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Introduction to the Thermodynamics
of Materials

Third Edition
David R. Gaskell

Preliminaries

m Settings

O f [General ::spell ]

m Physical Constants Needed for Problems

= Heat Capacities

The generic heat capcity

bT c10°
+

103 TZ
The heat capacities of various elements and compounds are

Cp=a+

CpAgs =Cp /. {a-»21.30, b-»8.54, ¢ »1.51};
CpAgl =Cp /. {a-»30.50, b-0, c-0};

20. 75 T2
CpAl =Cp+ ———— /. {a->31.38, b-»-16.4, c » -3.6};

10°
CpAll =Cp /. {a-31.76, b>0, c »0};
— Ceneral ::spelll: Possible spelling error:

new synbol nanme "CpAll" is simlar to existing symbol "CpAl".
CpAl 208 =Cp /. {a > 117.49, b »10.38, c » -37.11};
CpCaO=Cp /. {a->50.42, b-4.18, c » -8.49};
CpCaTiB =Cp /. {a-»127.39, b5.69, c > -27.99};
CpCord =Cp /. {a»626.34, b-»91.21, c - -200. 83};

2.26 T2
CpCr = Cp+ ——— /. {a~21.76, b~8.98, c»-0.96};

10
CpCr208 = Cp /. {a-119.37, b-9.30, c » -15. 65};
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CpCO=Cp /. {a»28.41, b->4.10, c » -0.46};

— Ceneral ::spelll: Possible spelling error:
new synbol nanme "CpCO' is simlar to existing symbol "(pCaO'.

CpCO2 = Cp /. {a—-44.14, b>9.04, c » -8.54};

9.47 T2
CpCu=Cp + — /. {a->30.29, b-»-10.71, ¢ » -3.22};
10
CpDiamond =Cp /. {a=»9.12, b-»13.22, c » -6.19};

17.38 T?

CpGraphite:Cp——G/. {a->0.11, b->38.94, c » -1.48};
10

CpH2Qg = Cp /. {a » 30.00, b-»10.71, ¢ » -0. 33};
N2 over range 298-2500K

CoN2 =Cp /. {a»27.87, b->4.27, ¢ »0};
02 over range 298-3000K

PR =Cp /. {a>29.96, b>4.18, ¢ »-1.67};

— Ceneral ::spell : Possible spelling error: new
synmbol nanme "CpR" is simlar to existing synbols {pC2, CpN2}.

Si3N4 over range 298-900K

, 27.07 T2
CpSi3Nd =Cp-——— /. {a-76.36, b-109.04, c - -6.53)};

10°
SiO2 (alpha quartz) for 298-847K
CpSi 2Q=Cp /. {a-»43.93, b-38.83, c > -9.69};
CpTix2=Cp /. {a»73.35, b-3.05, ¢c-»-17.03};
CpZra=Cp /. {a-22.84, b-8.95, ¢ -»-0.67};
CpZrb=Cp /. {a-»21.51, b-6.57, c »36.69};
— Ceneral ::spelll: Possible spelling error: new

synmbol name "CpZrb" is simlar to existing symbol "CpZra".

CpZra2 =Cp /. {a-»69.62, b->7.53, c »-14.06};
CpZrb2 =Cp /. {a-»74.48, b0, c »0};

— Ceneral ::spelll: Possible spelling error: new
synmbol nanme "CpZrbC2" is simlar to existing symbol "CpZra®e".

= Enthalpies at 298K and Enthalpies of Transitions

Here are some enthalpies at 298. For compounds, these are enthalpies for formation from elements. The enthalpies
of pure elements are taken, by convention to be zero.

HAl 208 = -1675700;

www.iran—mavad.com

Age Cpmodie 5 (il gy



Notes on Gaskell Text

HAl mel t = 10700;
HCaO = -634900;

HCaTi O8 = -1660600;
HCH4 = -74800;

HCr 208 = -1134700;
HCC2 = -393500;
HDi anmond = 1500;
HH2Qgy = -241800;

HO2 = 0;

HSi 3N4 = -744800;
HSI O2Q = -910900;
HTi O = -543000;
HTi 2 = -944000;
HTi 203 = -1521000;
HTi 306 = -2459000;

Transformation Zr(a) to Zr(b)

DHzr at ob = 3900;
Transformation Zr(a)O(2) to Zr(b)O2

DHZr Q2at ob = 5900;
Formation of Zr(a)O(2)

HzZr a2 = -1100800;

= Entropies at 298K

There are absolute entropies of some elements at compounds at 298K

SCaO=38. 1;
SCaTi O3 = 93. 7;
SN2 =191. 5;
SO2 = 205. 1;
SSi 3N4 = 113. 0;

SSi Q= 41. 5;
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STi O=34.7;
STi @ = 50. 6;
STi 2QB = 77. 2;
STi 3C6 = 129. 4;
SZra = 39. 0;
SZr a2 = 50. 6;

= Molecular Weights

massAl = 26. 98;
massAu = 196. 97;
massCr =52.;
massCu = 63. 55;
massFe = 55. 85;
massH = 1. 008;
massMy = 24. 31;
massN = 14. 007;
massO = 16;
massC = 12,
massCa = 40. 08;
massSi = 28. 04;
massTi = 47. 88;
massiVh = 54. 94;
massF = 19 ;
massZn = 65. 38 ;

= Vapor Pressure

vapor = -A/T + BLog[T] + C

C- $ +BLog[T]

Hg for the range 298-630K
| nvapHgl = vapor /. {A->7611, B->-0.795, C->17.168},;
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[ nvapSicd 4 = vapor /. {A->3620, B->0, C->10.96};

| nvapCO2s = vapor /. {A->3116, B->0, C->16.01};

| nvapMh = vapor /. {A->33440, B->-3.02, C->37.68};
| nvapFe = vapor /. {A->45390, B->-1.27, C->23.93};
| nvapZn = vapor /. {A->15250, B-> -1.255, C->21.79};

Chapter 1: Introduction and Definition of Terms

m History

Thermodynamics began with the study of heat and work effects and relations between heat and work. Some early
thermodynamics problems were for very practical problems. For example, in a steam engine heat is supplied to

water to create steam. The steam is then used to turn an engine which does work. Finally, the water is exhasted to
the environment or in a cyclic engine it can be condensed and recyled to the heating chamber or boiler

P
. —> Work
Boiler at T1 ) Engine Done
.
Exhaust | | Condense
atT,
< <

Steam power plant or steam engine

An early goal for thermodynamics was to analyze the steam engine and to figure out the maximum amount of
work that could be done for an engine operating between the input temp@iatuethe output temperatufe.

Some of the most important work on thermodynamics of heat engines was done by Nicholas Carnot around 1810.
He was a French engineer and wrote one pdpeflections on the Motive Power of Hettat introduced the
“Carnot” cycle and helped explain the maximum efficiency of heat engines. It is interesting to note that the first
steam engines were invented in 1769. Thus the practical engineering was done without knowledge of
thermodynamics and well before the theory of the heat engine was developed. It can be said that the invention of
the steam engine spawned the development of thermodynamics or that the steam engine did much more for
thermodynamics than thermodynamics ever did for the steam engine.

Although analysis of devices like steam engines, combustion engines, refrigerators, etc., are important,
thermodynamics has much wider applicability. In material science, one is normally not that interested in heat and
work, but interested more the state of matter and how things might change when mixed, heated, pressurized, etc.
Some important effects are chemical reactions (such as oxidation), formation of solutions, phase transformations.
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Other issues might include response of materials to stress, strain, electrical fields, or magnetic fields. In other
words, the changes in the matter are more interesting than the heat and work effects.

System and Surroundings

The universe is divided into th®ystemand theSurroundings The system is any collection of objects that we
choose to analyze. The surroudings is the rest of the universe, but in more practical terms is the environment of the
system. Our interest is in understanding the system. The system and surroundings interact be exchanging heat and
work. The surroundings can supply heat to the system or do work on the system. Alternatively, the system may
give off heat (supply heat to the surroundings) or do work on the surroundings.

Some examples of material science type systems are a metalllic alloy in a crucible, a multi-component, multiphase
ceramic, a blend of polymer molecules, a semiconductor alloy, or a mixutre of gases in a container. In material
science, our main interest in such systems is the equilibrium state of the system, will the components react, will
they mix or phase separate, will there by phase transitions, and how will they respond to externally applied stimuli
such as pressure, temperature, stress, strain, electrical field, or magnetic filed.

Thermodynamics is concerned only with the equilibrium state of matter and not in the rate at which matter reaches
the equlibrium state. Early thermodynamics was on heat (thermo) and work (dynamics) effects. In heat engines
with gases and liquids, equilibrium is often reached very fast and the rate of reaching equilibrium is very fast. The
“dynamics” part refers to work effects and not to rates of processes. The study of the rates of processes is known
as “kinetics.”

In material science, particularly problems dealing with solids or condensed matter, it is possible to deviate from
equilbrium for long times. For example, a polymer glass well below its glass transition is a non-equilibrium

structure. A detailed thermodynamic analysis of glass polymers (a difficult problem) would predict that the

polymer should exist in a different state than it actually does. At sufficient low temperatures, the polymer,
however, will remain in the non-equilibrium glassy state; the equilibrium state will not be realized on any practical
time scale.

Concept of State

Matter contains elementary particles such as atoms and molecules. The state of a system can be defined by
specifying the masses, velocities, positions, and all modes of metignaccelerations) of all of the particles in

the system. Such a state is called thieroscopic stateof the system. Given the microscopic state, we could
deduce all the properties of the system. Normally, however, we do not have such detailed knowledge because
there will always be a large number of particlesy(10**molecules in 1 mole of molecules). Fortunately such
detailed knowlege is not required. Instead, it is possible to defin@ceoscopic statef the system by specifying

only a few macroscopic and measurable variables such as pressure, volume, and temperature. It is found that when
only a few of these variables are fixed, the entire state of the system is also fixed. Thus, the thermodynamic state
of a system is uniquely fixed when a small number of macroscopic, independent variables are fixed.

