	1	答	答	M	答	管	1		1	喪	，	ى	
1	＇	－	莒		D	\bigcirc	\cdots	\bigcirc	\cdots	®	S	－	ธ	？	＊	B	3	＇	افقى	
＇	，	1	1		\％	1	，	，	1	1	\％	1		1		1	\％	1	ى	
＇	1	\bigcirc	\bigcirc		？	\bigcirc	B	\leq	\bigcirc	\bigcirc	－	\bigcirc	$\stackrel{1}{4}$			？	？		افقى	
＇	，	1	1		1	1	1	＇	1	1	1	1	，	，		\％	1	＇		
＇	＇	＜	¢		\bigcirc	＜	¢	1	＜	\leqslant	？	\leqslant	そ2	万		1	？	1	افقى	
＇	1	1	1		1	1	1	4	，			1	1			1	，	，	$\underbrace{\text { c }}$	
1	，	\leqslant	\leqslant		¢	\leq	B	1	\bigcirc	\leqslant	．	\leqslant	5			1	？	，	ا⿴囗قى	
＇	＇	1	1		1	1	1	1		1	，	1	1			1	，	1	S	
＇	，	¢	\leq		？	\geqslant	B	1	$\check{\sim}$	इ	き	इ	？		ъ	，	き	，	افقى	
＇	＇	1	＇			1	1	1	＇	，	1	1	管			，	，	，	E	\％
＇	＇	＜	\geqslant		¢	－	\cdots	M	¢	ל	$\underline{3}$	ఓ	，			，	$\underline{3}$	，	افقى	
＇	1	＇	1		1	1	1	1	咸	，	1	1	，			＇	1	＇	ى	${ }^{\frac{t}{4}}$
＇	，	1	1		そ	，	ธ	＇	，	，	¢	1	，			1	¢	，	افقى	E．
，	＇	等	\％		\％	等	管	1	令	笭	管	笭	管	3		1	笭	1	S	
，	＇	1	1		＇	，	＇	1	，	1	＇	1	＇			？	1	，	اقفى	
$\begin{aligned} & \varepsilon_{i} \\ & \stackrel{y}{c} \\ & \stackrel{y}{c} \end{aligned}$		$\begin{aligned} & \mathrm{c} \\ & \hline \frac{\xi}{\circ} \end{aligned}$			$\stackrel{C}{C}$	¢	$\begin{gathered} \varepsilon \\ i \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	$\frac{E}{6}$	\％：	C	$\begin{aligned} & \mathrm{y} \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & \frac{C_{i}}{e_{i}} \\ & \frac{i}{c} \\ & \frac{c}{c} \end{aligned}$	$\begin{aligned} & \frac{\stackrel{y}{c}}{\stackrel{3}{4}} \end{aligned}$	C		$\bar{\square}$	名	$\begin{aligned} & \dot{d} \\ & d \\ & d \\ & d \\ & \frac{c}{c} \\ & f \end{aligned}$		
¢	亏	¢	$\stackrel{\square}{\circ}$		>8	2	$\stackrel{\square}{8}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{6}$	：	：	$\stackrel{\square}{2}$	\because		\％	ζ	そ	ъ	ريف	

$\frac{\pi}{\delta}$	ris	\％	1	1	$\xrightarrow{\frac{7}{l}}$	$\stackrel{\%}{\%}$		$\xrightarrow{\frac{7}{1}}$	m	$\stackrel{\square}{3}$	$\underset{*}{\text { r．}}$	1	$\frac{\sim}{n}$	$\frac{\mathrm{ra}}{\frac{\mathrm{r}}{6}}$	号		ع6as	द．है
1	1	1	\leqslant	$?$	1	1	1	1	1	1	1	$\underline{7}$	1	1	1	1	افقى	
？	$\stackrel{\square}{\text { r }}$	\cdots	1	$\stackrel{\rightharpoonup}{\text { rin }}$	i	$\stackrel{\rightharpoonup}{\text { rin }}$	$\stackrel{3}{\text { rin }}$	？	＋	－	$\stackrel{7}{\sim}$	$\stackrel{3}{\text { r }}$	$\frac{\mathrm{m}}{\mathrm{D}}$	$\stackrel{\rightharpoonup}{\text { r }}$	$\stackrel{3}{8}$	io	S3ac	䂞．\％
1	1	1	9	1	1	1	1	1	1	I	1	1	1	1	1	1	افقى	
$\stackrel{?}{\sim}$	\cdots	1	1	$\stackrel{7}{\text { rin }}$	$\stackrel{\square}{0}$	$\stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\mathrm{r}}$	rip	$\stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{7}{\sim}$	$\stackrel{\rightharpoonup}{\text { rin }}$	$\stackrel{\rightharpoonup}{r}$	S30	
1	1	\％	$\stackrel{*}{0}$	1	I	1	1	1	1	I	1	1	1	1	1	1	｜فقى｜	
\cdots	\cdots	1	1	1	$\frac{r}{r}$	$\frac{n}{\square}$	\cdots	\cdots	\cdots	I	$?$	1	\cdots	\cdots	n	$\frac{r}{x}$	s2gac	¢ ¢．${ }_{\text {c }}$
\ddagger	\ddagger	§	＜	$?$	\because	\because	$\underline{ }$	5	$\underline{\square}$	\％	老	\because	\cdots	5	$\underline{\square}$	？	افقى	
\cdots	\cdots	$\frac{\mathrm{ra}}{\mathrm{~s}}$	1	1	$\frac{\mathrm{B}}{\mathrm{D}}$	$\frac{m}{5}$	$\frac{n}{B}$	$\frac{n}{5}$	$\frac{r_{i}}{i}$	I	\cdots	$r_{\underline{E}}$	$\underset{\sim}{r}$	$\stackrel{m}{>}$	\cdots	$\frac{\mathrm{m}}{\mathrm{~s}}$	عمو2s	¢ \％E
\cdots	$\stackrel{\square}{6}$	8	8	？	\％	－8．	8	\square	8	9	\because	9	＊	$?$	？	－	افقى	
1	1	1	1	1	I	1	1	$\xrightarrow{7}$	1	I	1		1	3	$\underset{z}{m}$	1	S20	
\because	8	\leqslant	\leqslant	＜	9	$?$	\because	9	\because	8	\because	\％	\bigcirc	${ }^{8}$	8	$?$	افقى	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Co，E
8	B	7	3	\lesssim	\bigcirc	\leqslant	＜	$?$	＜	D	\leqslant	\leq	\square	9	＜	＜	افقّى	
1	1	1	I	1	1	1	1	1	1	1	，	1	1	1	1	1	SDac	Cos
D	\checkmark	1	I	7	2	\leq		\cdots	＜	7	\leqslant	\leqslant	\square	－8	\leq	\square°	افقى	\％
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	s3gas	
\leqslant	？	1	1	＜	$\underset{\sim}{3}$	\geqslant	§	$\frac{1}{2}$	§	そ	\leqslant	\geq	ζ	है	\leq	$\stackrel{\sim}{2}$	افقى	
1	ε_{i}	1	1	1	1	1	1	1	1	1	1	C_{6}	1	1	I	E_{0}	عمو3）	$\mathrm{C}_{6} \quad \&$
ζ	1	1	1	\geqslant	$\stackrel{8}{8}$	1	ל	そ	そ	1	र	1	3	そ	\geqslant	1	افقى	
1	$\frac{C_{V}}{D}$	1	1	1	1		1	1	1	1	1	1	1	1	1	1	عمو2）	
1	1	1	1	1	\because	1	1	8	I	1	ζ	1	1	$?$	1	1	اققى	ξ
$\underset{0}{\mathrm{r}}$	B	1	1	$\underset{k}{n}$	$\underset{\sim}{n}$	$?$	$\stackrel{n}{\xi}$	$\underset{\sim}{r}$	$\underset{\gtrless}{\mathfrak{n}}$	$?$	$\stackrel{r}{s}$	$\stackrel{\Im}{2}$	$\underset{\sim}{n}$	\xrightarrow{r}	$\underset{x}{n}$	$\stackrel{n}{\sim}$	عمولى	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	｜فقى	
气.	$\stackrel{\stackrel{\circ}{E}}{\stackrel{1}{5}}$	$\frac{c \cdot}{c \cdot}$	$\begin{aligned} & \frac{\kappa}{c} \\ & \text { हैं } \\ & \text { है } \\ & \text { 气. } \end{aligned}$	$\xrightarrow[C]{C \cdot}$	\underline{E}	愛	E^{2}	¢̆	${ }^{\text {E }}$		$\begin{aligned} & \text { L } \\ & \text { 雳 } \end{aligned}$	盛	$\begin{aligned} & \% \\ & \% \\ & 8 \\ & 8 \end{aligned}$	${\underset{c}{c}}_{\stackrel{*}{c}}^{\substack{* \\ \hline}}$	$\stackrel{6}{6}$	\hat{c}_{6}		$\begin{aligned} & \dot{i} \\ & \sum_{i} \end{aligned}$
$<$	$\frac{5}{>}$	＜	$\frac{\mathrm{V}}{6}$	$\frac{5}{5}$	$\frac{5}{6}$	$\frac{\pi}{7}$	$\frac{\pi}{7}$	三	\cdots	\％	$\stackrel{\square}{>}$	$\stackrel{\square}{2}$	\dot{i}	$\dot{\square}$	－	$\stackrel{i}{i}$		

等	等	等	\％	等	\％	$\stackrel{3}{4}$	1	苓	等	等	永	永	7	\％	$\frac{\mathrm{m}}{8}$	等	ع	
1	1	1	1	1	1	1	$?$	1	1	1	1	1	1	1	1	1	افقى	
$\stackrel{3}{r}$	$\stackrel{\rightharpoonup}{\text { r }}$	$\stackrel{\rightharpoonup}{\text { r }}$	$\stackrel{3}{r}$	$\stackrel{3}{\text { r }}$	）	等	$\stackrel{\square}{\circ}$	1	rì	$\stackrel{\square}{r}$	$\stackrel{3}{r}$	$\frac{\mathrm{m}}{\mathrm{D}}$	$\stackrel{\rightharpoonup}{r}$	\cdots	$\stackrel{\rightharpoonup}{r}$	$\stackrel{3}{r}$	عمودى	
1	1	1	1	＇	1	1	1	$\underline{\square}$	1	।	1	1	1	1	1	1	افقى	
$\stackrel{\square}{\sim}$	$\stackrel{3}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{2}$	$\stackrel{3}{\sim}$	$\stackrel{\square}{2}$	1	$\stackrel{\square}{\sim}$	1	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\square}{2}$	$\stackrel{3}{\sim}$	$\stackrel{\square}{\sim}$	$\stackrel{\rightharpoonup}{2}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{2}$	$\stackrel{3}{\circ}$	E	\mathfrak{q}
1	1	1	1	1	1	$?$	1	7	1	1	1	1	1	1	1	1	افقى	
\cdots	\cdots	\cdots	1	\％	\cdots	\％	\cdots	1	ri	\cdots	\cdots	\cdots	\cdots	$\frac{m}{5}$	\cdots	\because	ת	
万	¢	万	$\stackrel{1}{0}$	$?$	$?$	$\stackrel{1}{7}$	？	\cdots	7	$?$	$!$	$!$	$\stackrel{\rightharpoonup}{0}$	$\underline{1}$	$?$	$\stackrel{\rightharpoonup}{0}$	افقى	
$\stackrel{n}{幺}$	$\stackrel{m}{2}$	$\stackrel{m}{\leftrightharpoons}$	1	\％	$\frac{m}{D}$	\％	mi	1	\％	mis	\％	$\frac{m}{i}$	\cdots	\％	\％	$\frac{\pi}{5}$	E عو93	
7	$?$	1	$\%$	$?$	\％	？	令	$?$	$?$	\cdots	\％	\cdots	\cdots	\cdots	＊	${ }_{0}$	افقى	
\cdots	m	mi	1	\％	1	1	1	1	\％	1	1	4	1	4	1	1	ى	i
®	$\stackrel{\square}{\square}$	$\stackrel{\square}{0}$	\bigcirc	？	\bigcirc	\leqslant	\％	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	5	\bigcirc	\bigcirc	B	افقى	
1	1	1	1	1	1	1	1	1	＇	1	1	1	1	1	1	＇	ع عوas	$\begin{cases}f_{61} & \hat{b} \\ 6 & \frac{b}{c} \\ i & 6 \\ i & \vdots\end{cases}$
？	？	？	ธ	\bigcirc	＜	？	＜	ธ	\leqslant	\bigcirc	\bigcirc	no	\bigcirc	B	\bigcirc	\bigcirc	افقى	
1	1	1	1	1	1	1	1	1		\checkmark	1	1	1	1	1	1	E	$\begin{array}{ll} c_{\text {bo }} & \hat{b} \\ i & \underset{y}{c} \\ i & \ddots \end{array}$
$\stackrel{\square}{5}$	$\stackrel{3}{0}$	$\stackrel{\square}{0}$	＞	？	\leqslant	亏	\leqslant	\cdots	\leq	\cdots	＜	n	\bigcirc	9	\leqslant	B	افقى	
1	1	1	1	1	1	1	\checkmark	－	1	1	1	1	1	1	1	I	ת	ξ_{6}
\％	$\stackrel{\square}{0}$	\％	ζ	7	§	，	\geqslant	1	§	\cdots	\leq	〕	\bigcirc	$\underline{7}$	\leq	8	القىى	
1	1	1	1	＇	1	\cdots	1	1	V	।	1	1	¢ C	1	1	＇	cers	
2	2	2	1	？	そ	1	1	1	\geqslant	\bigcirc	\geqslant	3	1	$\stackrel{\square}{0}$	\geqslant	¢	افقى	
1	1	1	1	\&	1	1	1	1	1	1	1	1	厘	1	1	1	$ى^{3}$ 2ace	
\bigcirc	\bigcirc	\bigcirc	1	1	1	1	1	1	＇	\div	1	1	1	8	1	¢	افقى	
§	${ }_{1}$	$\underset{i}{7}$	\％	\mathfrak{i}	等	1	$\stackrel{\infty}{>}$	$\underset{\sim}{x}$	$\underset{x}{3}$	ふi	$\underset{\sim}{n}$	$\underset{r}{\mathrm{r}}$	苓	？	$\frac{r}{r}$	${ }_{\substack{6 \\ i}}$	ع عودى	¢
1	1	1	1	1	1	\bigcirc	1	1	1	1	1	1	1	1	1	1	افقى	
$\begin{gathered} \check{c}_{*}^{*} \\ \mathrm{c} \end{gathered}$		$\begin{array}{\|c} c_{*}^{*} \\ { }^{*} \end{array}$	$\begin{aligned} & \text { 点 } \\ & ⿳ ⺈ ⿴ 囗 十 一 ~ \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{K} \\ & \hat{K} \end{aligned}$	$\begin{aligned} & \text { 苞 } \\ & \text { 菏 } \end{aligned}$	$\begin{aligned} & q \\ & q_{x} \\ & e \end{aligned}$	$\underset{~}{\tilde{i}}$	$\begin{aligned} & \frac{\pi}{4} \\ & \frac{\alpha}{6} \\ & 6 \end{aligned}$	$\begin{aligned} & c_{\varepsilon_{y}}^{\varepsilon_{1}} \\ & \varepsilon \\ & \varepsilon \end{aligned}$	c.	\％：	$\begin{gathered} C_{i} \\ \varepsilon \\ \varepsilon \\ \varepsilon \end{gathered}$	E.	$\frac{c}{c}$	$\frac{\zeta}{\varepsilon}$			
云	䂞	${ }_{6}$	$\underline{4}$	$\underline{4}$	豆	$\bar{\square}$	そ	そ	そ	云	吉	${ }_{6}$	少	予	そ	$\bar{\square}$	رديف	

等	1	笭	1	笭	\％	\％	等	笭	等	\％	等	等	等	，	\％	等	\％\％	ى	
1	？	1	\cdots		1	＇	1	1	1	1	1	，	1	＇	1	1	，		
$\stackrel{\square}{8}$	，	答	$\stackrel{\rightharpoonup}{\sim}$	答	\％	\％	$\stackrel{\square}{8}$	ヶ	$\stackrel{3}{\sim}$	$\stackrel{3}{0}$	$\stackrel{3}{\circ}$	1	$\stackrel{3}{n}$	1	钘	\％	$\stackrel{\square}{r}$	\checkmark	
1	1	1	1			，	1	，	，	1	1	\cdots	1		，	1	，		
$\stackrel{\square}{2}$	1	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{8}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{2}$	1	$\stackrel{3}{2}$	$\stackrel{\square}{8}$	$\stackrel{7}{8}$	$\stackrel{3}{\sim}$	$\stackrel{\square}{6}$	，	$\stackrel{\sim}{r}$	1	$\stackrel{\sim}{6}$	$\stackrel{\sim}{r}$	$\stackrel{\square}{0}$	Some	\％
1	\cdots	1	1		1	B	1	1	1	1	1	7	＇	＇	1	1	＇	افقى	
1	＇	\％	m	\cdots	\cdots	1	\cdots	\％	1	1	\cdots	1	\％	1	\cdots	令	，	S	$\begin{aligned} & \frac{5}{5} \\ & i \\ & i \\ & i \end{aligned}$
$\stackrel{\square}{0}$	S	$?$	\square		\square	$き$	7	\cdots	₹	S	9	\cdots	\cdots	，	1	\cdots	${ }^{1}$	إفقى	
，	1	\％	，	答	\％	呇	管	答	，	1	\cdots	，	\％	1	笭	\％	，	STome	
\cdots	？	\rightarrow	\bigcirc		－	B	－	\rightarrow	7	\bigcirc	\rightarrow	$\stackrel{\square}{\square}$	7	1	\cdots	\cdots	？	افقى	
1	，	，	1		1	1	1	，	＇	，	，					1	，	\checkmark^{5}	仡
\bigcirc	$\underset{r}{ }$	\bigcirc	$\stackrel{\square}{\circ}$		\bigcirc	\leqslant	\bigcirc	\bigcirc	欠ั	\bigcirc	8	\bigcirc	\bigcirc		\bigcirc	\bigcirc	¢	افقى	
1	1	1	1		1	।	1	＇	，	1		1	1	＇			＇	\checkmark^{5}	
\leqslant	〕	¢ั	ऽ	¢	\bigcirc	\cdots	\leqslant	\leqslant	ζ	ऽ	¢	¢	\bigcirc	1	¢	\leqslant	ธ	افقى	
1	＇	＇	1		1	＇	1	1	1				，	＇	＇	1	＇	vor	$\begin{cases}c_{0} & \frac{b}{6} \\ i & \frac{c}{c} \\ i & \frac{1}{6}\end{cases}$
¢	亏	¢	ธ	¢	\bigcirc	1	\leqslant	\bigcirc	¢	\div	\bigcirc	\geq	¢	＇	欠	\leqslant	\cdots	افقى	
，	＇	＇	।	，	1	＇	1	－		1		\cdots	，	＇		，	，	ىor	ξ
\cdots	，	¢	？		؛	1	₹	\bigcirc	\bigcirc	दे	\bigcirc	1	－	＇	ζ	¢	दे	افقى	
$\begin{array}{\|l\|} \hline \mathrm{C} \\ \hline \end{array}$	，	＇	¢			＇	1	1	＇	，	審	1	，	，	1	¢	，	（ Sor	
，	＇	亏	1		3		ζ	¢	\geqslant	1	，	，	B	＇	亏	1	，	افقى	
1	＇	1	1	，	＇	＇		咸	，	1	感	，	1	＇	1	\％	，	ع عو	
1	1	＇	1		1	1	，		1	＇	，	＇	\leqslant	1		1	，	افقى	
笭	＇	$\stackrel{3}{8}$	笭	$\frac{3}{8}$	ふ	1	笭	\％	等	管	\％	等	「	＇	ぶ囚	等	䇡	some	E
1	1	，	1			＇	1	，	，	1	1	，	，	＇	1	1		افقى	
ε_{6}^{6}		$\begin{aligned} & \frac{c_{1}}{\bar{c}} \\ & \frac{c}{6} \end{aligned}$	$c_{\text {cim }}$	$$			$\begin{aligned} & \mathrm{C}_{\mathrm{E}} . \end{aligned}$	E．		¢	$\begin{aligned} & z_{0} \\ & \frac{1}{c} \\ & c_{2} \\ & c_{6} \end{aligned}$		f		臮	\％	$\begin{aligned} & \text { 号 } \\ & \text { 号 } \end{aligned}$		\％
5	¢	5	¢ִ		\％	\％	家	令	首	系	云	茥	\％	\cdots	孚	シ	玍		

1	等	等	等	等	\％	笭	1	，	等	笭	\％	4	等	\％	等	等	等	ى ${ }^{\text {gose }}$	$\begin{array}{ll} \frac{a}{n} & \frac{b}{c} \\ \text { b. } \\ \text { E. } \end{array}$
B	1	1	1	1	1	1	$?$	B	1	，		，	1	1	1	，	，	افقى	
1	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{3}{\circ}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\square}{8}$	$\stackrel{\square}{r}$	\％	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{3}{\circ}$	$\stackrel{\rightharpoonup}{2}$		1	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{\sim}$	$\stackrel{3}{r}$	$\stackrel{\rightharpoonup}{\sim}$	ى ${ }^{\text {Sos }}$	$\begin{array}{ll} \frac{a}{n} & \frac{b}{6} \\ \text { b. } & \frac{y}{6} \end{array}$
$\underline{1}$	1	1	，	1	，	1	，	，	1	，		1	\cdots	，	，	，	1	افقى	
1	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{3}{8}$	¢	$\stackrel{\square}{8}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{8}{8}$	$\stackrel{8}{\circ}$	$\stackrel{\sim}{\circ}$	$\stackrel{\square}{2}$	$\stackrel{3}{2}$	$\dot{\sim}$		，	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{6}$	$\stackrel{\rightharpoonup}{r}$	¢	${ }_{\text {k }}$
\cdots	1	，	1	＇	＇	，	，	＇	，	－		，	\square	，	，	＇	，	افقى	
1	笑	\cdots	\％	\％	答	\％	\％	1	1	等	r	－	1	1	\cdots	1	ふ	عes	$\begin{aligned} & \frac{5}{6} \\ & 5 \\ & 6 \\ & i \end{aligned}$
7	S	\cdots	万	万	S	1	$?$	\pm	$₹$	\square		\cdots	\cdots	${ }_{5}$	1	${ }_{5}$	\cdots	افقى	
1	等	\％	M	永	1	\％	\％	1	1	品		\％	1	1	管	1	\％	ى900	$\begin{array}{ll} \frac{n}{4} & \frac{b}{6} \\ \mathrm{i} & \frac{1}{6} \end{array}$
\bigcirc	\cdots	${ }_{5}$	1	\cdots	．	\cdots	E	\％	7	${ }^{\text {B }}$		．	\bigcirc	\bigcirc	\cdots	？	\cdots	إفقى	
1	答	\％	？	？	，	，	，	＇	，			筞	，	，	4	1	\％	STac	\％
？	B	\bigcirc	B	T	\bigcirc	\bigcirc	\bigcirc	\leqslant	$\check{5}$	\bigcirc		－	¢	¢	B	¢	\bigcirc	افقى	
1	1	，	1	，	1	，	1	＇	，	＇		1	1	＇		1	Y	ى	
\％	\bigcirc	\bigcirc	\bigcirc	\bigcirc	¢	欠̌	\leqslant	？	ك	\％		r	S	S	¢	\leqslant	マ	افقى	
1	1	，	1	，	＇		1	1					1	，		，		SToc	
1	B	B	®	S	\leqslant	¢̌	¢	\％	碞	\bigcirc	\％	？	\cdots	＞	r	\leq	B	افقى	
1	，	，	，	，	＇		－	，	1				䇡	，		＇		ع	¢
1	¢	9	B	T	\leqslant	\leq	\geqslant	1	s	\％		7	1	द	\bigcirc	＜	\bigcirc	افقى	
1	1	1	，		，	－	1		7	，			，	，	短	，	，	ى	
1	＜	$\check{\square}$	て	て	\＄	3	1	，	そ	ك	5 ¢	\bigcirc	，	＇	，	＇	欠ั	افقى	
，	1	1	＇	＇	＇	n	1	＇	，	＇		¢	＇	1	㗽	＇	＇	ى Soen	cill
1	\geqslant	¢	\bigcirc	\bigcirc	1	，	1	1	＇	そ	¢		1	＇	＇	＇	\cdots	افقى	
1	\％	管	\％	永	笭	笭	䇜	管	等	そ	\％	\％	盛	管	\％	等	＊	$\checkmark^{\text {come }}$	E
1	1	1	1	＇	1	1	＇	，		1			，	＇	1	，		افقى	
	$\begin{gathered} \stackrel{c}{c} \\ \breve{n} \\ \hline \end{gathered}$	采			䓂	$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$	旨	$\stackrel{c}{\stackrel{c}{5}}$	\ldots				$\begin{gathered} c_{i}^{*} \\ \sigma_{6} \end{gathered}$	6	b．		¢		
३	5	\％	そ	$\stackrel{\zeta}{6}$	\％	${ }_{5}^{5}$	5	$\underset{i}{ }$	$\underline{5}$	¢	－	5	g	г	名	B	安		