For example, consider a gas or a liquid of constant composition such as a pure gas or liquid. The three key
variables are pressure, P, temperature, T, and volume, V. It has been observed that when P and T are fixed that V
always has a unique value. In other words, P and T are the independent variables and V is a function of P and T:

Vol une = V[P, T7];

Such an equation is called aquation of stateOnce P and T are known, V (and all other properties in this simple
example) are determined. P, V, and T are all known as state variables; they only depend on the current state and
not the path the system took to reach the current state.
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The use of P and T as the independent variables is simply a matter of choice and is done usually because P and T
are easy to control and measure. It would be equally acceptable to define V and T as the independent variables and
define the system by an equation of state for pressure:

Pressure = P[V, T];
or to use P and V is independent variables and define the system by an equation of state for temperature:

Tenperature = T[P, V];
V=, P=.; T=.;
= More than Two Independent Variables

Pure gases and liquids are particularly simple because their state depends only on two independent variables.
Other systems require more variables, but the number required is always relatively small. For example, the volume
of a mixture of two gases will depend on the P and T and the compositions of the two gases or

Volune = V[P, T, ny, ny1;

wheren; andn,are the number of moles of the two gases. The volume of the system will depend not only on P
and T, but also on which gases are present. As above, this new equation of state could be done instead as an
equation for P in terms of V, T, and composition:

Pressure = P[V, T, ni, ny];
or similarly as an equation for T in terms of P, V, and composition.

Pressure or volume are all that are needed to define mechanical stimuli on a gas or a liquid. For solids, however,

the matter might experience various states of stress and strain. For a pure solid, the natural variables are

temperature, stress (instead of P), and strain(instead of V). Unlike P and V which are scalar quantities, stress

and strain are tensors with 6 independent coordinates. In general, the strain components are a function of T and the
stress components

Strai nConponent = g [T, o ];

whereg; and o; are components of stress and strain. Alternatively, stress can be written as a function of
temperature and strain

StressConponent = o [T, §1;

These equations of state are the thermomechanical stress-strain relations for a material. If the material is not a pure
material, such as a composite material, the stress-strain relations will also depend on the compositions of the
material and typically on the geometry of the structure.

For interactions of matter with other stimuli suich as electric or magnetic fields, the equations of state will also
depend on the intensity of those fields.

Thus, in summary, the thermodynamic state can also be expressed as an equation of state that is a function of a
relatively small number of variables. For most problems encountered in thermodynamics, the variables are limited
to P, T, V,&, o, composition, and applied fields. The simplest examples involve only two variables. More
complicated systems require more variables.
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=» Multivariable Mathematics

An equation of state is a function that defines one variable in terms of several other variables. Thus equations of
state follow the rules of mutlivariable mathematics. In thermodynamics, we are often concered with how
something changes as we change the independent variables. A general analysis of such a problem can be written
down purely in mathematical terms. Le{x1, X2, ... X,] be a function oh variablesx;to x,. The total
differential inf (df) is given by

1 of
df = ; (8—)(i)dxi ;

where the partial derivative is taken with all # x;being held constant. IMathematicanotation, this total
differential is written as

n
df = > 9 fodxi ;
i=1

whered,, fmeans the partial derivative bfwith respect tox;while all other variables (herg # x;) are held
constant. ThisMathematicanotation will be used throughout these notes which were prepareathematica
notebook.

m Example: V[P, T]

For example, the equation of state V[P,T] for a pure gas depends on only two variables and has the total
differential

dV = ép V[P, T1dP + o7 V[P, T1dT

dTVOY [P, T] +dPVLO [P, T]
Note: blue text is these notes Mathematicaoutput after evaluating an input expression in red. Many input
expressions are followed be semicolons which simple supresses unintdvistiegnaticaoutput.

Any change in volume due to a change in T and P can be calculated by intedjivating

f
DeltaV = jle;
i

wherei andf are the initial and final values ®fandP.

This expression for d\is simply treatingvV[P,T] as an mathematical function of P and T. In thermodynamics we
are usually dealing with physical quantities. In general, the partial derviatives for the total differentials themselves
often have physical significance. In other words, they often correspond to measurable quanties. In the dV
expressiondgr V[P, T] is the change in volume per degree at constant pressure which is thermal expansion of
the matter. Thermal expansion coefficient is normalized to give

dr VIP, T]
"~ VIR, T]

VO [P, T]
V[P, T]
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Likewise, 8p V[P, T] is the change in volume due to pressure at constant temperature which is the
compressibility of the matter. After normalizing and adding a minus sign to make it positive, compressibility is

dp VIP, T]
~ VIR, T

V0 [P T]
- V[P, T]

In terms of thermal expansion and compressibility, the total differential for volume becomes:

a=.; B=.; dV = -B V[P, T1dP + a V[P, T]dT

dTa V[P, T] -dPB V[P, T]

Many thermodynamic relations involve writing total differentials functions and then evaluating the physical
significance of the terms. Sometimes the physical significance is not clear. In such problems, the partial derivative
is defined as having having physical significance or it becomes a new thermodynamic quantity. One good example
to be encountered later in this course is chemical potential.

m State Variables

A state variable is a variable that depends only on the state of a system and not on how the system got to that that
state. For exampl¥ is a state variable. It depends only on the independent vari&hl&s énd perhaps others)

and not on the path taken to get to the variables. There are many thermodynamic state variables and they are very
important in thermodynamics.

There are some thermodynamic quantities that are not state variables. The two most important are heat and work.
The heat supplied to a system or the work done by a system depend on the path taken between states and thus by
definition, heat and work are not state variables.

= Equilibrium

As stated before, thermodynamics always deals with the equilibrium state of matter. The previous sections define
equations of state for matter. Equilibrium is the state of the system when the variable reaches the value it should
have as defined by the equation of state. For example, a pure gas has an equatioV[6f, StatEquilibrium is

reached when after changiRgand Tto some new values, the volume becomes equal tg[fhd@] defined by the
equation of state.

All systems naturally proceed towards equilibrium. They are driven there by natural tendencies to minimize
energy and to maximize entropy. These concepts will be discussed later. Although all systems tend towards
equilibrium, thermodynamics says nothing about the rate at which they will reach equilibrium. Some systems,
particularly condensed solids as encountered in material science, may not approach equilibrium on a pratical time
scale.

m Equation of State of an Ideal Gas

Charles’s law is that volume is proportional to temperature (which is true no matter what temperature scale is
used) at constant pressure. In other wald&IT is constant at constant pressure. If we fBkas the temperature

on the centigrate scale and Y& a0 = dV/dT, where V0and aOare the volume and thermal expansion coefficient

at 0°C, then volume at any other temperature on the centigrate scale is found by integration
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Tc

V = Col | ect [VO +j V0 a0 dT, VO]
0

(1 +a0Tc) VO
But, this result implies that the volume will become zero when

Solve[V==0, Tc]

({Te- 51

and become negative Tfc drops lower. It is physcially impossible to have negative volume, tfiicsw -1/a0
must define the lowest possible temperature or absolute zero. In 1802, Guy-Lussac nmeasorbd %or
absolute zero to be at -267°C. More accurate experiments later (and today) smﬁv:t% or absoloute zero

to be at -273.15. These observations lead to the absolute or Kelvin temperature T defined by

1 1
T=Tc + — /. a0 - —m8 —
a0 273. 15
273.15 + Tc
On the absolute scale
. . 1
T=,; V=Sinmplify[V/. Tc -> T - —]
a0
a0 T VO

Thus the volume is zero @t0 and increases linearly with T (as observed experimentally).

Boyle found that at constaiit thatV is inversely proportional t&. Combining the laws of Boyle and Charles, an
ideal gas can be defined by

V=.; constant = P

=] <

PV

T

The constant for one mole of gas is defined as the gas coRstahts, the equation of state f@rfor n moles of
gas is

-
V=nR—
P
NRT
P

The thermal expansion coefficient of an ideal gas is
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—| -

The compressibility of an ideal gas is

o/~

Thus for the special case of an ideal gas, we can write

V=.;dV=aVdl - gVdP
_dpv _dTVv
P T

Equations of state for P and T can be solved by simple rearrangement

T
V=.,; Solve [V==nR—, P]
P

(P "0

T
Solve[V:: nNR—, T]
P

m Units of Work and Energy

P V has units of Force/AreA Volume = ForceX length. These are the units of work or energy. TRusjust
have units of energy/degree/mole. Wliemas first measured, Was measured in atm aNdin liters; thusP V or
work or energy has units liter-atm. In these uritss

Rla = 0.082057 ;
with units liter-atm/(degree mole).
Sl units for energy is Joules. Also, in Sl units, 1 atm is

oneatm = 101325. ;
N/m2. Because 1 liter is 1000 énor 1073 m?, 1 liter-atm is
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onel a = oneatm10-3

101. 325
Joules. Then, in Sl units of J/(degree mole), the gas constant is

RSI = Rl aonel a

101.325R a
In cgs units with energy units of egs = 10, the gas constant is

Rerg = RSl 10’

1.01325x10° Rl a
Finally, there are .239 cal/J. The gas constant using calories as the energy unit is

Rcal = RSI . 239

24.2167 R a

Note that in early studies of work and heat, calories were used for heat energy and Joules (or an eqgiivalent F
length) for work or mechanical energy. The first law of thermodynamics connects the two energy units and allows
one to relate heat and work energy or to relate calories and Joules.

Extensive and Intensive Properties

Properties (or state variables) adensiveor intensive Extensive variables depend on the size of the system such

as volume or mass. Intensive variables do not depend on the size such as pressure and temperature. Extensive
variables can be changed into intensive variables by dividing them by the mass or number of moles. Such
intensive variables are often called specific or molar quantities. For example, the volume per mole or molar
volume is an intensive variable of a system. Similarly, mass is an extensive property, by mass per unit volume or
density is an intensive property.

Phase Diagrams and Thermodynamics Components
A Phase diagram is a 2D representation that plots the state of a system as a function of two independent variables.

Systems are characterized by the number of components and the type of phase diagrams depend on the number of
components. Examples are one-component (unary), two-component (binary), three-component (ternary), four-
component (quarternary), etc..

In each zone, one state is the most stable state. On lines, two phases can coexist. At triple points, three phases can
coexist. Example of unary is water phase diagram. Unary diagrams usually use two variables like P and T.

Binary diagrams add composition as a third variable. Binary diagrams are usually for one variable (T, P, or V)
together with the composition variable. The complete phase space is 3D. Thus, 2D binary plots are sections of the
3D curves. Zones can be single phase solutions or two-phase regions. The relative proportions of phases in two-
phase regions are given by the lever rule.Choice of components is arbitrary.
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m Overview

Zeroth law of thermodynamics defines temperature. First law connected heat and work and clarified conservation
of energy in all systems. The key new energy term that developed from the first law is internal energy. Internal
energy often has a nice physical significance; sometimes, it significance is less apparant. The first law says energy
is conserved, but it makes no statement about the possible values of heat and work. The second law defines limits
on heat and work in processes. It was used to define the efficiency of heat engines. The second law also lead to the
definition of entropy. Entropy was slow to be accepted, because it has less apparant physical significance than
internal energy. Rougly speaking, entropy is the degree of mixed-upedness. Some thermodynamic problems
require an absolute value of entropy, the third law of thermodynamics defines the entropy of a pure substance at
absolute zero to be zero.