予	$\underset{i}{r}$	$\underset{\sim}{n}$	$\underset{\sim}{x}$	$\xrightarrow[0]{n}$	1	1	1	予	$\stackrel{r}{\square}$	1		$\underset{r}{r}$	ris	予	$\frac{\pi}{\pi}$	$\frac{\mathrm{m}}{\frac{1}{1}}$	S30	¢ ¢ ¢
1	1	1	I	1	1	\underline{r}	\square	1	1	1	1	1	1	1	1	1	افقى	
$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\text { r }}$	$\stackrel{3}{\circ}$	$\stackrel{\rightharpoonup}{\text { rin }}$	1	$\stackrel{\rightharpoonup}{\mathrm{p}}$	$\stackrel{\rightharpoonup}{\text { r }}$	$\stackrel{\rightharpoonup}{\text { rop }}$	\cdots	1	π_{i}	$\stackrel{\rightharpoonup}{\text { rio }}$	$\stackrel{\rightharpoonup}{\text { r }}$	$\stackrel{\rightharpoonup}{\text { r }}$	I	$\xrightarrow{\text { rin }}$	（3）${ }^{\text {chas }}$	¢ ¢ \％
1	1	1	I	1	1	1	1	1	1	1	1	1	1	1	\cdots	1	افقى	
$\stackrel{\rightharpoonup}{\mathrm{m}}$	？	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\text { ¢ }}$	$\xrightarrow{\text { r }}$	1	ion	$\stackrel{\rightharpoonup}{\text { i }}$	$\stackrel{\rightharpoonup}{\text { ro }}$	$\stackrel{7}{\sim}$	1	1	$\stackrel{3}{\text { rio }}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{3}{\sim}$	I	$\stackrel{i}{\text { r }}$	ع ع－3	
1	1	1	1	1	1	1	1	1	1	1	t	1	1	1	！	1	｜فقى｜	
\cdots	$\frac{m}{n}$	1	\because	1	1	\cdots	1	\cdots	\cdots	1	\cdots	\cdots	\cdots	1	1	00	E－5	¢．\％\％
万	$?$	$\stackrel{1}{5}$	$\underline{ }$	知	1	$\underline{\square}$	\because	丞	\square	1	$\frac{1}{7}$	$\underline{\square}$	$?$	$<$	－	$\underline{\square}$	افقى	㦰
$\frac{n}{\square}$	ni	1	\cdots	1	1	1	1	$\frac{m}{d}$	\cdots	I	\xrightarrow{m}	$\xrightarrow{\text { ror }}$	mi	1	1	\cdots	عموN	c．
$\frac{1}{5}$	\cdots	$?$	${ }_{8}^{8}$	9	1	$\frac{1}{7}$	3	\square	者	I	$?$	\because	$\overline{5}$	䖝	9	\because	افقى	\％
$\stackrel{\square}{\square}$	1	1	1	1	1	1	1	I	1	1	1		1	4	1	1	عمو＊	
$?$	$?$	$?$	\bigcirc	$?$	I	$\underset{r}{\square}$	8	\bigcirc	8	1	$<$	？	$?$	$\stackrel{\square}{8}$	n	\cdots	اققى	
1	I	I	I	1	1	1	1	1	1	I	1	1	1	1	1	1	عموS	Go，if
$?$	\leqslant	\leqslant	8	\％	1	\leq	§	＜	$?$	1	\div	＜	8	\leq	\＄	n	افقّى	$\stackrel{i}{i}$
1	1	1	I	1	1	1	1	1	1	1	1	1	1	1	1	1	S＇gac	Go，if
＊	\leqslant	\leq	\leqslant	\leq	1	\leqslant	\leqslant	\leqslant	8	1	京	\leqslant	\square	\leq	$?$	\bigcirc	افقى	¢ \％
1	1	1	1	1	1	1	-1	1	1	1	1	1	1	1	$\stackrel{\%}{?}$	1	V＇gac	
\％	\leq	\gtrless	\leq	\gtrless	1	$?$	\gtrless	Σ	$?$	1	1	$ゐ$	5	\lesssim	I	\bigcirc	افقى	
1	C，	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	SJac	Col \＆
3	1	1	\geqslant	1	1	1	4	ζ_{6}	8	1	1	\geqslant	\leq	\geqslant	1	$\stackrel{\square}{\circ}$	افقى	
1	C	1	1	1	1		1	1	Co	1	1	1	1	1	1	1	ىJgac	Elo is
8	1	1	1	1	1	1	1	1	1	1	1	1	\geq	1	1	7	افقى	E.
$\stackrel{r}{\mathrm{r}}$	$\frac{r}{r}$	$\frac{\pi}{x}$	$\frac{\pi}{8}$	$\stackrel{r}{c}$	I	1	1	$\stackrel{r}{z}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	1	1	$\stackrel{r}{c}$	ris	$\frac{r}{x}$	$\frac{r}{c}$	Ni.	ع的	
1	1	1	1	1	1	\bigcirc	\bigcirc	1	1	1	r	1	1	1	1	1	افقى	
高		है.	$\frac{\text { है. }}{\delta}$	${ }_{5}^{4}$	$\begin{gathered} C \\ c_{0} \end{gathered}$	$$	$\begin{aligned} & \mathrm{C} \\ & { }_{1} \end{aligned}$	$\begin{aligned} & c \cdot \\ & \stackrel{G}{6} \end{aligned}$	$\begin{aligned} & \varepsilon \\ & \varepsilon \\ & \varepsilon \\ & \varepsilon \end{aligned}$	ぞ \because	$\begin{aligned} & 匕_{0} \\ & E_{1} \\ & E_{0} \\ & E_{0} \end{aligned}$	$\begin{gathered} \varepsilon \\ \varepsilon_{0} \\ \varepsilon_{0} \end{gathered}$		$\frac{c}{\varepsilon_{0}}$	就			$\begin{aligned} & \ddot{c} \\ & \dot{8} \\ & \frac{8}{i} \end{aligned}$
そ	ζ	$\frac{5}{5}$	¢	\geqslant	3	\geqq	¢	§	٪	§	रु	ふ	示	亏	ζ	〕		

答	1	兴	1	\％	笭	\％	\％	1	笭	笭	1	笭	\％	等	\％	盛	S	
1	1	1	¢	1	1	1	1	\cdots	1	1	\bigcirc	1	1	1	1	，	افقى	
答	1	$\stackrel{\square}{\text { cin }}$	1	$\stackrel{\square}{\sim}$	$\stackrel{\square}{\text { cos }}$	\cdots	$\stackrel{\rightharpoonup}{\text { cin }}$	$\stackrel{\square}{\mathrm{c}}$	$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{\sim}$	1	$\stackrel{\square}{\sim}$	$\stackrel{\rightharpoonup}{r}$	等	$\stackrel{\rightharpoonup}{n}$	1	STac	
1	＇	1	\cdots	1	1	1	1	1	1	1	${ }_{5}$	1	，	＇	1	\cdots	افتى	
$\stackrel{3}{\circ}$	1	$\stackrel{\circ}{\circ}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{\circ}$	动	$\stackrel{3}{r}$	$\dot{\sim}$	$\stackrel{\sim}{r}$	$\stackrel{3}{\circ}$	$\stackrel{\text { cin }}{ }$	1	$\stackrel{\square}{r}$	$\stackrel{\rightharpoonup}{r}$	1	$\stackrel{\circ}{\circ}$	1	ع عو9）	
1	1	1	1	，	1	1	1	1	，	，	$\underline{\square}$	1	1	\cdots	1	\cdots	افتى	
\％	1	\％	1	1	等	\％	1	1	\％	\％	m	\％	1	？	等	1	S	
3	1	$>$	I	${ }^{1}$	\cdots	\cdots	I	\cdots	7	1	\cdots	\cdots	${ }^{1}$	$\stackrel{1}{1}$	\cdots	\cdots	افقى	
笭	1	答	1	1	笭	隹	1	1	？	\％	1	？	1	？	等	1		
？	1	$\underset{\sim}{8}$	\bigcirc	？	\rightarrow	き	$\stackrel{\square}{\text { P }}$	\％	．	\％	8	\％	\bigcirc	\bigcirc	\cdots	$?$	افقى	
1	1	答	1	1	1	答	1	1	，	1	，	4	1		1	，	S	
\bigcirc	，	\bigcirc	¢	¢\％	\bigcirc	2	¢	＜	\bigcirc	\bigcirc	\cdots	\checkmark	®	\leqslant	B	冗̌	افقى	
1	，	，	1	，	1	$\stackrel{\xi_{\text {¢ }}}{ }$	，	1	＇	1	？	1	，		1	Y	عeres	
\％	1	B	ธ	§	$\underset{\sim}{ }$	7	ธ	§	$\check{\square}$	\bigcirc		¢	§	？	Y	ธ	انقى	
1	1	1	，	＇	1		1	，	1				1	，	1	，	ת	
¢	1	¢	\cdots	\cdots	$\check{\sim}$	S	\cdots	－	\leqslant	\leqslant	1	\leqslant	\cdots	$\stackrel{3}{3}$	欠̌	\cdots	افقى	
1	，	1	1	＇	1	$\stackrel{3}{m}$	1		1		，	＇	1	，	1	䇡	E	
¢	，	$\stackrel{\square}{\square}$	1	दे	\leqslant		ל	§	\leq	\leq	，	\leq	ל	，	\leqslant	＇	افقى	
1	，	1	1			$\stackrel{\square}{8}$	，	，	1	1	，	，	1	，	1	，	S	
亏	＇	¢̌	1	＇	ζ	1	1	そ	そ	\geqslant	，	そ	1	，	\cdots	，	الفقى	
1	，	，	，	＇	1	¢	1	，	＇	1	＇	，	，	，	1	，	ى	
1	，	\leqslant	1	＇	\geqslant	，	1	1	，	1	＇	1	1	，	1	＇	افتى	
令	，	\％	等	呇	\％	5	\％	等	令	๙	＇	氼	\％	，	そ	盛		
1	1	，	1	＇	1	，	1	1	1	1	\cdots	1	，	\bigcirc	1	，	افقى	
$\begin{aligned} & x_{1}^{c} \\ & \text { en } \end{aligned}$			¢		σ_{i}	$\begin{array}{\|c\|} \hline c^{*} \\ c^{2} \end{array}$	\％	$\begin{array}{\|l\|} \hline \frac{8}{6} \\ \frac{5}{8} \end{array}$	8	$\begin{aligned} & \frac{C}{6} \\ & \frac{6}{8} \end{aligned}$		$\frac{\mathrm{c}}{5}$	$\begin{aligned} & \text { c. } \\ & i \\ & \hline \end{aligned}$	\％	$\frac{\mathrm{c}}{\mathrm{c}} \mathrm{~B}$	$\stackrel{5}{5}$		\％
\because	$\stackrel{3}{i}$	\mathfrak{i}	3	$\stackrel{\square}{1}$	¢	5	₹	¢	\％	号	孚	¢	三r	¢	\％	§	رديف	