The principles of thermodynamics is are nearly fully defined after defining the laws of thermodynamics, internal
energy, and entropy. The rest of the study of thermodynamics is application of those principles to various
problems. All systems try to minimize energy and maximize entropy. Most problems we ever encounter can be
solved from these basic principles. It turns out, however, that direct use of internal energy and entropy can be
difficult. Instead, we define new functions called free energy - Gibbs free energy or Helmholz free energy. These
new energies perform the same function as other thermodynamics functions, but that are physcially much more
relevant to typical problems of chemistry and material science. In particular, Gibbs free energy is the most
common term needed for chemical and material science problems that are typically encounted in various states of
applied temperature and pressure.

Chapter 2: The First Law of Thermodynamics

m Ideal Gas Change of State

= Change in Internal Energy

Because{%)T = 0 for an ideal gas a(ng%)v = n ¢, for an ideal gas, the total differential for internal energy for

any change of state of an ideal gadlis = n c, dT. The total change in internal energy is thuys always given by:

T
AU:J nc,dT

T

-ncy Ty +ncy T

which can be rewritten as

Cy
AU = — nRAT;
R

whereAT =T, — T,. For an ideal gasy RT, - T;) = P, V, — P, V; = A(PV). Thus internal energy can also be
written as

Cy
AU = =2 A (PV) ;
R

www.iran—mavad.com

Age Cpmodie 5 (il gy



14 Notes on Gaskell Text

m Change in Enthalpy

Once the change in internal energy is known, the change in enthalpy is easily found from
AH = AU + A (PV) = (%+ 1)A(PV)

But, for an ideal gas, — ¢, = R which leads tq% +1)= %’“. The total change in enthalpy can be written two
ways as:

Cp Cp
AH = — A (PV) ; AH = — nRAT,
R R

m Heat and Work in Various Processes

The previous sections gave results &b and AHfor any change of state in a ideal gas. The values for heat and
work during a change of state, however, will depend on path. This section gives some results for heat and work
during some common processes:

1. Adiabatic Process
The definition of an adiabatic process is tw=@; thus all the change id is caused by work or:

2. Isometric Process
In an isometric process volume is constant which mgafisHeat and work are thus:

3. Isobaric Process
The definition of enthalpy is the it is equal to the heat during a constant pressure or isobaric proagss; thus
AH. Work is found thethe first law ag= q - AU; thus

q=A4aH; w=A(PV) ,;

4. Isothermal Process

BecausdJ is a function only off for an ideal gasAU = AH = 0 for an isothermal process. These results also
follow from the general results by usiad = A(PV) = Ofor an isothermal process. In general, all that can be said
aboutg and wfor an isothermal process is

q=w; WwW=4gq;
The actually value off and wwill depend on whether the process is conducted reversibly or irreversibly. For a
reversible process and wcan be calculated frofd dV work as

Vo
q =W=j Pav ,;

V1

which using the ideal gas equation of state becomes

V2 nRT
q:W:J‘ le

Vi

-nRTLog[V:] +NRTLog[Vs]
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or because PV = constanive can write

q =W = nRTLog[X—Z]; q=ws= nRTLog[E—l];
1 2

5. Any Processes
For any other process, aan be calculated for tHe dV integral andy from the first law of thermodynamics.
Thus, we can write

V, %3
q:AU+j Pav ; W=j Pdv ;

A Vi

To do these calculations, we need to kri®as a function o¥ throughout the process. This result applies for both
reversible and irreversible process&s; however, will be given by an equation of state only for reversible
processes.

Numerical Examples

V. liters or and ideal gas @t andP;are expanded (or compressed) to a new pre$surndere are some constants
defined in a table used to get numerical results:

nums = {V, -> 10, T, -> 298,
P, -> 10, P, ->1, R-»>8.3144, R a -> 0.082057 };

The number of moles can be calculated from the starting state:

subs = Append[nuns, n ->nnol s]

{V; - 10, T; - 298, P, - 10, P, » 1,
R- 8.3144, R a - 0.082057, n - 4. 08948}

Finally, this constant will convert liter-atm energy units to Joule energy units. All results are given in Joules:

| aToJ = 101. 325 ;

1. Reversible, Isothermal Process

In an isothermal process for an ideal gas,

AU=0; AH=0;
thus heat and work are equal and given by:

P>
q=w=nRT; Log[P—] J /. subs
1

-23330.91J
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m 2. Reversible Adiabatic Expansion

In an adiabatic expansion

q=20;
andP V7is a constant. Thus the final state has

Vs

/. ¥y->5/3

(Plvl*]“’. 1. P2V
P, " 2" hRa

3/5

Po (2 )

nR a

For an ideal gas,= 3R/2; thus

3
AU = EnR(Tz—Tl) /. subs
-9147.99

or we can use

3
AU = > (P, Vo -P; Vi) laTod /. Append[subs, ¥y ->5/3]
-9148. 02
For some numeric results, the final temperature and volumes were

ad2 = N[{V., T2} /. Append[subs, ¥ ->5/3]1]

{39. 8107, 118.636}
The work done is

dw = -AU

9148. 02

For an ideal gas,= 5R/2; thus the enthalpy change is
5
AH = 5 (P, Vo -P; Vi) laTod /. Append[subs, ¥y ->5/3]

-15246.7

or
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5
AH = > nNR (T, -T;) /. subs
-15246.7
For numerical results in the subsequent examples, the initial and final states for the adiabatic process are

Vo =, T =.;
sub2 = Join[subs, {V, ->ad2[[1]], T, ->ad2[[2]], ¥ ->N[5/3]1}]

{V, - 10, T; - 298, P, - 10, P, -1, R-»8.3144, R a - 0.082057,
n - 4.08948, V, »39.8107, T, » 118. 636, y —> 1. 66667}

m Altenate Paths to End of Adiabatic Expansion

(i) Get toP, V, T,by isothermal process followed by constant volume proaeSsfor isothermal step is zero
(because of the ideal gas). The constant volume step has theUotddich is

3
AU = ?nR(Tz—Tl) /. sub2
-9147.99

(i) Get toP, V, T,hy isometric process followed by isothermal procedd.for isothermal step is zero (because
of the ideal gas). The constant volume step is same as above and thus obviously gives the same result.

(i) Get toP, V, Toby isothermal process followed by constant pressure prosés$or isothermal step is zero
(because of the ideal gas). The enthalpy change for the constant pressure step is simply the same as before

3
AU = EnR(Tz—Tl) /. sub2
-9147.99

(iv) Get toP, V, T,hy isometric process followed by constant pressure process. For isometric process, we only
need to know the intermediate temperature given by

P> V;

Ti = ;
nR a

Thus, the first step has

3
AU = EnR(Ti -Ty) /. sub2
-13678.8

The internal energy change in the second step is
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AU i = ;nR(TZ—Ti) /. sub2
4530. 84
Thus total energy change is
AU = AU + AU i
-9147.99

(v) Get toP, V, T,by constant pressure process followed by constant volume process. The final temperature of the
constant pressure process is

P11V,
nRla’
The internal energy change is thus

3
AU = EnR(Ti -T1) /. sub2
45308. 4

The constant volume step has:

3
AU i = ?nR(Tz—Ti) /. sub2
-54456. 4
The total energy change is

AU = AU + AU i

-9147.99

(comment) These same examples are given in the text. For several of the steps the text caltufatgtsand
then subtractd(PV) to get AU This extra work is not needed because in all caddscan be calculated directly
from the same information used to first ged.

m Problems

= Problem 2.1
The initial conditions are
init =
{T, ->300, V; ->15, P; ->15, R->8.3144, R a -> 0.082057 };
a. Reversible isothermal expansion to 10 atm pressure
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Final volume is

= /. init]

For isothermal procesaU=0 andg=w. They are given by (using PV = nRT):
\% o
g =w=101.325P, V; Log[v—] /. init
1

9243. 84

For an ideal gasAU = 0 for an isothermal procesd (only a function ofT). Finally AH=0 becaus&AU=0 andPV
= constant

b. Reversible adiabatic expansiorPte10 atm.

The final volume is

1/

/. Append[init, ¥->5/3]]

Py Vp¥ )

19. 1314

The final temperature is

T, P, V.
To= —22 7 init
Py Vi

255. 085

The number of moles is

P; V.
n = e /. init
T]_Rla

9. 13999

Thus the total change in internal energy is

T2
dU=J n1.5RdT /. init

T1

-5119. 88

The heat work done for his adiabatic process is
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g=0; w= -dU

5119. 88
The change in enthalpy is
dH = dU + 101.325 (P, V, =Py Vy) /. init
-8533. 15
= Problem 2.2

The starting conditions and a calculation of the initial volume are:

T, =273; P =1; n=1; Ra=0.082057; R = 8.3144;

3R 5R nRlaT;
Cy = — ; Cp = — ; onela = 101.325; V; = ——m8 —
2 2 Py
22.4016

a. Doubling of volume at constant pressure

c
g = dH = %Pl (2V; -V;1) onel a

5674. 6
w =P (2V; -V,) onel a
2269. 84

b. Then double the pressure at constant volume

c
g = dU = %2v1 (2 P, -P;) onel a

6809. 51

w=0;
c. Finally return to initial state along specific curve

Vi
w = onel aj (0. 0006643 V? + 0.6667) AV
2

Vi

-3278.9

The total change in U on returning to initial state is
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C
du = FV (V, P, - 2V, 2P;) onel a

-10214.3
Thus, heat is
g =dU+ w

-13493. 2

m Problem 2.3

Initial state is P=1 atm, V=1 liter, and T=373 K. The number of moles is

P1V1

R = 0.082057; T1 =373; P1L=1; V1 =1; n =
RT1

0. 032672
First expand gas isothermally to twice the volume or to V=2 liters and P=0.5 atm. Now cool at constant P=0.5 atm
to volume V. Finally, adiabatic compression to 1 atm returns to initial volume. BecatigeddXstant and initial

state has PX£1, final volume must be

V2 =2; P2=0.5; V=@/P)Y¥ /. {(y->5/3)})

1.51572
Total work done in first step (an isothermal process) is

wl = N[nRT1lLog[2]]

0. 693147

The second step (at constant pressure) is

W2 = P2 (V - V2)

-0. 242142
The last step (adiabatic) has= —AU or
Y
w3 = - - (PLVL - P2V) /. ¢cv -> 1.5 R

-0. 363213

Work can also be calculated by integrating with P/3°:
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V1 1
w3alt = j dx
v X5/3

-0. 363213
The total work in Joules is

w = 101.325 (WL + W2 + W3)

8. 89561

m Problem 2.4

The total change in internal energy with supplied g and w are

AU = 34166 - 1216

32950

For an ideal gas, AU = n cv AT, thus the total change in temperature is

AU
(2) (1.5) (8.3144)

1321.
The final temperature is thus

Tfinal = 300 + AT

1621.
= Problem 2.5
The initial conditions are

n=1;, T=273; P=1; R = 8.3144,
a. The initial volume is

T
V = n0.082057 —
P
22.4016
The 832 J of work at constant pressure causes volume to change by

AV = 832 /101. 325

8. 2112
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Thus final volume is

V2 = V + AV
30. 6128
Final temperature is

V2

T2 =P ———
n 0. 082057

373. 067
b. Internal energy and enthalpy are
{ AU = 3000 -832, AH = 3000}
{2168, 3000}
c. The value of cp (for this one mole) and cv are

3000 2168
{ep = = OV =}
T2 - T T2 - T

{29. 9799, 21.6655}

= Problem 2.6

The initial volume is

T1

24.6171

After changing along a straight line to P2 = 1 atm, the volume increases by a factor of 10 to

246.171

The PV diagram for the cylic process is (P1,V1) to (P2,V2) isobaric to (P2,V1), constant volume to (P1,V1) is
plotted as follows
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The work done is the area of the triangle and it is positive work done by the gas. After conversion to Joules, the
total work is

1
W= > (9) (V2-V1) (101.325)

101020.