笭	等	等	，	，	等	等	，	答	等	等	\％	ى	
1	1	1	，	？	，	，	$?$	1	1	1	＇	اقفى	
$\stackrel{8}{8}$	$\stackrel{\square}{8}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\rightharpoonup}{c}$	1	等	$\stackrel{\square}{8}$	$\stackrel{\circ}{\sim}$	$\stackrel{\sim}{r}$	$\stackrel{8}{8}$	，	$\stackrel{\square}{\circ}$	E	
1	1	1	＇	S	，	＇	＇	1	1	\cdots	＇	فقى	
$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{r}$	，	1	$\stackrel{3}{r}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{8}$	$\stackrel{\square}{8}$	1	$\stackrel{3}{0}$	ع عو93	
，	1	1	，	7	7	，	1	，	1	？	，	فقى	
\％	$\stackrel{\sim}{3}$	\％	1	\％	\％	\cdots	1	等	管	1	\％	عهودى	
\bigcirc	¢	\cdots	\cdots	\cdots	1	s	7	1	\cdots	\rightarrow	$?$	افقى	
\％	劲	管	1	1	\％	笑	\cdots	答	\％	1	答	vore	
\cdots	I	S	\rightarrow	B	？	1	\bigcirc	．	\cdots	$?$	\％	افقى	
1	？	，	＇	，	1	\％	1	1		7	＇	عكas	
\bigcirc	\bigcirc	\bigcirc	¢	\cdots	\leqslant	B	$\check{\sim}$	\bigcirc	8	¢	\bigcirc	10	
1	1	1	1	\％	1	1	1	＇	\cdots	1	＇	3）${ }^{\text {a }}$	
\leqslant	$\stackrel{\square}{\square}$	B	ธ	，	？	？	〕	$\underset{\sim}{\sim}$	¢ั	\％	＜	افقى	
1	1	1	＇		，		，		1	，	＇	ك	
\bigcirc	\cdots	P	ъ	，	\％	$\stackrel{\rightharpoonup}{0}$	¢	¢ั	\checkmark	\cdots	\leq	افقى	
＇	1	1	＇		1		1		＇	䇡	＇	S	
\bigcirc	き	\％	$\ddot{ }$	，	i	T	\geq	\leqslant	\bigcirc	1	〕	افقى	
1	，	\cdots	，	1	1	1	¢	1	荿	1	1	ى	
欠̌	\cdots	¢	1		1	2	＇	¢	，	，	¢	افقى	
1	1	1	＇	1	1	1	1	1	套	1	厱	S	
§	¢	？	1	，	1	\bigcirc	1	\geqslant	，	1	，	افقى	
\％\％	\％	\％	1	＇	1	\％	そ	令	\％	等	呇	6	
1	1	1	\bigcirc	？	\bigcirc	1	1	1	1	＇	，	افقى	
\％	$\frac{8}{8}$	$\begin{aligned} & c_{i_{1}} \\ & \xi_{0} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \\ & \mathrm{~K} \end{aligned}$	E		$\begin{aligned} & \varepsilon_{\varepsilon_{1}^{*}}^{*} \\ & \vdots \\ & ! \end{aligned}$	誉	\％	搞	$\frac{e}{e}$	${ }^{\text {龙 }}$		\％
$\stackrel{1}{8}$	1	3	3	\pm	3	$?$	\vdots	i	$\stackrel{\imath}{2}$	$\stackrel{\rightharpoonup}{i}$	$\hat{\dot{b}}$	رديف	

پيوست 1

روشهاى محاسبئ پٍ هاى حرارتى

پ پا-1 علل بروز پلهاي حرارتى
ايجاد پلهانى حرارتى در ساختمان هلايل مختلفى دالرد، كه مهمهترين آنها عبارت است از:

- وجود قطعات يا الجزايع، با ضريب هدايت حرالرت زياد، در يوستئ خارجى سـا صورت موضتى يا گُسترده لز دالخل به خارج جدار ادامه مى يابند، مانند پروفيلهایى فـولادى در ديوار ها و سقفـها؛
 خارجى سبب كاهش مقاومت حرارتى می گُردد؛
 به جدالر هالى داخلى (كـن طبقات، تيغههانى دالخلى، ...).

 السدت.

به همين علت، لازم الست در طراحیى پوسته خارجى ساختمان، علاوه بـر محاسـبـئ انتقـال حــرالرت
 محاسببه تَّرد.

 تعر يف مى شود. برالى مثال، اتصال يكـ ديوار خارجى با عايت از دالخل بـه كـف طبقـات. در الين حالت، انتقال حرالرت از اين پلها برابر حاصل ضرب ضـريب انتقـال حـرأرت خضطى و طول پل حرالدتى الست.
 تعريف ميشود. براى مثالل، اتصال كف طبقةه به دو ديوال متعامل پوستـة خارجي.

براى محاسبهٔ انتقال حرارت خطى طرح، بايد علاوه بر تعيين ضرايب انتقال حرارت (خطى) پِلهاى

 دالخلى فضاها ملاك قرار گّيرد.

شود

 مقادير پلمهاى حرارتى شامل موارد زير است:

پ پ-11 محاسبهٔ طولهاي پلهاي حرارتى پوستهٔ خارجى

> - محيط كفـ و ديوار مجاور خاك؛؛

- محيط كفـهماى زيرين؛
- محيط سقفههاى ميانى (كه بايد در عدد ז ضرب شود)؛
- محيط سقفـهاى نهايئ

$$
\begin{aligned}
& \text { - طول اتصالات ديوار هالى دالخلى و خارجى (كه بايد در عدد 「 ضرب تّردد)؛ } \\
& \text { - طول اتصالات بازشوها و جذالرهاى غيرنور گّذنر. }
\end{aligned}
$$

 $2 \times(\mathrm{A}+\mathrm{B})$
 خارجا:

$$
2 \times H
$$

L

شكل ب 11-ا ط طرع برخحى الز يل هاي حر الر تى در يوستهُ خارجى ساختمان

 دادن ابعاد خارجیى محاسبه كرد. در اين صورت، پل هانى حرالرتى قابل پششهريوشى خواهنـد بـود. امـا اتَّر ابعاد دالخلى اجزالى يوستهٔ ساختمان مبناى كار در محاسبات قرال گرفتهباشلد، فقـط لازم السـت ضريب انتقال حرالرت سطحى جدالرهاى متقـاطع ايجادكنـنـدهُ پـل حرالرتـى بـه ميـزالن • ا درصــد الفزايشَ يابد.

در صورتى كه عايق كارى حرالرتى غير يكـيارجهه و يا با انقطاع در مححل تقاطع جدالرها باشد، پلهــاى حرالتى را مى توان، بسته به مورد، با استقفاده لز روشهها و مقادير لرائه شده در اين پيوست محاسـبه كرد. البته در اين حالت نيز، براى تسريع و سادهسازى محاسبات، مى تولن به جاى محاسبئ پٍ هاى حرارتى، ضر ايب انتقال حرالرت سطحى اجزالى مورد نظر پوستئ خار ججى را در مقادير تعيينشــنده در
يكى رديف از جدول پ! پ| ا ضرب كرد.

ضريب افزايش	ضريب انتقال حرارت [W/m ${ }^{2}$.K]
r, Δ.	كمتر لز
「, \%	بين •r9 \%
5,40	-199 و
5, 9	بين •ه•,
$1, A T$	
1, $\Delta \mathrm{A}$	1,49, $1, \ldots$ بين
1,49	1,99, 1/0
1,59	
1,5	بـش

پ ب r-11 تعيين ضرايب انتقال حرارت (خطى) بهروش محاسبه
 نرمافزلر هاى تخصصى معتبر و شبيـهسازی دوبعدى يا سهبعدى (بسته به وضـعيت جــدالر ها و شـكل يل حرارتى) انجام داد. در اين صورت، لازم است انطباق نرمالفزال مورد الستفاده با انتظارات تعيينشده مطابق با پيوست الف استاندارد ملى شماره 1509915 كنترل شود.

پ F-11 تعيين ضرايب انتقال حرارت (خطى) با اسـتفاده از جــداول و مقـادير از پيشى تعيبين شده
 مورد نظر با شرايط تعيينشده در اين بخش انطباق كامل نداشته باشنند، ضرورى السـت محاسـبات عددى طبق بند پ-| أ- صّ صورت پذيرد.

 در موالردى كه ديولا و كف ساختمان فاقد هر تّونه عـايق حرالرتـى السـت، ضــرايب انتقـال حــرارت خطى، در محل اتصال ديوار به كفـ ووى خاكى، بر حسب الختلاف الرتفـاع بــين كـفـسـازى داخــل و

شكل ي

$[\mathrm{W} / \mathrm{m} . \mathrm{K}]$ ب 4	Z
-	كم-7, +
H.	
${ }_{4}^{4}$.	$-5, \Delta \Delta$ b $-7, \cdots j$
, $\%$.	$-1 / \lambda \Delta$ ت $-5 / \Delta \cdot j$
- λ •	$-1,50$ ت $-1, \lambda \cdot j$
$1, \cdots$	
1,5	
1, F\%.	
1,V0	
$r_{1} 1$.	$+\cdot \mathrm{f} \cdot \mathrm{L}+\cdot, 50 j$
5,40	$+1, \cdots$ F +1
$r, 00$	$+1,0 \cdot \quad \mathrm{~F}+1,0 \mathrm{j}$

پY-1-Y-11 كف روى خاك با عايق حرارتى

 حالات، بسته به نحؤ عايق كارى در محل تلاقى كفـ و ديوار، سه حالـت در نظـر تَر فتــه مـيشـود: قطعشده، كاهشيافته و يكسر 0. عايق حرار تى قطعشده

 حرارتى l، و مقاومت حرارتى آن r l داده است.