= Problem 2.7

The intial conditions are

T1
n=1; T1 =25 +273; P1 = 1; R =0.082057; V1 = nRH
24. 453

a. Isothermal expansion to P = 0.5 gives

T2
P2 =0.5; T2 =Tl; V2 = nR—
p2
48. 906
b. Isobaric expansion to T3 = 100C
T3

P3 = P2; T3 = 100+273; V3 = nR—
P3
61. 2145

c. Isothermal compression to P4 =1
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30. 6073

d. Isobaric compression to 25C returns the gas to its initial state (state 1 above). The total work for these four steps
are

V2 V4
w=nRTl Log[w] + P2 (V3-V2) + nRT3 Log[ﬁ] + P4 (V1 -V4)
-4. 26582

The second process traces a squate on a PV diagram:
a. Isobaric expansion to 100C

T5
P5 = P1; T5 = 100 +272; V5 = nRE

30. 5252
b. Change pressure at constant volume to P

P=.; P6 =P; V6 =V5;

c. Isobaric compression to initial state

d. After returning to the intial state, the total work comes from the isobaric steps only; the constant volume steps
do no work. Thus the total work is

walt = Pl (V5-V1) + P7 (V7 - \6)

6.07222 -6.07222 P
Finally, equate to (minus) initial work and solve for P
Solve[walt == -w, P]
{{P—-0.297486}}
= Problem 2.8
The PV diagram traces a circle or radius r=5. The work is the area of the circle (converted to Joules)

Pi (25) (101.325)

7958. 05

The volume as a function of pressure has two possible values
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P=.: Vl=10+425- (P-10)?

10 ++/25 - (-10 + P)2

V2 = 10 -/25 - (P-10)?

10 -+/25 - (-10 + P)2
The temperature during the cycle can be plotted

V1 V2
n=2; R=0.082057; Plot[{P—, P—1}, {P, 5, 15}]
nR

nR
1000 |
800 |
600
<i;-— 8 10 2 14

- G aphics -
The maximum occurs on the V1 curve at
V1
Sol ve [D[P —, P] ==0, P]
nR
{{P—->13.5355}}

which is gives a maximum temperature or

V1
Tmax = P R /. P->13.5355339059327373"
n

1116. 36

The minimum occurs on the V2 curve at
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V2
Sol ve[D[P—, P] == 0, P]
nR
({P>5 -3.535531}, {P->5 +3.535531}, {P>6.46447})

Taking the real root, the minimum temperature is

. V2
Tmn = P— /. P->6.46447
nR

254. 636

Chapter 3: The Second Law of Thermodynamics

m Problems

» Problem 3.1

For any reversible change in state with variablendV, the total differential for entropy can be written as

dSform = Solve[dU == TdS - PdV, dS]

-dU-dVvP H

{{ds~ - T

For one mole of an ideal gas we can rewrite this as

. . R
Simplify[dSform /. {dU -> G, dT, P -> —}]

dVR . dT C, H

{{dSe v -

which integrates upon a changévrand T to

AS = C, Log[l—z] + RLog[%] :
1 1

Using R=G-C, T,=PVa/R, T1 =P V1 /R C =3R/2 vy=G/C =5/3, this
expression can be reworked into

This result applies to any change in state of an ideal gas. Simpler expressions hold in some special cases.

a. For this isothermal change
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AS /. {Pp ->10, V; ->V, P, ->5, V, -> 2V, R->8.3144, vy ->5/3}

5.7631

b. For a reversible adiabatic changg,, =0 and thusAS=0 From the general equation abousS is also
obviously zero becaud®V”is constant during a reversible adiabatic processes.

c. For a constant volume change in pressure

AS /. {PL ->10, V; ->V,, P, ->5, R->8.3144, y->5/3}

-8. 64465

m Problem 3.2

Some generic results for the change in a state function for one mole of an ideal monatomic gas are given below.
There are two results for each term; either can be used, depending on which one is easier:

3 3
AU, = 7 (P2 Vo - P V1) Al ER(TZ‘Tl);

5 5
AHl = E (P2V2— P]_V]_), AH2= ER(TZ_Tl)y

P V¥ T2V, .
P V ¥ ] , ASZ = RLOg [T] ,
1 Vi T1°/2 Vy

a. For free expansion of ideal gas, temperature remains constant. Here the volume triples. Thus

AS 3 RL [
= — 0
1 > g

stepa = {aU,, AH,, AS;} /. {T, -> Ty, V, ->3V;, R->8.3144}

{0, 0, 9.1343)

For free expansion there is no work (W=bd thus because AUAQ=0.

b. Here we only need to know that the temperature changes from 300K to 400K at constant volume

stepb =
{aU,, AH, , AS;} /. {T, ->400, T, ->300, V, ->V;, R->8.3144}

(1247. 16, 2078.6, 3.58786)

Because this process is at contant volunsg, which mearg = AU = 1247 J

c. For any isothermal expansion to triple the volume, the state functions results are the sarrese Bsipaete the
process is reversible. Thus

V.
q=w-= RTLog[V—Z] /. {R->8.3144, T->400, V, ->3V;}
1

3653. 72
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d. For the state functions, we only need to known that at constant préssumroportional tol' which implies
V, = 300V, /400

stepd = {aU,, AH,, AS} /.
{T, ->300, T, ->400, V, ->300V; /400, R->8.3144}

{-1247.16, -2078.6, -5.97976}
The book solution has a sign error iB.A\t constant pressureig equal taAH and work follows from that results:

q = -2078.6; w = q+1247.16

-831. 44

Notice that all calculations were done without ever calculating the actual volumes and pressures during the
processes.

The total changes id, H, andS during these steps are

stepa + stepb + stepa +stepd

(0., 0., 15.8767}
The total amount of heat and work are

{1247 + 3653.72 -2078.6, 3653.72 -831.44}

{2822. 12, 2822. 28}

m Problem 3.2

a. For one mole of an ideal gas at contant pressure;, AT, andC, = 5R/2, thus the temperature change is

q
5
=R

AT = /. {q->6236, R->8.3144)

300. 01

From the entropy change we can calculate the absolute temperatures as well. UaiSdahene mole of an
ideal gas at constant pressure we can solve

Solve[
5R T,
AS == T|_og[T—] /. {R->8.3144, T, ->Ti+ AT, AS->14.41}, Ti]
1
{{T1 - 299. 9451}

Or T, = 300K andT, = 600K.

b. For an isothermal expansion of an ideal gaw. Thus we only need to solve
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Sol ve [AS ==

quev /. {AS -> 5.763, Qrey -> 1729}, T]

{{T ->300.017}}
m Problem 3.4

For this problem we need to integrélg for enthalpy olCp / T for entropy where

Co=50.79 + 1.97103T - 4.9210°T2 + 8.20108 -3

8 6
50.79 + O 22X 10 492100 o 00197 T

1000 +273
AH:j G daT
25+273

42747.7

1000+273
AS:j &le
2

5+273 1

59. 6825

m Problem 3.5

The two blocks of copper will exchange heat until they reach the same temperature. Heat flow is an integral of the
constant-pressure heat capacity. If the heat capacity is independent of temperature, the final temperature will be
the average of the two initial temperature. If the heat capacity is a function of temperature, however, we have to
solve an integral equation by equating heats

G =a+bT;

The heat transferred into the cold block is

Tt
gcold = G aT
273

2
-273a - —745229 b +aTq + —b;—f

This heat must equal the heat leaving the hot body

Ti
ghot = —J G at
3

73

2
373a+71391229b -aT - b;’

Equate and solve fdr; :
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Sol ve[gcol d == ghot /. {a->22.64, b ->0.00628}, T;]

{({T¢f - -7533.51}, {T; - 323.318}}
The second root is the correct onéler= 323.32K. The quantity of heat transferred is

q = qcold /. {T; ->323.32, a->22.64, b->0.00628}

1233. 47

The total change in entropy (considering both bodies) is

323. 32 Cp 373 Cp
AS - J huliPs j 2 aT /. {a->22.64, b->0.00628}
273 T 323.32

0. 597977
In other words, the process was irreversible because entropy increased.

= Problem 3.6

The engine will stop producing work when it reaches its equilibrium temperatreTaf reach this temperature,
the high-temperature bath will expel heat

g2 = G (T2 -Ty) ;
The engine will expel heat to the low temperature bath of

g1 = G (Tf -Tq);
The total work then becomes

W= (2 - 01

G (Ty-Ts) -C (-Ty +Ty)

In this reversible engine, the total entropy change (reservoirs plus engine) must be zero. The engine operates in a
cycle and thus must have no entropy change. Assuming constant heat capacities, the entropy changes from the

reservoirs is
Tt C T ()
A5=j _dmj 2 a1
T T, T
-Log[T:1] G +Log[Ti ] G -Log[T2] G +Log [T ] &
The final temperature to male zero is found by solving

Solve[aAS==0, T;]

{{Tf - E

Log(Ty1] G +Log (T2 ] &
s}
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This result is equivalent to the answer in the book.