عايتي پيبرامونى عمودى
و ديوار فاقن عايتي حمرارتى
شكل ي با

مقاوهت حرارتّا عايقّ（m²．K／W）							عرض عايتّ	$\begin{gathered} Z \\ (م ت ر) \end{gathered}$	
$\begin{gathered} r_{1} \cdot \Delta \\ \mathrm{r}^{2} \\ r_{1} . . \\ \hline \end{gathered}$	$\begin{gathered} 1, \Delta \Delta \\ \mathrm{~B} \\ \Gamma_{1}, \cdot \\ \hline \end{gathered}$	$\begin{gathered} 1,00 \\ \mathrm{~B} \\ 1,0 . \end{gathered}$	$\begin{gathered} \cdot \lambda \\ \mathrm{V} \\ 1, \cdots \\ \hline \end{gathered}$			$\begin{gathered} \cdot r \\ \text { تا } \\ \cdot, r \Delta \\ \hline, ~ \end{gathered}$			
$\cdot, \lambda \Delta$	－， 9 ．	－， 9 ．	，， 9 ．	$\cdot 1.9$ ．	$\cdot, 90$	－， 90	1，．	\cdots－Vo ت－ $1, \mathrm{~T}$ • j	
1,0	1,0	1,0	1，1．	1，1．	1，1．	1，10	1，．ت ت ，T ，		
1，10	1，5．	1，\％．	1，70	1，70	1，50	1，\％	，r，¢ ．تا，ros		
1,0	1，1．	1，10	1，10	$1, T$ ．	1，50	1，50	$1, \cdots \mathrm{~F}, \mathrm{H}_{1}$ ，		
$1,4$.	1， 4Δ	1， 40	$1, \Delta \cdot$	$1, \Delta \cdot$	1， 0Δ	1，5＊			
1，5．	1，\％	1，\％Δ	1，4．	1，40	1，0．	$1, \Delta \Delta$	$1, \cdots \mathrm{E}$, ，¢ 0		5
1，90	1，\％	1，8．	1，\％ 0	$1, \lambda$ ．	$1, \lambda \Delta$	1，9．	－，r．		$\underline{1}$
1，$\Delta \Delta$	1，5．	1，50	1，8．	1，80	$1, \lambda$ ．	$1, \lambda \Delta$	，ro L Lr，ro	＋•，¢＊	＂y
1，40	1，${ }^{\text {c }}$	1， 0Δ	1， 5 ．	1，90	1，V 0	$1, \lambda \Delta$	$\cdot, 90$ ت $\cdot, \Delta \cdot$		$\frac{k}{8}$
1，40	1，4．	1，40	$1, \Delta \Delta$	1，5．	1，V．	$1, \lambda$ ．	1，＋ت－，V．		$\stackrel{d}{y}$
1，9．	1，9．	1，90	$r_{1} \cdot \cdots$	$T_{1} \cdot \cdots$	$T_{1} \cdot \Delta$	T_{1} ）\cdot	－，\％• تا，re		家
$1, \lambda$ ．	$1, \lambda$ ．	$1, \lambda \Delta$	1，9．	1，90	r_{1}, \cdot	T，${ }_{1}$ ．			$\stackrel{y}{3}$
1，90	1，\％	1，V0	$1, \lambda$ ．	$1, \lambda \Delta$	1，90	$T_{1} \cdot \Delta$	－，\％		$\stackrel{\square}{\text { a }}$
1， 0^{1}	$1, \Delta \Delta$	1，50	1，\％	，$\lambda \cdot 1$	1，9．	T_{1}, \cdot			i_{y}
$\left.r_{1}\right)^{\prime}$ ．	$r, 1 \Delta$	r, r ．	$r, T \cdot$	T，T0	T，¢．				
$r_{1} \cdot \cdots$	$T_{1} \cdot \Delta$	T， 1 ．	$r, 10$	T，10	T，T0	$T, 5$.			
$1, \lambda \Delta$	1，4．	1，90	T_{1}, Δ	$r, 1$.	T，10	$T, T \Delta$	－，\％\％تا	$+1, \Delta \cdot \operatorname{lo}+0$ ；	
1，\％	$1, \lambda$ ．	$1, \lambda \Delta$	1，90	r_{1}, \cdot	r_{1},	T, T ．	1，＋تا＊，V．		
$1, \Delta \cdot$	1，5．	1，\％．	1，λ ．	1，9．	$\Gamma_{1} \cdot \cdot$	$r, 10$	1，0＊ 1,0 ت		
－	－	－		－	－	－		－ 5 ，	
－，10	－，10	$\cdot 10$	－，10	$\cdot 10$	－，10	$\cdot \mathrm{r} \cdot$		$-Y_{1} \cdot \Delta$ ت－$-Y_{1} \cdot \cdots$ j	， 5
，${ }^{+}$	，${ }^{\mu}$ ．	－ris	，r ${ }_{0}$		－，\％				2
，${ }_{\text {¢ }}$ ．	－${ }_{1}+4$	， 40	，ω^{*}	$\cdot{ }^{\circ} \cdot$	$\cdot, \Delta \Delta$	，，$\Delta \Delta$			： 3
－${ }^{4} \Delta$	$\cdot, \Delta \Delta$	． 4.	． $5 \cdot$	． 90	$\cdot \mathrm{V}$ ．	－$\gamma \cdot$		$-1,5 \Delta-1, \lambda$	3
$\cdot \Delta \Delta$	－ 90	$\cdot \mathrm{V} \cdot$	－$\gamma 0$	－λ ．	$\cdot, \lambda \Delta$	$\cdot, 4 \cdot$		$-\cdot, \gamma \Delta \operatorname{li}^{-1, T}$ ，j	3
－ 90	－$V \Delta$	$\cdot \lambda$ ．	－， 4 ．	－，90	$1, \ldots$	1,00			家
$\cdot \mathrm{\gamma} \cdot$	$\cdot \lambda$ ．	$\cdot, 4$ ．	$1, \cdots$	1,0	1，1．	$1, T$ ．			3
$\cdot \cdot \lambda \Delta$	$\cdot .90$	1,0	1，10	1，50	1，\％ 0	1,40			2
$\cdot .90$	1,0	1，T．	1， $\mathrm{H}^{1,1}$	1，40	$1, \Delta \Delta$	1，$\%$ ．			全
$1, \cdots$	1，10	1，\％	1，40	1，00	1，\％	1，9．		$+1, \cdot{ }^{+}+\cdots, 4 \Delta$	？
1，1．	1，70	$1,4$.	$1, \Delta \Delta$	$1,8$.	$1, \lambda \omega$	$T_{1} \cdot \Delta$		＋1，$\Delta \cdot \mathrm{H}+1, \Delta$ ；	

عايق حرار تى كاهشيافته
در برخی موالرد، عايق كارى ديوار در محل تلاقى با كفـ، با ضخامت كمتر و بـا حفـظ ضـخامت الصلى ديوار، در بخش زير كفـ اجرا مىشود. البته در هيـج نقطهالى مقاومت حرالرتـى عـايق حرالرتـى

عايق إيرامونحى عمودى

عايتق سراسرى

عايق حرارتى يكسره

در صورت ادامه يـافتن عـايق حرالرتـى الز خـارج، تـا روى
شالوده، ضريب انتقال حرالرت خططى، بسته بـه مقاومـت عـايق حرارتى و اخختلاف تراز داخــل و خـارج، بـا السـتفاده لز مقـادير
 بهدست مىی آيد.

شكل „11-ه عايقاركاري حرارتى ديوار از خارج تا روى يهى

$r, \ldots t 1,0$	1, .		$\mathrm{R}\left[\mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right]$
-	-	-	كمتر الز يا مساوى
$\cdot 1 \cdot$	$\cdot 1 \cdot$	$\cdot 1.0$	
$\cdot \mathrm{rs}$. r	$\cdot 10$	بيشتر لز يا مساوى با .r.r

پr- پ-

ضرايب انتقال حرالرت خططى Ψ د ديوال مجاور خـاكـ، بسـتنه بـه عمق زيرزمين و ضريب انتقال حرالرت سطحى ديوال، با اسـتفاده لز

شكل ي11-9 انتقال حرارت
خطى ي ديوار مجاور خاى

[W/(m².K)]											Z [m]
$\begin{gathered} r_{1}, \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} r, \xi \\ \vdots \end{gathered}$	$\begin{gathered} r, r \\ t \end{gathered}$	$\begin{aligned} & 1, \Lambda \cdot \\ & \text { ت } \end{aligned}$	$\begin{gathered} 1, \Delta \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & i, r \cdot \\ & \mathrm{~B} \end{aligned}$	$\begin{gathered} 1, \cdots \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \hline \text { • } \\ \forall \end{gathered}$	$\cdot, 90$	$\begin{gathered} \cdot \Delta \\ \forall \end{gathered}$	$\begin{gathered} \cdot \boldsymbol{f} \\ \text { ت } \end{gathered}$	
r, γ.	$r_{1} \cdot q$	$r, \Delta q$	Y,19	1,89	1,49	1,19	-999	$\cdot{ }^{\text {, }}$ ¢ 9	. F_{4}	- 4 ¢	
rfe.	rre.	rre	Y, λ.	Y, $\% 0$	Y, \%0	rro	$r_{1} \cdot 0$	$1, \lambda \Delta$	1,90	1,4.	-5, - \%
$\mathrm{rr}_{1} \mathrm{r}$.	$\mathrm{r}_{1} \cdot \cdots$	Y, SO_{0}	Y,90	Y, \%o	rros	$r_{1} \cdot \Delta$	1,9.	1,8	1,0 .	1, $\mathrm{H}^{\text {- }}$	$\begin{gathered} \left\|-\xi_{i} \cdot \cdot ;\right\| \\ -\Delta_{i} \cdot \Delta \end{gathered}$
$r_{r} \ldots$	r, A.	Y, $\% 0$	Y,40	rros	$r_{1} \cdot \Delta$	1,9.	1,50	$1,0 \cdot$	1,40	1,10	$\begin{gathered} -\Delta_{i} \cdots ; j \\ -f_{i} \cdot \Delta \end{gathered}$
	$r, \Delta \Delta$	rrou	$r_{r} r^{\prime}$	$r_{1} \cdot \cdots$	$1, \lambda 0$	1,50	1,40	$1, r$ -	1,10	$1, \cdots$	$\begin{gathered} \hline-\Psi_{1} \cdots ; j \\ -\Psi_{1} \cdot \Delta \end{gathered}$
$r_{\text {r }} / \Delta$	$\mathrm{Y}, \mathrm{rr}^{\text {r }}$	r,10	$r_{1} \ldots$	$1, A$	1,90	1,40	$1, r^{*}$	1,10	$1, \cdot$	$1, \lambda 0$	$\begin{gathered} \mid-\Gamma_{1} \cdots \cdot \cdots \\ -\Gamma_{1} \Delta \Delta \end{gathered}$
Yre	$r_{1}{ }^{1}$	1,90	$1, \lambda$	1,50	1,40	1, $\mathrm{H}^{\text {c }}$	1,10	$1, \cdots$	- $\lambda \Delta$	- $\mathrm{V} \cdot$	$\begin{gathered} ت-r_{i}, \Delta \cdot j \\ -T_{1} \cdot \Delta \end{gathered}$
$r_{1} \cdot \Delta$	1,9.	1,70	$1, \Delta 0$	$1,4$.	1,80	1,1	$1, \cdots$	- $\lambda \Delta$	$\cdot \gamma \cdot$	$\cdot 9$.	$\begin{gathered} ت_{-1}-r_{i} \cdots ; j \\ -1, \omega \end{gathered}$
1,70	1,5.	1,40	$1,{ }^{2}$	1,10	$1, \cdots$	-9.	$\cdot \mathrm{V} 0$	$\cdot 90$	$\cdot / \Delta \Delta$	- 40	$\begin{gathered} \mid-1, \Delta \cdot j \\ -1, \cdot \Delta \end{gathered}$
$1,4$.	$1, r$ -	1,10	1,00	\cdots ¢	$\cdot \lambda$,	- 90	$\cdot 5 \cdot$	$\cdot \beta \cdot$	- $4 \cdot$	- HO	$\begin{gathered} -1, \cdots ; 1 \\ -\times, ~ \vee \Delta \end{gathered}$
1,1.	-90	- 10	- V 0	-190	$\cdot \beta \Delta$	$\cdot \Delta \cdot$	- $4 \cdot$	$\cdot \mathrm{ro}$	$\cdot{ }^{\boldsymbol{r}}$ -	${ }^{\text {r }}$ \%	
$\cdot{ }^{\prime} \mathrm{V}$ -	-9.	- $\Delta 0$	- ${ }^{40}$	$\cdot{ }^{4} \cdot$	$\cdot{ }^{140}$	$\cdot{ }^{\prime}{ }^{\prime}$	- ${ }^{3} 0$	$\cdot{ }^{\gamma} \cdot$	$\cdot 10$	${ }^{*}{ }^{\text {b }}$	
-	-	-	-	-	-	-	-	-	-	-	

 اتصال كف با عايق از خارج با ديوار بتنى داراى عايق از داخل

[W/(m.K)]

اتصال كف با عايق از خارج با ديوار بنايى داراى عايق از داخل

ضرايب انتقال حرارت خطى Ψ اتصـال ديـوالر بتنـى بـا
 el

ديوار بنايـى داراي عايقي از داخلا

[W/(m.K)]

اتصال كف با عايق از داخل با ديوار داخلى

ضرايب انتقال حرارت خطى Ψ به كفـ با عايق لز دالخل به ضـخامت كـفـ e و ضـخامت
 مى تَردد.

شكل بپ||-4 اتصال كف با عايقي از داخل با
ديوار داخلى

$r \cdot \square$	rV,	roi.	Tr,	$r \cdot 1$	$1 V^{\prime} / \Delta$	10.	$\mathrm{e}_{1}(\mathrm{~cm})$ $\mathrm{e}_{2}(\mathrm{~cm})$
- FS	- Hy	- ra	- $\cdot \mathrm{r} 0$	$\cdot \mathrm{rr}$. 5 A	. 54	1910
- 4	$\cdot \mathrm{H}$	$\cdot r \lambda$	- 54	$\cdot \mathrm{r}$.	- 4	, Mr	robr.

„ - F- F- اتصالات متداول سقفهاى ميانى

ضرايب انتقال حرارت خطى Ψ اب اتصال سقفههالى بين

„ \#-

 تعيين مى كِّرد.

 بازشوهاى همباد داخل در ديوار هاى بدون عايق حرار تى يا با عايق همكّن

 عايقي مرار تى يا با عايقي همكَن

ضــرايب انتقــال حــرأت خهطي Ψ
 غيرنور كّذر (ديوارهاى خـارجى) بـه نـخامت

$\begin{gathered} 1,9 . \\ t \\ 5,1 . \end{gathered}$	$\begin{gathered} 1,90 \\ 6 \\ 1, A 0 \end{gathered}$	$\begin{aligned} & 1 / 4 . \\ & 1,5 . \\ & 1,5 . \end{aligned}$	$\left.\begin{gathered} 1,10 \\ 1 \\ 1,10 \end{gathered} \right\rvert\,$	$\begin{aligned} & 1 / 9 . \\ & 1 \\ & 1,1 . \end{aligned}$	$\begin{gathered} f \Delta \\ \text { ت } \\ \cdot A \Delta \end{gathered}$		
$\cdot 1 \%$	$\cdot 15$	$\cdot 15$	$\cdot 11$	$\cdot 1$.	$\because \cdot \lambda$	$\because \cdot \mathrm{Y}$	rFtror
$\cdot 19$	$\cdot 110$	$\cdot 1 \mathrm{H}$	$\cdot 1 \%$	$\cdot 15$	$\cdot 1 \cdot$	$\because \lambda$	「9 5 ro
$\cdot 19$	$\cdot 1 / \lambda$. 1 V	$\cdot 19$.14	$\cdot 15$	$\because \cdot 9$	HFtr.
	, tr	$\cdot 19$	$\cdot 1 \wedge$	$\cdot 19$	$\cdot 1 \mathrm{~F}$	$\cdot 1$.	H. ت H

بازشوهاى همباد خارج در ديوارهاى بدون عايق يا با عايق همكّن

$$
\begin{aligned}
& \text { ضر ايب انتقال حرارت خططى } \Psi \text { اتصال بازشوهاى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { خارجى) به ضخامت جدالر e بستكى دالرد و با مقـادير }
\end{aligned}
$$

ديوارهاي بدون عايايق يا يا با عايقي همكَّن

$\begin{gathered} 1,9 . \\ t \\ r, 1 . \end{gathered}$	$\begin{gathered} 1,9 \Delta \\ 6 \\ 1, \wedge \Delta \end{gathered}$	$\begin{gathered} 1,4 . \\ 1, \\ 1,5 . \end{gathered}$	$\begin{gathered} 1,10 \\ 1,40 \end{gathered}$	$\begin{gathered} 0,9 \\ 1 \\ 1,1 \end{gathered}$	$\cdot g \Delta$ تا ${ }^{1} \wedge \Delta \Delta$	$+$ B -	
, r.	$\cdot 19$	$\cdot 1$ A	-1V	$\cdot 10$	$\cdot \mathrm{H}$	$\cdot 1 \cdot$	rfitror
. 54	- m	. π H	. r .	$\cdot 119$	-19	- /r	raters
. 19	- ta	- 124	. 54	- Hi	$\cdot 19$	$\cdot 1.10$	rftr.
, H	- H	$\cdot \mathrm{r}$.	., HA	. 1.5	. H	. 1 Y	F. F H

بازشوهاى همباد با عايت حرار تى ديوار

ضرايب انتقال حرالرت خطى Ψ اتصال بازشوهاى همباد با عايق حرارتـى ديـوالر خـارجى (بـه ضـتخامت جدال e) برابر صفر در نظر تَرَتته مىشود.

شكل بل|1-10 بازشوهاي همباد با عايقا حرارتى
ديوار

پيوست

اطلاعات تكميلى در خصوص تأسيسات الكتر.يكى

در اين مبحث، به نحوه تأمين برق ساختمان از انشعابات برق شبكه شهرى، كه بايد طبق ضوابط شركت برق باشد، پرداخته نشدهاست.

تأمين برق مصرفى ساختمان، براساس مقدال مصرف، المكانات موجود شـبكه بـرق شـهرى، و سـاير
 دستور العمل هاى شر كت برق تعيين مى كند (به مبحث سيزدهمم مقررات ملى رجوع شود). تـأمين بـرق سـاختمان بـا انشــعاب فشـار متوسـط الز طر يـق پسـت بـرق بـا تجهيـزات شـامل ترانسفور ماتور (ها) و تابلوهالى برق فشار متوسط است. در اين انشُعابها، نصب سيستهم اندازم گيـرى مصرف برق در پست پاسازً و يا پیت برق تحت اختيار شركت برق مىباشلـ.

 تأسيسات برقى و مكانيكى استفاده مى شود. مولدهاى نيروى برق اضطرإى در داخل ساختمان و يا در محوطه ساختمان و در نزديكى آن نصب مى گَردند.
 مى باشد (براى تقسيهمبندى نوع مصارف تغذيه كنـنده آنها به مبحث سيزدهمه مقررات ملى ساختمان رجوع شود).

 مصرفى برق الطرإىى، مؤثر مىباشند. اين بارامترها در راندمان موتور نيروى محركه و وثنراتور بـرق

انرثّى، الثر مستقيمه دالرند.

در تخليه دود ناشى از الحتراق بايد اثر عوامل زير مورد توجه قرال گيرد:
الف) اندازه، نوع و طول لوله التزوز، اتصالات و زانوهاى متصل به لوله اتزّوز و تعداد آنهال،
 ايجادشده توسط عوامل فوق بر روى پيستون موتور نيروى محر كه و رساندن آن به مقـدار فشار معكوس مجاز (بهمنظور افزايش راندمان آن).
مقدار فشار معكوس مجاز بايد توسط سازنده در مشخضصات فنى دستّاْاه قيد شدهباشد.
شرايط كاركرد نرمال موتور نيروى محر كه و وّنراتور برق، بر اساس استاندالرد و نيز پارامترهالى مـؤثر

الف) شرايط كاركرد نرمال رُنراتور مولد نيروى برق الخطرإى با حداكثر دمانى محل نصب برابـر

ثنراتور برابر A • مىياشد.

 مطابق با استاندارد الخذ تردد.

ت) ابعاد اتاق نصب مولد نيروى برق اضطرإى بايد مناسب برايى قدرت و يا ظرفيت نامى آن بر حسب كيلووات (kW) انتخاب شود.
ث) البعاد در يجهه هاى هوالى ورود و خروج اتاق محـل نصـب مولـد، بايــ براسـاس مقـدالر هـوالى
 و خروج هوا انتخاب شود.

 و رُنراتور مولد نيروى برق الضطرارى ,ا تخليه نمايد.

 قدرت يا ظرفيت نامى مولد نيبوى برق اضطرأى انتخابى منجر مىشود و اين امر باءث صرفهـجويى در مصرف انرزیى و سوخت مصرفى مولد مى تَّردد.

در صور تى كه براى تأمين و تعذيه برق الطرلالى ساختمان به بيش از يـكى دسـتكاه مولـد نيـروى برق الخطرإى نياز باشد موازی كرین اين مولدها با الستفاده تابلو سنكرون، باءث خواهد تَّرديد كه
 انرزى و مقدالر سوخت مصرفى حاصل شود.

تبصر: برایى السـتاندالردهاى مولـد نيـروى بـرق اضـطر الرى بـه نشـريه ا -- ال سـازمان مـديريت و برنامةريزى كشور (مشخصات فنى، عمومى و اجرايى تأسيسات برقى) مراجعه شود.
پY-Y تلفات بار در شبكه توزيع برق و سيهمشیى برق
در كاهش مقدالر تلفات بار در شبكه توزيع برق و سيمهكشى و به تبـع آن صـرفهجــويى در مصـرف
انرزى، عوامل زير مؤثرند:

الف) مقادير افت ولتازً در شبكه توزيع برق و سيهمكشى (رجوع شود به مبحث ّا مقررات ملى ساختمان)

تبصره: كاهش مقادير افت ولتازً باءث كاهش مقدار تلفـات در شـبكه توزيـع مـىشـود مشروط به اينكه به مقاطع بهينه كابلها در شبكه توزيع نـــز توجـه شـود. (بـرالى بهينــهـيـابى اقتهــادى مقــاطع كابــلهــا در شــبكه توزيــع بــه الســتاندارد
IEC 60287-3-2 ,جوع شود)

ب) اسستفاده لز سيمر نوع تكـ مفتولى به جاى سيهم الفشان به دليل پايين بودن مقاومت سيهم تك
مفتولى نسبت به رشتـهالى
 كابل ها، انتخاب مقاطع مناسب كابلها برالى هر بكـ از بخـشهــاى شـبكه توزيـع و غيــره (رجوع شود به مبحث זا مقررات ملى ساختمان)

ت) انتخاب تويولوزى مناسب براى شبكه توزيع، الز جمله محل الستقرالر ترانسـفور ماتور(ها) و يـا تابلو(ها) برق فشار ضعيف الصلى و بهيننسازى طول و مفطع كابلمهاى شبكه توزيع

ث) كاهش مقدار جريان هارمونيكى با انجام يكى از اقدامات زير: - بهكار گيرى اجززائي كه هارمونيكـ توليد نمى كنـند، - سامانههای دالراى فيلتر حذف جريان هارمونيك،،

ج) افزايش مناسب مقطع كابل و يا سيهم مدالر تعذيه كنـنده آن هـا ج) الستفاده از خازن براى كاهش تلفات بار در شبكه توزيع ح) الستفاده از تجهيزات و يا دستگاماههاى با ضريب توان بالاتر

پY-Y توصيهها در خصوص انتخاب لامی سيستم روشنايیى مصنوعى
 و همحچنين ميزلن و كيفـت روشنايى مورد نظر، بايد در مدنظر قرار تَيرند عبارتند از: الف) راندمان (لومن بر وات) و يا بهره نورى لامـ مورد استفاده در تأمين روشنايى، ب) مشخصات فنى لامپها و اجزالى آنهـا، الز جملـه بـالاسـتهـا و منـابع تغذيـه در انتخـاب مناسبترين تزّ ينهها براى تأمين روشنايى دصنوعى تعيين كنـنده هستند.

روشنايع.

ت) راندمان هیراغ در سيستهم روشنايـى ث) عمر لامـپ مورد السثفاهه در تأمين روشنايع.