Chapter 4: The Statistical Interpretation of Entropy

m Problems

m Problem 4.1

When an ideal gas expands (reversible or irreversibly) the temperature remains constant and therefore internal
energy remains constant. The total differental in entropy (again assuming an ideal gas) is

PdV RT
dS = —— /. P -> —

T Y

dVR

Vv

Integrating over any volume change gives

Vg R
AS = j — av
v V

-RLog[V:] + RLog [V ]

or

AS = RLog[%j—] ;

Physically entropy increases when the volume increases.

a. Chamber 1 has 1 mole of A and chamber 2 has 1 mole of B. These ideal gases do not interact and thus the total
energy change is the sum of entropy changes for each type of gas:

AS = RLog[2] + RLog[2]

2RLog[2]

or R Log[4] as given in the text.

b. When there are 2 moles of A in chamber 1, the entropy change for that gas doubles giving:

AS = 2RL0og[2] + RLog[2]

3 RLog[2]

or R Log[8] as given in the text.
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c. When each chamber has gas A, we can not use the methods in parts a and b because they no longer act
independently. When each chamber has 1 mole of A, removing the partition does not change anything. The system
is still at equilibrium and thuaS=0.

d. When one chamber has 2 moles of A and the other has 1 mole of A, the two chambers will be at different
pressures and removing the partition will causes changes and a non-zero change in entropy. This problem is best
solved by first moving the partition to equalize pressures. Here it is moved from the middle (1/2, 1/2) to the
position where the side with 2 moles of A is twice as large as the side with 1 mole of A (2/3, 1/3). This move will
equalize pressure such that the subsequent removal of the partition can be daf=@ithhus the total change

in entopy can be calculated from the initial change in volumes done to equalize pressures:

2/3 173
AS = 2RLog[m] + RLog [m]
2RLog[%}—RLog[%}

which combines t& Log[32/27].

Chapter 6: Cv, Cp, H, S, and 3rd Law of Thermosynamics

Problems

Problem 6.1

The heat of transformation for Zr(b) + O(2) to Zr(b)O(2) at 1600K is given by the following equation which starts
with the heat of transformation at 298K and then integra@p from 298 to 1600K accounting for phase
transitions or Zr ¢->B) at 1136K and ZrO2a(->B) at 1478 K. Notice thaAH for the Zr @->B) transition is
entered with a minus sign because those components are on the left side of the reactions:

1136
DH=HZra02+j (CpZra®2 - CpZra - CpA2) AT -
298
1478
DI—|Zratob+J (CpZra2 - CpZrb - Cp2) daT +
1136
1600

DHzZr Q2at ob +j (CpZrb2 - CpZrb - Cp2) AT
1478

~1.08659 x 10°

For the entropy of reaction, we integrate Cp/T and include entropy of the required transitions. The entropy of

reaction at 298K comes from absolute entropies of ZrO(2) - Zr - O(2). The entropy of transitions come from
AH/ Ty

DSr xn = SZr a2 - SZr a - SQ2;

DHZr at ob DHZr CRat ob
DSZratob = ————; DSZr QRatob = ——M8M8 —;
1136 1478
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1136 CpZraQ2 - CpZra - CpQ2

DS=N[Dern+ daT -
208 T
1478 CpzZr a2 - CpZrb - CpO2
DSZr at ob + < < < daT +
1136 T
1600 Cpzr b2 - CpZrb - CpC2
DSZr QRat ob + < < < le]
1478 T
-177.977

m Problem 6.2

The enthalpy of graphite at 1000K is
1000

Hgr 1000 = CpGraphite dT
298

11829.5

The enthalpy of diamond at 1000K is
1000

Hdi a1000 = HDi anond +j CpDi anond AT
298

12467. 1
The enthalpy of diamond is

Hdi 21000 - Hgr 1000

637.523

higher than that of graphite; thus the reaction to form CO from diamond is more exothermic (larger positive
number on the left).

=» Problem 6.3

These compounds have no transitions between 298K and 1000K. The initial heat of formation at 298K is

DHr xn = HCaTi O3 - HCaO - HTi Q2

-81700

1000
DHr xn1000 = DHr xn +j (CpCaTi @B - CpTi A2 - CpCal) AT
298

-80442.2

For entropy of the reaction we first need

www.iran—mavad.com

Age Cpmodie 5 (il gy



Notes on Gaskell Text 35

DSr xn = SCaTi O3 - SCaO- STi Q2

5.

wmmmﬂm-mﬂ@-mmod

DSr xn1000 = N[Dern +j

-
298 T ]

7.03431

» Problem 6.4

The change in enthalpy of Cu by heating at constant pressure is integral of the constant pressure heat capacity.
Heating to T=x give

X
DHoyTenp = Chop [ CpCu daT]
298

-9631. 41 +

322000- . 30. 29x - 0. 005355 x?

Using(dH/ dP) T = V(1 - al pha T), the change in enthalpy at constant temperature from 1 to 1000 atm is

DHbyPr essure = 101. 325

7.09 0. 493
, al phaCu -

1000
j [VCu (1-alphaCuT) /. {VCu - , T->298}]
1
daP

612. 239
The 101. 325converts liter-atm to J, the 10”*-3 on VEanverts cm”3 to liters:

Sol ve [DHbyTenp == DHbyPressure, X]

{{X >35.0427}, {x -323.916}, (X -5297.44})

The correct root is the middle one or T = 323.916

The book calculated the pressure effect to cause the enthalpy to increase by 707 J. This answer can be obtained by
using 0.493 10"-4 for thermal expansion (or by dividing the result given in the text by 10Hafléook of

Chemistry and Physicgives the thermal expansion of Copper as as 0.498 10"-4. Thus the text gave the wrong
value in the problem, but used the correct value to derive the solution. Using the correct thermal expansion
changes the above results to:

DHbyPr essure = 101. 325

1000 7.09 0. 493
j [WM(l—aHmaOJT)L fvau - . al phatu » ——, T+298”
1 10
aP
707. 132
‘\'\V‘\'.il'ﬂn*lll'(\vﬂ d Lcom
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Sol ve [DHbyTenp == DHbyPressure, X]
{{Xx - 34.6395}, {x —»327.909}, {x —5293.85}}

The middle root is the book solution.

=» Problem 6.5

DH and DS can be found form enthalpies and entropies of each compound in the reactions.

) HO2 ) ) SOo2 )
{I—IT|203—T—2I—IT|O, ST|203—T—ZST|O}

(-435000, -94.75)

. HO2 , , Sz .
{2HT| BGS—T—SHTI 208, 2 STi BGS—T—SSTI 203}

(-355000, -75.35)

. HO2 ) ) SO2 ]
{3I—|‘I’|(2—T—I—|'I'|305, 38T|(2—T—ST|305}

(-373000, -80.15)

= Problem 6.6*

The balanced reaction is Cr203 + 2Al -> Al203 + 2Cr. The initial number of moles of aluminum are

1000

mol eAl = N[ A
mass

]

37.0645

Assume need to add excess of Cr203 (moldeCr of Cr203) or that all the Al gets used up in the reaction. The
products then containol eAl / 2 moles of Al203, nol eAl or Cr, andrmol eCr - (ol eAl / 2) moles of
Cr203. The total enthalpy of these products (none of which have transitions between 298K and 1600K) is

1 1600

HPr oduct s = 5 nol eAl (HAI 208 +J CpAl 2C3 le] +
298

1600

nol eAl CpCr dT + (rml eCr -
298

nol eAl 1600

) [HCr 2C8 + CpCr 233 le]

298

-2.66044 x 10" - 972063. (-18.5322 + nol eCr )

-2.54783 x 10" - 935209. (-18.5322 + nol eCr )

The enthalpy of the initial components at 700 C (=973 K), accounting for the melting transition of Al at 943K, was
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943 973

H nitial =noleAl [ CpAl dT +HAl nelt + CpAIIle]+
298 943

973

nmol eCr [HCr 2C8 + CpCr 233 le]

298

1.11638 x10° - 1. 05378 x 10° nol eCr
The moles of Cr203 required to balance these enthalpies is

nol eAns = Sol ve [HProducts ==Hinitial ]

{{mol eCr - 118.78}}

In kilograms, the required mass is

nol eCr (3 massO+ 2 massCr)

/. nmol eAns
1000

(18. 0546

This result is higher than the book solution of 14.8 kg.

m Problem 6.7

The adiabatic flame temperature can be found by finding out at what temperature the total enthalpy of the products
is equal to the enthalpy of the initial material. This method works because total enthalpy is conserved for
adiabatic, constant pressure conditions.

a. The reaction is CH4 + 2 02 -> CO2 + 2 H20. The starting components at 298K 2/3 02 and 1/3 CH4 (ratio O2
to CH4 of 2.0). The final components are 1/3 CO2 and 2/3 H20. Enthalpy of starrint components is

o H
Hnitial = ——
3

74800
-3

The enthalpy of the products at the flame temperature is

HPr oduct s =

AFT AFT

CpC2 le]] + % (HHZO; + Chop[J~

1
— (HC@ + Chop [
3 298

CpH2 Oy le]]
298
854000.
AFT
33000.
AFT

+44. 14 AFT + 0. 00452 AFT?

+

W[k

(_409921. +

% (_251326. + +30. AFT + 0. 005355 AFT2)
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Solve[H nitial == HProducts]

({AFT > -11586.1}, {AFT »1.0983}, (AFT »4747.14}}

The correct root is the last one or the flame temperature is 4747K.

b. For the reaction in air starting with one total mole of reactants, the fractions are

.799.524
10. 524
0. 714933
.219.524
X2 = —me——
10. 524
0. 190046
1
XCH = ——r
10. 524
0. 0950209

The enthalpy of the starting components is

Hinitial =XCH4 HCH4

-7107. 56

After all the CH4 reacts with all the O2 to forkO2 or H20 andXCH4 of COZ2, the enthalpy at the flame
temperature is

AFT
HPr oduct s = XCH4 (HC@ + Chop [ CpCoR le]] +
298
AFT AFT
cprecy aT] | +xn2 chop[ [ cpne aT]

X2 (HHZO; + Chop [
298

298

0. 714933 (-8494. 86 + 27. 87 AFT + 0. 002135 AFT?) +

0. 0950209 (_409921. + % + 44,14 AFT + 0. 00452 AFT2) +
0. 190046 (_251326. + % +30. AFT + 0. 005355 AFT2)

Solve[H nitial == HProducts]

{{AFT » -12360. }, {AFT > 1.02066}, {AFT - 2330.39}}

The correct root is the last one or the flame temperature is 2330K.
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m Problem 6.8*
The AG of the reaction at 298K is
DHr xn = 3 HSi Q2Q - HSi 3N4

-1987900

DSrxn = 3 SSi Q2Q + 2 SN2 - SSi 3N4 - 3 SC2

-220.8

DG xn = DHr xn - 298 DSr xn

-1. 9221 x10°
The ACp for the reaction is

Del Cp = 2 CpN2 + 3 CpSi RQ - CpSi 3N4 - 3 Cp2;
The AG of the reaction at 800K found by integration (and there are no transitions in the compounds) or

800 800 Del Cp
DG800 = DHr xn + Del Cp AT - 800 (Dern + N[J~ = le]]
298

298

-1.8163 x10°
If ACp was assumed to be zero, the DG would be calculated as

DGsi np = DHr xn - 800 DSr xn
-1.81126 x10°
The percent error cause by ignoring &@p terms is

100 (DGsi np - DG800)
DG300

err =

-0. 277741

These results differ from the book answer which gets a much larger error between the two metho@si rpe
agrees with the book, but t800 in the book is different.

m Problem 6.9

Solve[{3+a==b+2c, 1+a==b+c, 3+a==2b+cC}]

({a-=3, b=2, c->2}}
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DH298 =c Hcc +bHcb -aHca-Hel /. {a-»3, b-2, ¢ » 2,
Hcl -» -6646300, Hca -» -3293200, Hcb -» -4223700, Hcc -» -3989400}

99700
DS298 =c Scc +b Sch-aSca-Scl /. {a-»3, b-2,
c->2, Scl »241.4, Sca -» 144.8, Sch » 202.5, Scc -» 198. 3}

125. 8

D&298 = DH298 - 298 DS298

62211.6

= Problem 6.10

The heat required to melt cordierite per mole is

1738

gnelt = CpCord aT
298

979799.