طراحى سيستم روشنايع مصنوعى، براساس كاربرد و شـرايط فضـاي سـاختمان، شــدت روشـنايى مورد نياز در موضع كار و فعاليت، بهعنوان محلوده الهلي، خصوصيات ابعادى فخا، رنگّهاى ديـوالر،

 میتّردد.
$\frac{L m}{W}=E f$
لومن بر وات لامتپ يا راندمان لامت

L $N \cdot W=\frac{L m_{T}}{E f}$

$W_{T}=N \cdot W \quad$ L
$W_{T}=\frac{L m_{T}}{E f}$
$L m_{T}=N \cdot L m \quad$ L $\quad L m_{T}=N \cdot W\left(\frac{L m}{W}\right)$
$L m_{T}=\frac{E \cdot S}{C U \cdot L L F}$
فرمول محاسبه لومن كل لامتها
$W_{T}=\frac{E \cdot S}{E f \cdot C U \cdot L L F} \quad$ توان كل لامیها

شدت روشنايی مورد نياز فضاي كار يا محيط بر حسب لـوكس (مقــدالر ثابـت بـرالى يـكى : فضا

مساحت فضاى كار يا محيط برحسب مترمربع (مقدار ثابت براى يكى فضا)
 :W
لومن بروات يا ,اندمان لامپ (بسته به نوع لامپ انتخابى در هر تَروه الز انواع لامپها)
تعداد لامپهاى مورد نياز فضاى كار يا هحيط
 آن) برحسب وات
ضريب بهره هراغ تأمين كنـنده روشنايی مصنوعى (بسته به نوع چجراغ انتخابى) :CU
ضريب افت توان نورى چراغ براساس شرايط هحيط نصب آن (مقدلر ثابت برای يكى فضا) LLF
 روشنايى هر لامپ (به لومن) در تعداد لامپها.
 بهصورت رابطه (پ (T-|Y) خلاصة میشود.

$$
\begin{aligned}
& \text { لامپها) بر حسب وات } \\
& \text { لومن لامپ (بسته به نوع لامپ انتخابى) Lm }
\end{aligned}
$$

مبـحث نوزدهمى

$$
\begin{equation*}
W_{T}=\frac{K}{C U \cdot E f} \tag{T-15-}
\end{equation*}
$$

 روشنايى مصنوعى و به تبع آن صرفهجويى در مصرف برق را نشُان مىدهد. اليـن متغيرهـا مقـادير لومن بر وات يا راندمان لامب (Ef) و ضريب بهره هراغ (CU) مىباشند، كه بايد در انتخاب لاهـچ و حراغ با توجه به بندهاى زير مد نظر قرالر گّيرد.

الف) مقدار ضريب بهره چحراغ (CU) برای النواع چراغها الز طريق استاندارد روشنايى و يا محاسـبات
نرمافزالرى تعيين مى تّردد.

 (CU)
 استفاده شود.

 طراح انتخاب و لحاظ مى ترّردد.
ب) ضريب شاخص فضا الز رابطه (־ז| آ- ب) بهدست مى آيد (بند الف فوقالذكر).

$$
\begin{aligned}
& \text { (عرض × طول) /((طول + عرض) × الر تفاع × ه) = ضريب شاخص فضا } \\
& \text { (r-1ヶヶ) }
\end{aligned}
$$

با توجه به اين رابطه، ملاحظه مى شود كه مقدال اين ضريب برايى الواع هراغغهاى قابل استفاده در يكى فضا، بهدليل ثابت بودن طول، عرض و ار تفاع فضا، ثابت خواهدانداند．
 فضاى ساختمان اضافه می ترّرد، و براين اساس مقدار توان كل چحراغهاى سيستهم روشنايی（مصرف برق چراغها）، تعيين مىشود．

بپ

 ترانسفور ماتورها در يست برق اختصاصى ساختمان به مبحث سيزدهمم مقررات ملى رجوع شود． تبصره｜：مشخصـات فنـى ترانسـقورماتور هاى فشـار متوسط در نشــريه شـماره أ－•｜ا سـازمان مديريت و برنامهر يزى كشُور（مشُخصات فنى عمومى و اججرايه تأسيسات برقى سـانتمان）تعيـين شدهاست．

 نيز رتبه انرّى ساختمان، ملاكى عمل قرار خواهد كَرفت．

 هنگام توليل، توان نامى و نوع ترانسفورماتور دالرد. در شرايط كاركرد نرمـال ترانسـفورماتور، ضـريبـ
 $K=\sqrt{\frac{P_{o}}{P_{K}}}$

در اين رابطه:

$$
\begin{aligned}
& \text { Po } \\
& \text { تلفات بار ترانسفورماتور حر توان نامى برحسب وات و در شرايط كاركرد نرمال } \\
& \text { ضريب حداكثر واندمان انرزّى ترانسفورماتور در شرايط كاركرد نرمال }
\end{aligned}
$$

$S_{m}=K . S_{r}$
($\Delta-15$ „)
در اين رابطه :
(kVA) توان خروجى ترانسفورماتور در حداكثر راندمان انرزى برحسب كيلوولت آمٍر (kVA) توان نامى ترانسفورماتور (شرايط كاركرد نرمال) برحسب كيلوولت آمهر : تلفات كل (PV) براى هر نوع ترانسفورماتور، با توجه به مقدالر توان كلل (توان تقاضـا) يـا بـهعبـارت

 $P_{V}=P_{0}+\left(\frac{S_{\text {Load }}}{S_{r}}\right)^{2} \cdot P_{K}$

كه در اين رابطه:
: تلفات كل ترانسفورماتور براى توان بار خروجى ترالسفورماتور بر حسبب وات (در شرايط

$$
\begin{aligned}
& \text { كاركرد نرمال) } \\
& \text { : تلفات بیبار ترانسفورماتور برحسب وات (در شرايط كاركرد نرمال) Po } \\
& \text { : تلفات بار ترانسفورماتور در توان نامى برحسب وات و در در شرايط كاركرد نرمال }
\end{aligned}
$$

Sload
 (Sload)

 بارارمترهاى مؤثر ديگّر منظور كَردد.

> براى كرووهانى ترانسفور ماتور هالى روغنى مى باشد.
 (Sload=Sr) $\mathrm{P}_{\mathrm{v}}=\mathrm{P}_{\mathrm{o}}+\mathrm{P}_{\mathrm{k}}$

$$
(V-15-)
$$

„F-

 مقادير تلفـات شـامل مقـادير تلفـات بـى بـار (Po) و تلفـات بـار (Pk) و ضــريب حــداكثر رانــدمان r. ترانسفور ماتور هاى خشكى در شرايط كاركرد نرمال و براى توان هاى نامى هختلــف و ولتـاز كـار كيلوولت كه عموماً در اكثثر نقاط كشور در تأمين و تغذيـه بــرق سـاختمان بـا انشـعاب بـرق فشـار

			ترانسفورهماتورهایى OIT2 2			ترانسفورماتورهماى OIT 1 كرو			$\begin{array}{ll} \\ \hline 3 & \frac{12}{3} \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \end{array}$	
K	P_{K}	P_{0}	K	P_{K}	P_{0}	K	P_{K}	P_{0}	${ }_{3}$	
	(W)	(W)		(W)	(W)		(W)	(W)	(kVA)	
- 40	H10.	T\%.	- fr	IVA.	Hr.	- T^{2}	1 fVQ	ri.	$1 . \cdot$	
- $\cdot \mu$	rafo	H.	- if	r...	YR.	- 49	1990	Yfy	150	
- r Δ	H...	rVo	- 4Δ	rra.	19.	- 49	\dagger	r.	19.	
- 5Δ	Y\%..	ffo	- ${ }^{4} \Delta$	YVg.	$\Delta \Delta$.	. 49	rras.	$r \Delta \Delta$	「..	
- $\cdot 4$	fr..	Δr.	- 40	rra.	90.	- 0.48	rVa.	fra	ros.	
- $\cdot 18$	$\Delta \cdots$	gra	. 4Δ	rha.	VA .	-149	rra.	$\Delta \cdot$.	H1s	
-, 48	¢...	Va.	- 40	f9..	9r.	- f.	rıs.	g).	f..	
- 4Δ	V1..	AVA	- ${ }^{\text {ita }}$	$\Delta F \Delta$.	11.	- f.	$f \Delta \Delta$.	Vi.	$\Delta \cdot$	
- $\cdot \mathrm{H}$	AV..	9f.	- fr	gYa.	Ir.	- HV	$\Delta 9 .$.	A..	gr.	
- 0^{-14}	I.V..	110.	- Fi)	$\lambda \Delta$.	$1 f 0$.	, 4	Vf..	If.	A..	
- $\cdot \mathrm{H}$	1r...	If.	- 4.	$1 \cdot \Delta \cdot$	IV..	- $\cdot 4 \Delta$	$9{ }^{\text {Q }}$. \cdot	11.	$1 \cdots$	
- HT	$19 .$.	IVr.	, if.	Irr..	H1..	- Hr	l1f..	It.	174.	
- , H	r..	Hr..	- 59	IV...	Y\%..	- , \% Δ	If..	1V..	19.	
- He	rar..	HFYS	- 14	YIT..	rira	- 40	$1 \vee \Delta \Delta$.	$r \cdot \Delta \Delta$	r...	
- HT	HY...	Hr..	- HV	+90..	rı..	- H	Hr...	rol.	ro..	
 \|l	 									

	ترانسفورماتورهورهاى	ترانسفورماتورها	توان نامىا
OIT3	OIT2	OIT1	ترانسفورماتورها
(W) Pv	(W) Pv	(W) Pv	(kVA)
Hfi.	r.V.	1910	$1 . \cdot$
HADS	Hen.	19fy	15Δ
rfvo	「A).	H..	19.
f. fa	Mr.	rv. Δ	r..
fir.	M..	rivo	ros.
Δ Sta	Fgr.	rVa.	Y10
gYa.	$\Delta \Delta r$.	fig.	$f \cdot$
Vavo	900.	arv.	$\Delta \cdots$
qGF.	V90.	94	9%.
$11 / \Delta$.	990.	Arf.	A. \cdot
Iff..	Itr..	1.9..	$1 \cdots$
IVYT.	10r..	ITV..	170.
HT..	199	$1 \Delta Y$.	19.
TV940	Hftrs	199.0	r...
rar.	r.ヶ..	Hf0..	ro..
مورد توجه قرار تيرد			

پ پT-

			ترانسفورماتورهاياي تَروه CRT2			ترانسفور ماتور هايى گروه CRT1			$\begin{array}{ll} 3 \\ 3 & 3 \\ 3 & 7 \\ 3 & 3 \\ 3 & 3 \\ 3 \end{array}$
K	P_{K}	P_{0}	K	P_{K}	P_{0}	K	P_{K}	P_{0}	
	(W)	(W)		(W)	(W)		(W)	(W)	(kVA)
- , $\Delta 1$	rq..	Va.	- Δ	¢9.	90.	- ft	Tf..	f1.	19
- f9	ry..	$\wedge \Delta$.	. 49	「0..	Va.	. 4Δ	rq.	Q9.	¢..
- it	Fi..	9Δ.	- $\Delta \boldsymbol{r}$	ヶ...	14.	- 49	rı..	90.	ros.
- 49	49..	11.	- $\Delta \mu^{\mu}$	+8.	$1 .$.	, fy	59.	VA .	ris
. f ¢ V	090.	IT..	- $\Delta \mathrm{AF}$	Fi	ir	, iA	Fi..	9f.	f..
. 49	V . ${ }^{\text {a }}$	$14 \Delta \cdot$	- $\Delta \boldsymbol{\Delta r}$	$\Delta \ldots$	14..	- fy	$\Delta \cdots$	11.	Q*
- 49	1s0.	is.	, $\Delta 1$	g4..	190.	- 40	gr	170.	9%.
. 78	1.10.	Y. ${ }^{\text {r }}$.	- 49	Y9..	19.	- fr	Vq..	190.	A..
- 49	119.	rf.	, Δ.	9r.	Hr	- fr	99.	IVA.	$1 .$.
. 70	1ra..	TVA.	- $\Delta \overrightarrow{\text { r }}$	1...	TV	- 40	$1 \cdot \Delta \cdot$	H.	17Δ.
. f 4	19 V.	Hr.	,,$\Delta 1$	114.	H	- 4Δ	ITr.	Hf.	19.
- 48	19\%.	FI.	- $\Delta \boldsymbol{r}$	$1 f \Delta$.	f.	- 40	ifq.	r..	¢...
-, fV	Hr...	$\Delta \cdot \Delta$.	- $\Delta \mu$	lva..	Δ.	- 40	$11 .$.	ry..	ro.
 (CRT2 									

ترانسفورماتورهاىي CRT3 3	ترانسفورماتورهاىي CRT2 2	ترانسفورماتورهايى CRT1 1 كرّ	توان نامى ترانسفورماتورها
(W) Pv	(W) Pv	(W) Pv	(kVA)
H90.	mrs.	tas.	19.
fro.	rıs.	mpq.	r..
$\Delta \cdot \Delta$.	ras.	rVa.	14.
ΔY.	F9..	fra.	ris
Yra.	Δr.	Q.f.	f..
AFS.	sf..	91.	$\Delta \cdots$
1.4Δ.	A. Δ.	v90.	9 rr .
Itr..	9 A.	qro.	A..
If...	110..	$11 \% 0$.	1...
$19+0$.	irv..	179..	170.
r....	1fq..	ifv..	19.
rra..	$1 \times \Delta \cdot$	1V9..	r...
HA. Δ.	Hg.	H19..	ro..