The MW or cordierite is
MACord = 18 massO+ 2 nassMj + 4 massAl +5 massSi
584.74
Thus, the heat required (in J) to heat 1 kg from 298K to 1738 K is

gnel t 1000

t ot al Heat =
MACor d

1. 67561 x 10°

Chapter 7: Phase Equilibria in a One-Component System

m Problems

All third editions of Gaskell have 9 problems. Some books have 9 problems that correctly correspond to the 9
solutions. Other books (probably early printings of the thrid edition) are missing the problem that goes with the
first solution and have an extra problem that has no solution. These notes give the solutions to the 8 problems in
common to all books. Some books have them as 7.1 to 7.8; others have them as 7.2 to 7.9.
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= Problem 7.1(2)

The vapor pressure of Hg at 100C (373K) is

Exp [l nvapHgl /. T -> 373]

0. 000354614

= Problem 7.2(3)

We assume that SigMapor behaves as a ideal gas. At 350K, the total volume is

] R350
VEix = I /. R->0.082057

28.72

When cooled at this fixed volume, the pressure as a function of temperature is

RT
Pcool = - /. R->0.082057
VF i x

0. 00285714 T

By this cooling path, the vapor will condence whraool becomes equal to the vapor pressure atfthBtjuating
to vapor pressure and solving gives a condensation temperature of

Tcondense = Sol ve[Log[Pcool ] == InvapSid 4, T]

{{T->328.382}, {T-2.01306x10"}}
The first root is the physcially correct one. Once the vapor-liquid equilibrium is reached at constant voliine, the
and T will remain on the transition curve but the vapor pressure will change with temperature. At the final

temperature of 280KR will be

Pfinal = Exp[lnvapSiC 4 /. T->280]

0. 139656

The pure vapor pressure at 280K would be

RT
Ppure = —— /. {R->0.082057, T ->280}
VF i x

0.8

Thus, the percentage that has condensed must be
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) Ppur e - Pfi nal
Fraction = 100 =«

Ppur e

82. 543

= Problem 7.3(4)

Equating the two curves and solving, the cross at the triple point of

Sol ve [
-15780/T - 0.755 Log[T] +19.25 ==-15250/T - 1.255Log[T] +21.79]

({T>712.196})

Above this temperature, the vapor pressure of the solid will be higher (for a hivbe liquid-vapor curve is
below the solid-vapor curve). Taking 800K for example, the two curves give

{15780 /T - 0. 755 Log[T] +19. 25,
-15250 /T - 1.255 Log[T] +21.79} /. T -> 800

(33.9281, -5.66169)

Thus the first must be the vapor pressure of solid zinc. (Also, Table A-4 gives the second equation as the vapor
pressure curve for liquid Zn).

Problem 7.4(5)

From the Clausius-Clapeyron equation for a liquid-vapor transition where the vapor volume is assumed to be
much larger than the liquid volume

2

AHvap = 101.325 dPdT /.

{R->0.082057, T->3330, P->1, dPdT ->3.72107%}

342976.

(The leading constant of 101.325 converts the result fo Joules)

Problem 7.5(6)

From the Clausius-Clapeyron equatiofkisub, or the heat of sublimation is

dl nPdT = D[l nvapC2s, T]; AHsub = RT~2dlnPdT /. R->8.31443

25907. 8

Thus, the AHvap, at the triple point is
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AHvap = AHsub - AHmelt /. AHnelt -> 8330
17577.8
Assuming AHvap is constant, the vapor pressure curve for the liquid is

-AHvap
| nPvap = —RT + const /. R->8.31443

2114. 13

const -
T

The constant is found from the triple point

Sol ve[l nPvap == I nvapC®2s /. T->273-56.2, const]

{{const - 11.3888}}
Thus, at 25C,

-2114.13
| nvapC2l = — +11.3888 /. T->273+25

4.2944
or the actual pressure is

Pvap = Exp[l nvapCQ2l ]

73. 2885
Solid CG is referred to as “dry ice” because the triple point is at

Exp[l nvapCO2s] /. T->273 -56.2

5.1413
which is above 1 atm. Thus under atmospheric conditions, sojdv@@rizes into gaseous O

= Problem 7.6(7)*

From the Clapeyron equation (after converting volumes to liters, looking up melting transition properties of lead,
and convertingAH to liter-atm):

AHPb 3
dPdT = ——— 88— /. {Vs -> 18.92 % 1077,
Tm (M -Vs)

VI ->19.47 % 103, Tm-> 600, aHPb -> 4810/101.325}

143. 852

If the temperture of the melting point changes bydD= 20), the pressure must change by:
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dP = dPdTdT /. dT ->20

2877. 03

(Note: this result differs slightly from the book answer of 2822 atm).

= Problem 7.7(8)

The information that the point P = 1 atm and T = 36K is oratfddransition tells you that line is the one below
the triple point. You are also given the slopes of the lines emanating from the triple point by using the Clapeyron
equation:

AS/101. 325
sl opea = —— /. {AS->4.59, AV ->0.043}
AV10-3

1053. 48

The factors 101.325 and T0Oconvert slope to atm/K. For the other two lines

AS/101. 325

sl opeay = —— /. {AS->1.25, AV ->0.165}
AV 10°-3
74. 7669
AS/101. 325
slopefy = ———— /. {AS->4.59+1.25, AV ->0.043 +0. 165}
AV 1073
277.098

A sketch of lines emanating from a triple point with these slopes is given in the text.

= Problem 7.8(9)

We assumeéHvap is a constant, then

A
| nPvap = T+B;

We can find the constants by solving

Sol ve[{Log[.3045] == I nPvap /. T->478,
Log[.9310] == InPvap /. T->520}, {A B}l

({A-6613.99, B> 12.6477})

Then, we find the boiling point by solving férwhen P=1

6613. 99
Sol ve[O == - 12. 6477 , T]

({T>522.94}}
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Chapter 8: The Behavior of Gases

m Calculations with van der Waals Equation for a Non-Ideal Gas

m Critical Conditions for a van der Waals Gas

Solving the van der Waals equation fBrin terms ofT and V gives

Solve[(P+%) (V - b) == RT, P]

ab-aV+RTW
{{P%_ (b-V) V2 }}

Thus the van der Waals equation fois

Pform= P /. %[[1]]

ab-aV+RTW
N (b -V) \2

At the critical point, this form gives

Pform = Pform /. {T->Tcr, V->Vcr}

~ab-aVer +RTer Ver 2
(b -Ver) Ver?

To find the critical condtions, we solve the following three equation$far Vcr, andTcr:

crit = Solve[{Pcr ==Pform, 0==D[Pform Vcr],
0 == D[Pform {Vcr, 2}1}, {Pcr, Vcr, Tcr}]

_a Tcr —» Ba
27 b2’ 27bR

{{Pcr - , Ver »3b}}

m Plotsof Pvs T and V

For convenience, we rewrite the van der Waals equations using réeii¢ednd Tdefined a®PR = P/Pcr, TR =
T/Tcr, and VR = V/Vcr. The result is

1 ( RTRTcr a

PR = Si lif _
P y[ Pcr \VRVcr -b  VR? Vcr?2

) /. crit][[1]]

3-9VR+8TRVR?
VR (-1 +3VR)

Here is a plot of several isothermal curves around the critical ggtt(.7,.8,.9,1.0,1.1, and 1.2):
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P

ot [Rel ease[Table[PR /. TR->.6+.1i, {i, 1, 6311, (VR .4, 5}]

\ 2 3 4 5

- Gaphics -

Here is a 3D plot:
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Pl ot 3D[PR, {VR, .4, 4}, (TR, .7, 1.2},
Pl ot Poi nts -> 60, AxesLabel -> {"VR', "TR', "PR'},
CipFill ->None, PlotRange -> {-1.5, 4}]

LALS
LY LA
y’#.y’b~gb L

X SN,
R

LR 22

L7
AL

LA
XAy

ALKy XA
.ywb... L AT

L7
77272775 75
2777 775275
1777777477
',"', L7
27527

- SurfaceG aphics -

= Compressibility Factor Z as function PR and TR

Solving the van der Waals equation for= PV/RT gives

a Pb ab
— o —
RTV RT RT V2

bp _ab __a_
RT "RTVZ RTV

z =1 -

z2 =z /. {P->PRPcr, T -> TRTcr, V->VRVcr}

b Pcr PR . ab - a
RTcr TR~ RTcr TRVer? VR? RTcr TRVer VR
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z3 =22 /. crit [[1]]

1. PR . 3 B 9
8TR 8 TRVR? 8 TRVR

To express in terms &R and TR, we can solve the van der Waals equationvBrand take the first root (the
real root):

1 ( RTRTcr a

PReg = Si lif -
d P y[Pcr VRVcr -b  VR? Vcr?

) /. crit]r11]

3-9VR+ 8 TRVR?
VR? (-1 +3VR)

VRroots = Solve[PR==PReq, VR];
Now substitute back (the expressions are very long and therefore not shown):

z4 = z3 /. VRroots[[1, 111;
Here is a plot of z vBR for TR=1, 1.2, 1.4, 1.6, 1.8, 2, 4, 6, 8, 10, 12, 14, and 16.