پ V- Q-IT ضريب بار ترانسفور ماتور هاى روغنى و خشك متوسط

$\alpha=\frac{\mathrm{S}_{\text {onload }}}{\mathrm{S}_{\mathrm{r}}}$
(A-15-)

كه در اين رابطه:
: Sonload

$$
\left(S_{o n l o a d} \geq S_{l o a d}\right)
$$

: توان بار خروجى ترانسفورماتور برحسب كيلوولت آمير (KVA)
: توان نامي ترانسفورماتور برحسب كيلوولت آمبر (KVA) در شرايط كاركرد نرمال ض : $\quad \alpha$ كه معادل درصد زيربار بونن ترانسفور ماتور (onload) نيز قابل تعريف الست.

تبصر: برالى مقادير ضريب بار ترانسفورماتور هاى روغنى و خشكى بـه زيربنـدهاى 9-1-F- $\Delta-19$
 اصلى بهمنظور صرفهجويى در مصرف انرزى محل استقرالر و نصـب ترانسـفورهاتور (ها) فشـار متوسـط در پست(ها) برق و يا تابلو(ها) بـرق فشـار ضـعيف الهـلى تـأمين و تغذيـه كنـــنده كـل مصـرف بـرق يروزْهاني كه بيش لز يكى نقطه تمركز بار دارند، بر اساس هحل و دختصات نقاط تمركز هر يـكـ الز
 لحاظط شدن افت ولتارً هجاز و كاهش طول و مقطع كابلها، مقدلر تلفات در شبكه توزيع نيز كاهش يابد. براى اين منظور، تعيين و مشخص كردن مركز ثقل بارها و يا هختصات نهانى نقاط السـتقرالر و نصب ترانسفورماتور (ها) در پست(ها) برق و يا تابلو برق فشار ضعيف الصلى تـأمين و تعذيـه كنــــنـه

$$
\begin{aligned}
& \left(X_{b}, Y_{b}\right)=\frac{\sum_{i=1}^{i=n}\left(X_{i}, Y_{i}\right) \cdot E A C_{i}}{\sum_{i=1}^{i=n} E A C_{i}} \\
& \left(X_{b}, Y_{b}, Z_{b}\right)=\frac{\sum_{i=1}^{i=n}\left(X_{i}, Y_{i}, Z_{i}\right) \cdot E A C_{i}}{\sum_{i=1}^{i=n} E A C_{i}}
\end{aligned}
$$

در اين روابط پارامترهاى مؤثر بهةرال زير تعريفـ مىشود:
مختصات طول محل و نقاط تمركز هر يكى از بارها در طرح محوطـه و يـا طبقـات ساختمان بر حسب متر
: مختصات عرض محل و نقاط تمركز هر يكى از بارها در طرح محوطـه و يـا طبقـات ساختمان برحسب متر
 طبقات ساختمان برحسب متر
مختصات طول مركز ثقل بار و بـا محـل اسـتقرالر و نصـب ترانسـعورماتور (ها) و يـا تابلو(ها) برق الصلى تأمين و تغذيه كـنـنده كل مصرف برق طرح بر حـر حسب متر
 تابلو(ها) برق الصلى تأمين و تعذيه كنـنده كل مصرف برق طرح بر حسب متر

مختصات الرتفاع (قائم) مركز ثقل بار و با محل استقرالر و نصب ترانسـفورماتور (ها) و يا تابلو(ها) برق الصلى تأمين و تغذيه كنـنده كل مصرف برق طرح بر حسب متر
تعداد نقاط تمركز بار

مقادير مصرف برق ساليانه برآورد شــهه بـرالى نقـاط تمر كـز بـار پـروزة بــر حسـب : EACi كيلووات ساءت (kWh)
 در محوطه و يا در ساختمانهانى يكى طبقه دالرالى چنـلـين نقطه تمركز بار با مصرف بالا و يا تركيب
 و نصب ترانسفورماتور (ها) و يا تابلو(ها) برق فشار ضعيف اصلى تأمين و تغذيه كنـنـده كـل مصـرف برق طرح بكار مىرود.

 بالا و يا تركيب آنها برایى تعيين مختصات نهايى طول (Xb)، عرض (Yb
 تغذيه كنـنده كل مصرف برق طرح بكار مىرود.

تبصره ז: در صورتى كه نتوان مقادير مصرف ساليانه برق بر حسب كيلووات ساءت (kWh) , را براى نقاط تمركز بار (EACi

 تبصره f: محل استقرال, ترانسفورماتور (ها) و يا تابلو(ها) برق اصلى تأمين و تعذيه كنـنده كل مصرف برق طرح حتى المقدور نزديكى به هختصات مركز ثقل بار بهدست آمده لز طريق محاسبه بـا روابـط فوقالذكر، انتخخاب شوند.

تبصره ه: ساختمان هايىى كه دارالى تابلوهالى برق فشُار ضعيف نيمه الصلى با مصرف بـالا مـى باشــند، اين تابلوها به عنوان نقاط تمركز بار تلقى و هختصات محـل السـتقرال تابلو(هـا) بـرق فشـار ضـعـيف اصلي آن ساختمان به عنوان مركز ثقل بار نيز با استفاده از روابط فوقالذكر تعيين خواهد تر ديد. تبصره צ: براى تعيين هر يكى از مختصات Z

پيوست

استانداردها و آييننامههاى مرجع

فهرست آييننامهها و استاندالردهاى مورد استناد در اين مبحث به شرح زير است:
الستاندار دهاى تعيينشده در مبحث ه مقررات ملى در خصـوص مصـالح سـاختمانى، لز جملـهـ
عايقهانى حرالرتى و شيششهها
 مصرف انرثى و دستورالعمل بر جسب انرّى
 معيار مصرف انرزّى و دستورالعمل بر چسسب انرزیى
 تعيين معيار مصرف انرؤى و دستورالعمل برحسب انروڤى
 تعيين معيار مصرف انرپڤى و دستورالعمل برجّسب انرثى
 ماششين هاى لباسششويى برقى

 b
 مصرف انرثّى و بر جسب انرثّى موتورهاى AC سرعت متغير
 فنى مصرف انرزڤى و دستورالعمل بر چسسب انرپڤى موتورهالى جريان مستقيمه بدون جاروبكى

جيوست با : استـانداردها و آييننامههاي مرجع

معيار مصرف انرزیى و دستور العمل بر پحسب انرزیى

انرزی
 فلورســت لولهأى-الزامات عملكردى

الستاندالرد ملى شماره •
عمومى و روشى هاى آزمون
 تعيين معيا, مصرف النوزی و دستورالعمل تايبـلية انرزیى
 لامـپها
 بخارى های برقى خانگى و مشابه

الستانذلر ملى شماره - YA IV-Y -

الستاندلرد ملى شماره YAYF - اتوى برقى خانگیى - مشخصات فنى و روش آزمون تعيين معيـار مصرف انرزّى و دستور العمل بر چحسبـ انرّى

الستاندلرد ملى شما, VAVD - سماور برقى خانًا و مشابه - معيار و مشخهـات فنـى مصـرف انرزی و بر جشسب انرزیى
 و روش آزمون تعيين معيار مصرف انرزیى و دستور العمل بر چحسب انرزیى
 مشخصات فنى و روش آزمون تعيين معيار مصرف انرزّى و دستورالعمل برچسسب انرزّى
 انرزّى و دستورالمعل برچحسب انرزّى
 فن كوئلهانى زمينى، سقفى و فن كوئل هایى كانالى
 تعيين معيار مصرف النرزى و دستور العمل برجّسب انرزیى
 گَّرم (بدون كانال) - مشخصات فنى و روش آزمون تعيين معيار مصـرف انـرٍْى و دسـتور العمل بر چسسب انرزیى
 -تعيين معيار مصرف انرزیى و دستورالعمل برجسب انرزیى
 دستور العمل برچیسب انرزیى

انرزیى و دستورالعمل برحسب انرثىیى
 تعيين معيار مصرف انرزَى و دستور العمل برچسب انرزَى -AC,AC-DC

مصرف انرزی و دستورالعمل بر خسب انرزّى

استاندلارد ملى شماره I FYT - جاروبرقى خانكّى- مشخصات فنى و روش آزمون تعيين معيار مصرف انرزی و دستور العمل بر حسب انرزی
استاندلرد ملى شماره VD9 • - - بالاست لامپ های فلورسنت- مشخصات فنى و روش آزمـون -
تعيين معيار مصرف انرزیى و دستورالعمل برچسب انرزڤى
 محاسبه ضر يب انتقال حرارت - قسمت ז: روش عددى براى پههار حوبها
 تعيين معيار مصرف انرزّى و دستورالمعل برچسب انرزیى

الستاندالرد ملى شماره 1r099 - هِل حرارتى در ساختمانسازى - محاسبات الستاندلرد ملى شماره A1-ITYAT - ديتىهاى بخار - مشخصـات فنـى و روش آزمـون تعيـين معيار مصرف انرزّى و دستور العمل برچحسب انرزّى - الصلاحيه شماره 1
 معيار مصرف انرزیى و دستورالعمل بر چچسب انرزیى
 دستور العمل برجسب انرزى
 حداكثر . V كيلووات - تعيين معيار مصرف انرثى و دستورالعمل برچسب انرزیى استاندارد ملى شماره IFYYD - رادياتور هانى فـولادى و آلومينيـومى - تعيـين معيـار مهـرف انرڤى و دستور العمل برچجسب انرڤڤى

استاندلرد ملى شماره IFVFT - مجموعه ديتى و مشعل موتورخانه -تعيبن معيار مصرف انرزّى و دستور العمل بر چسسب انرزیى
استاندالرد ملى شماره IFY9Y - سال 9 - عملكرد حرارتى ساختمانهــا - انتقـال حـرالرت لز طريق زمين - روشههاى محاسبه
 خطى - روش هاى سادهشده و مقادير پيشُفرض
 ضر يب انتقال حرارت با روش محفظه گّرم -قسمت Y - ينجره سقفى و پنجره با طرحهاى ديكر

مبحث نوزدهمـم

الستاندالرد ملى شمار0 IFATY - دى 91 - عايقهایى حرارتى- تعيين مشخصات انتقال حرالرتى پايا- محفظه تَّرم واسنجیى و محافظتششه

انرزّى
الستاندلرد ملى شماره |AG|F - ماشينههاى لباسشويع برقى خانگّى - تعيين معيار مصرف آب
و دستورالعمل بر چسب آب
 برحسب انرزیى
 آب
 برجّسب آب