Pl ot [Rel ease |
{Tabl e[Log[10, z4] /. {TR->.8+.2i, PR->10*}y, {i, 1, 6}],
Tabl e[Log[10, z4] /. {TR->2i , PR->10"}, (i, 1, 8}1}1,
{x, -1, Log[10, 201}]

- G aphics -
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Here is a 3D plot of the "compressibility" surface:

Pl ot 3D[Log[10, z4] /. PR->10%, {x, -1, Log[1l0, 201}, {TR 1, 16},
Pl ot Poi nts -> 60, AxeslLabel -> {"Log PR', "TR', "Z"},
Pl ot Range -> {-0.6, 0.4}, dipFill ->None]

- SurfaceG aphics -

m Problems

m Problem 8.1

a. We rewrite the van der Waals equations using redB¢c¥d and Tdefined as PR = P/P¢iTR = T/Tcr, and
VR = V/Vcr. The result is
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PR PR S Lif [ 1 ( RTRTcr a )
= == Si [ -
Ty Pcr \WVRVcr -b  VR2 \cr2
a 8 a
{Pcr - , Ter - , Ver —>3b}]
27 b2 27b R

3-9VR+ 8 TRVR?

PR== R (-1+3WR)

A nicer form results by solving farR:

Sol ve [%, TR]

(-1+3VR) (3 +PRVR?)
TR
({TR> L )
Note that this equation farR does not depend onax b; thus, in reduced variables, all van der Waal gases follow

the same equation of state.

b. At the critical point

Pcr Vcr a 8 a
Z = — 0 /. {Pcr-> , Ter - ,Vcr—>3b}
RTcr 27 b2 27bR

3
8

This result is somewhat higher the results for real gases in Table 8.1

c. This problem is solved in the text (see page 197):

= Problem 8.2

a. Mixing of ideal gases is puring due to entropy effects. The maximum increase in entropy occurs when there are
equal parts of each gas.

b. From partial molar results (eq. (8.15)), the free energy of the solution is

Gsoln =
na GAO + ng GBO + RT (nalLog[Xa]l + ngLog[Xg] + (na +ng) Log[P])
GAO na + GBO ng + RT (Log[Xa] Na +Log[Xg] ng + LOG[P] (Nna +ng))

Because GAO and GBO are for constants that do not depend on subsequent increase in temperture, we need to
solve for an increase in Gsoln using

Solve [ (1/2) RT (naLog[Xa]l + nglLog([Xg]) ==
RT (naLog[Xa]l + ngLog[Xg] + (na+ng) LOg[P]), P]

Na+Ng)

{{PeE

*LUQ[XA](HA*LOQ[XB] ng } }
=08 5 200 78 De
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% /. {X/_\—>0.5, XB—>O.5, nA—>nB}

({P>1.41421})

= Problem 8.3
The volume of the tank is
Vtank = Pi r?1 10% /. {r ->.1, | ->2}

62. 8319
At constant volume, the number of moles in an ideal gas under the stated conditions is

ni deal = Sol ve [
PV == nRT /. {P->200, T->300, R->0.082057, V->Vtank}, n]

{{n >510.473})

For an van der Waals gas, the number of moles would be

2

a
nvander = Solve | [P+ ] (V-nb) == nRT /. {P->200, T->300,

R->0.082057, a->1.36, b->0.0318, V->Vtank}, n]

{{n—>564.889}, {n-705 478 -1238.131}, {n - 705.478 +1238.13 1 }}

From the real root, the van der Waal gas has more moles. If you pay by the mole, you would prefer the ideal gas
because it would be cheaper. If you pay by the container, you would prefer the van der Waals gas because you

would get more moles per dollar.

=» Problem 8.4

We need to integrate pressure over the volume change. Pressure is given by the virial expansion, so all we need
are the initial and final volumes. These come from solving

1+ /.

<m|w

PV A
Sol ve[— = —
RT V
{A->-.265, B->.03025, P->50, R->0.082057, T-> 460}]
{{V>0.180158 - 0. 159419 | },
[V 0.180158 + 0. 159419 1 }, {V - 0. 394608} }

PV A B
SO| Ve[— == l + —  — /
RT VVARZ
{A->-.265, B->.03025, P->100, R->0.082057, T—>460}]

({V>0.100284 - 0. 233434 | },
(V- 0.100284 + 0.233434 1}, {V-0.176895})
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We take the real roots for the actual volume. Note Ahahd Bwere divided byl0"3 and 10”6 respectively, to
convert to units of liters. To find work done by the gas, we intedtdtem V1 to V2 or to find the work done on
the gas we reverse the integration and go fv@to V1. The result (after convertion to joules) is

. 3946087 1 A B
vvork=101.325j RT(—+—+— av /.
. 176895 \% VZooo\e
{A > -. 265, B->.03025 R->0.082057, T -> 460}

1384.7

= Problem 8.5

a. From the critical temperature and pressure, the van der Waals constants for the gas are

Sol ve[{Pcr ==

, {a, b /.
27 b2 27bR} { }]
{Tcr ->430.7, Pcr ->77.8, R->0.082057}

{{a—>6.77306, b - 0.0567833})

b. The critical volume comes from the critical compressibility ratio or

Pcr Vcr 3
solvel /7o 3

{Tcr ->430.7, Pcr ->77.8, R->0.082057}

, Vcr] /.

{{Vcr - 0.17035}}

c. Using the van der Waals equation with the above determined constants gives

RT a
Pvander = ——mM8M - —
(V - b) \/2

{a->»6.77306, b »0.0567833, R->0.082057, T->500, V->.5}

65. 4776
The corresponding ideal gas has pressure
i RT
Pi deal = ~ /. {T->500, V->0.5, R->0.082057}

82. 057

m Problem 8.6

This problem asks for work calculated three different ways. First the calculations is done using the virial expansion
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Solve[PV ==nRT (1 + AP), P]
NRT
P> - anrT-v /!

o 30 nNRT
wirial = 101.325J _—av y.
0o V-ANnRT

{R->0.082057, T->298, A->0.00064, n->100}

301097.

(Note: the book has -301 kJ which must be to work done by the gas. Positive work must be done on a system to
compress it).

If the gas is a van der Waal gas, the work is

30 nRT n? a
wander = 101. 325j - av /.
10 \ (V -nhb) V2

{R->0.082057, T->298, a->0.2461, b-> .02668, n-> 100}

309394.

Finally, the ideal gas result can come for either above result by setting extra constants to zero, or by directly
integrating the ideal gas result:

30
wl deal = 101. 325 J
10

daVv /. {R->0.082057, T-»298, n ->100}

272203.

m Problem 8.7

a. To find fugacity from a virial expansion, it is easiest to integ(zt&)/P which here is simple the constant
A=0.00064:

P
| nfoverP = jAle /. {Z->1+AP}
0
AP

The fugacity ab00 atmis:

fug = PEXp[AP] /. {P->500, A->0.00064}

688. 564

b. Solve the equation and take the non-zero root:
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Solve[2P == PExp[AP], P] /. {A->0.00064}

{({P>0}, {P->1083.04}}
c. The fugacity at 1 atm is

fugl = PEXp[AP] /. {P->1, A->0.00064}

1. 00064
For the non-ideal gas

fu
AG = RTLog[%] /. {R->8.3144, T->298}
ug

16189. 2

The ideal gas result is

. 500
AG deal = RT Log[T] /. {R->8.3144, T ->298}
15397.9
The extra free energy change due to a nonideal gas is

extraaG = AG - AG deal

791. 275

Chapter 9: The Behavior of Solutions

m Regular Solutions

m Activities

In a regular solution, we assume that

)’A=EXp[L :;‘)2]; YB:Exp[Q 2]1aA=TAXA;
RT RT
aB=TB(l‘XA);|nY/.\= u;“qYB:Q 2;

RT RT

[ nap =1 ny, + LOg[XA]; Inag=1nyg+Log[l-XA];

where( is a constant. It will be seen later to be assumed to be independent of temperature, but it may depend on
pressure. We can plot the activity coefficientAatndB for various values of Q
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Pl ot

aa

[ Rel ease[Table[aar, {Q -5, 3, 1}] /.

{XA, 0, 13},

AxesLabel -> {"Xax", "apr"}1]

{R->1,

T->13}1,

0.

2 0.4

- G aphics -
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Pl ot [ Rel ease[Table[ag, {@, -5, 3, 1}] /. {R->1, T->1}1,
{XA, 0, 1}, AxeslLabel -> {"Xa", "ag"}]

as

L L L L L L L L L L L T XA
0.2 0.4 0.6 0.8 1

- G aphics -

= Free Energy of Mixing

The free energy of mixing is

AGM = RT ( XALog[aa] + (1 -XA) Log[ag]) ;
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Pl ot [ Rel ease[Tabl e[aGm, {Q, -5, 5, 1}]1 /. {R->1, T->1}1,
{XA, 0, 1}, AxeslLabel -> {"Xa", "AGy" }]

AGn

Xa

- G aphics -

Note thatAGm is always symmetric abo, = 0.5; many real solution are not symmetric. WHe«0, AGm is
always negative and the two components disolve. ke, AGm may be positive or negative; positive values
are solutions that will not mix. Here is blow up for some posfive
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Pl ot [ Rel ease[Tabl e[aGm, {Q, 2.5, 3.5, .5}] /. {R->1, T->1}1,
{XA, 0, 1}, AxeslLabel -> {"Xp", "AGy" }]

AGn

0.15 |

0.05 |

-0.05 |

- Gaphics -
A critical value ofQ is whenAGm=0 at XA=0.5 :

Solve[aGm == 0 /. {XA->0.5, R->1, T->1}, Q]
— Sol ve: :ifun :
I nverse functions are being used by Solve, so sone solutions may not be found.

({Q—>2.77259})

m Excess Free Energy of Mixing
The excess free energy of mixing is given by
AGWXS = Sinplify[RT (XAlny, + (1 -XA) I nyg)]

“ (-1 +XA) XAQ

We can also calculataGm directly from the activity coefficient. If will split Ld@a] into Log[XA] + Log[ya]
we can separately calculate the ideal free energy of mixing and the excess free energy of mixing. The results are:
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AGrid = Sinplify[RT (1-XA)

Log [-XA] .
Integrate[ ————, {XA -XA, 0}, Assunptions ->XA>0]]
(1 + XA)?
RT (- (-1 + XA) Log[1 - XA] + XA Log [XA])

AGTXS = Sinplify[RT (1-XA) Integrate|
[ nya

————, {XA 0, XA}, Assunptions -> {XA<1, XA > 0}]]
(1 -XA)

-(-1+XA) XAQ
Finally, the partially molar free energy of mixing (f&ror B, here for just Ais

AGM = Sinplify[RTInax]

(-1 +XA)2 0 +RTLog[XA]

m Excess Entropy of Mixing
If Q is assumed to be independent of temperature, the excess entropy of mixing is obviously zero from
ASTXS = -1 AGYXS

0
We can also calculate excess entropy for the excess entropy of mixing formula derived in class

ASTXS = Sinplify[
SR (XAl ny, + (1 -XA) I nyg) - RT (XAd7 I ny, + (1 -XA) o7 | nyg) ]

0

The total entropy of mixing can be calculated from activity of fuatsing the partial molar entropy of mixing
which is

ASMA = -R (I naa+ Tar | ny,)

-RLog [XA]

ASm= Ful I Sinplify[(1-XA)Integrate|
ASMA

————, {XA 0, XA}, Assunptions -> {XA<1, XA > 0}]]
(1 -XA)

R(-1+XA) (-l m+Log[-1+XA]) - RXALog [XA]

which, if we ignore the complex term (?), is just the ideal entropy of mixing.
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m Excess Enthalpy of Mixing

The excess enthalpy of mixing can easily be calculated AGmXS and ASmXS
AHMXS = AGYXS + T ASTXS
(-1 +XA) XAQ
which is simply equal to the excess free energy of mixing. We can also use the formula derived in class
AHTXS = Sinmplify[ -RT? (XAodr | ny, + (1 - XA) o7 | nyg) ]
(-1 +XA) XAQ

Thus, the sign of) is also the sign of the enthaply effect. Some plots of excess enthalpy (which are actually total
enthalpy of mixing) are:

Pl ot [ Rel ease[Tabl e[aAHMXS, {Q, -5, 5, 1}] /. {R->1, T->1}1,
{XA, 0, 1}, AxeslLabel -> {"Xa", "AHy"}]

AHm

Xa

- G aphics -

If Q gets sufficiently positive, the resulting positive enthalpy will eventually overwhelm the ideal entropy of
mizing causing the free energy of mixing to be positive or causing the components to be insoluable.

The total enthalpy of mixing can be calculated from activity of fustsing the partial molar enthalpy of mixing
which is
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AHMA = -RT? 87 | ny,

(1-XA)2q

AHm= Ful I Sinplify[(1-XA) Integrate|
AHMA

———. {XA 0, XA}, Assunptions -> {XA<1, XA > 0}]]
(1 -XA)

“ (-1 +XA) XAQ

m Regular Solutions with Temperature Dependence

Some experimental results in the text (see Fig. 9.23) suggest Thé@ivhich is proportional ta}) is not constant
but rather decreases with temperature. If we take the results in Fig 9.23 to suggyésear inT, we can derive
new non-ideal solution results using

_ Q(1-XAa)? QXA
=Ko +ki T3 Inyns ————; Inyg= ——;

The problem is solved by finding just the excess terms.

AGXS = Sinplify[RT (XAl nys + (1 -XA) I nyg)]
- (=1 + XA) XA (kg + Tky)
ASTXS = Sinplify[
-R (XAl ny, + (L-XA) I nyg) - RT (XAdr I ny, + (1 -XA) o7 I nyg) ]

(-1 + XA) XAk,

AHMXS = Sinmplify[ -RT? (XAt | ny, + (1 - XA) o7 | nyg) ]

~ (-1 + XA) XAKg

Notice that at constant temperature batBmA and AHmA are proportional toXg2. The proportionality
constants, however, are different which means they are not equal and furthermore the entropy change must differ
from ideal results.

= Partial Molar Quantities
Partial molar results can be derived from Gibbs-Duhem analysis
AGTAXS = Sinplify[AGWXS + (1 -XA) dxa AGTXS]

(-1 +XA)? (ko + Tky)
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AGTBXS = Sinplify[AGTXS - XA dxa AGYXS]

XA (ko + Tky)

ASTAXS = Sinplify[ASTXS + (1 - XA) dya ASTXS]

(-1 +XA)2 Kk,

ASTBXS = Sinplify[ASNXS - XA 8ya ASNXS]

- XA? Kk,

AHMAXS = Sinplify [AHTXS + (1 - XA) 8ya AHTXS]

(-1 + XA) 2 ko

AHTBXS = Sinplify [AHTXS - XA 8ya AHTXS]

XA Ko

m Subegular Solutions

Subregular solution models are derived by letihgary with composition. This change will make the curves no
loner symmetrical abouXA=0.5. The simplest model is to l& be linear inXB but we introduce this linear
dependence in the excess free energy (for simplicity) instead of in the activity coeffickerfthis other method
could be used if desired).

Q=a+b(1-XA) ; AGIKS = QXA (1 - XA)
(@+b (1-XA)) (1-XA) XA

This excess free energy will have minima and/or maxima depending on the values of a and b. These occur where
the derivative is zero or at

AGTXS2 = AGYXS /. XA ->1-XB; Solve[dyg AGTXS2 == 0, XB]

-—a+b-+vaz2+ab+hb2 -—a+b++vaz+ab+b2 }}

{{x8- 3D 3D

}, {XB»

Some plots are on page 262 of the text. Here is a sample:
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Pl ot [
Rel ease [Tabl e [AGYXS2 , {b, -10000, -2000, 2000}] /. a -> -4000],
{XB, 0, 1}, AxesLabel -> {"Xg", "AGS"}]

AGXS
0.2 0.4 0.6 0.8 ‘
-500 |
-1000 -
- 1500 -
-2000 -
- Gaphics -
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Pl ot [ Rel ease[Tabl e[AGXS2 , {b, -10000, -2000, 2000}] /. a-> 0],
{XB, 0, 1}, AxesLabel -> {"Xg", "AG/S"}]

A Gmxs

-zoof
-4oof
-soof
-soof
-1ooof

-1200

- 1400

- G aphics -
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Pl ot [
Rel ease [Tabl e[AGTXS2 , {b, -10000, -2000, 20003}] /. a -> 40007,
{XB, 0, 1}, AxesLabel -> {"Xg", "AG,S"}]

AGmXS
800 ¢

600 -
400 ¢

200 ¢

0.2 0. 0.6 0.8

-200

-400 |

-600 ¢

- Gaphics -
The excess entropy is

ASTMXS = -81 AGYXS

0

It is still zero because there is no temperature dependerearnd band thereforedGmXS is independent of
temperature.

Finally, the excess enthalpy is simply equal to the excess free energy, or by a calculation:

AHMXS = AGTXS + T ASNXS

(@+b (1-XA)) (1-XA) XA

= Partial Molar Quantities
Partial molar results can be derived from Gibbs-Duhem analysis
AGMAXS = Sinplify[AGWXS + (1 -XA) dxa AGTXS]

(-1 +XA)2 (a+b-2bXA)
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AGTBXS = Sinplify[AGTXS - XA dxa AGYXS]

(a-2b (-1 +XA)) XA

ASTAXS = Sinplify[ASTXS + (1 - XA) dya ASTXS]

0

ASTBXS = Sinplify[ASNXS - XA 8ya ASNXS]

0

AHMAXS = Sinplify [AHTXS + (1 - XA) 8ya AHTXS]

(-1 +XA)2 (a+b-2bXA)

AHTBXS = Sinplify [AHTXS - XA 8ya AHTXS]

(a-2b (-1 +XA)) XA

m Activity Coefficients

The activity coefficients can be derived from the partial molar free energies

In AGYTAXS
YA T TRT
(-1 +XA)2 (a+b-2bXA)
RT
| AGTYBXS
nyg = —
e RT

(a-2b (-1 + XA)) XA?
RT

Alternatively we can calculatey ,from Gibbs-Duhem results:

In XAl n
I nyAcal ¢ = Sinplify[-(1-XA) XA s —j s dXA]
XAZ 1 XA?

(-1 +XA)2 (a+b-2bXA)
RT

or, vice-versa, we can caluldtey; from Gibbs-Duhem results:
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[ n XA In
| nyBcal ¢ = Si rrplify[—(l—XA)XA#+J‘ LAY
(1-XA)2 0o (1-XA)?

(a-2b (-1 +XA)) XA?
RT

m Subegular Solutions with Temperature Dependence

We can add temperautre dependence to subregular solutions by adding a third parameter to give
T
Q = (a+ b (1-XA)) (1- —) © AGTXS = QXA (1 - XA)
T
-
(@+b (1-XA)) (1-XA) XA (1- ?)

For fixed temperatureQ is linear inXB (as above for subregular solutions). For constant compogitignnow
linear inT. This temperature dependence will lead to non-zero excess entropy of mixing.

ASTXS = -91 AGYXS

(a+b (1-XA)) (1-XA) XA
T

AHMXS = Sinpli fy[AGWXS + T ASTXS]

- (-1 +XA) XA (a+b -b XA
(Note: the book calculated excess entropy and enthalpy incorrectly).

= Partial Molar Quantities

Partial molar results can be derived from Gibbs-Duhem analysis

AGTMXS = Sinplify[AGIXS + (1 -XA) dxa AGTXS]

(-1 +XA)2 (a+b-2bXA) (T-1)
T

AGTBXS = Sinplify[AGXS - XA dya AGYXS]

(a-2Db (-1 +XA)) XA (T-1)
T

ASTAXS = Sinplify[ASTXS + (1 - XA) dya ASTXS]

(-1 +XA)2 (a+b-2bXA)
T
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ASTBXS = Sinplify[ASNXS - XA 8ya ASNXS]

(a-2b (-1 +XA)) XA?
T

AHMAXS = Sinplify [AHTXS + (1 - XA) dya AHTXS]

(-1 +XA)2 (a+b-2bXA)

AHTBXS = Sinplify [AHTXS - XA dya AHTXS]

(@a-2b (-1 +XA)) XA

m Activity Coefficients

The activity coefficients can be derived from the partial molar free energies

| AGTAXS
n = —
A RT
(-1 +XA)2 (a+b-2bXA) (T-1)
- RT <t
| AGTBXS
n = ———
s RT

(a-2Db (-1 +XA)) XA (T-1)
RT <t

Alternatively we can calculatey ,from Gibbs-Duhem results:

In A ln
I nyAcal ¢ = Sinplify[-(1-XA) XA s —j s dXA]
XA? 1 XA?

(-1 +XA)2 (a+b-2bXA) (T-1)
RT

or, vice-versa, we can caluldtey; from Gibbs-Duhem results:
I n A In
I nyBeal ¢ = Sinplify[-(1-XA) XAia,j SLLLLSPIY
(1 - XA)?2 0 (1-XA)?2

(a-2Db (-1 +XA)) XA? (T-1)
RT
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m Create Your Own Non-ldeal, Binary Solution

= |deal Solution Starting Point

The subsequeent calculations will only be for excess functions. To plot total function, these excess functions
should be added to the following ideal solutions results:

AGTid = RT (XALog[XA] + (1 -XA) Log[1l - XA])

RT ((1-XA) Log[1l - XA] + XALog [XA])

ASmid = Sinplify[-6r AGni d]

-R (- (-1 +XA) Log[1l - XA] + XALog [XA])

AHM d = Sinplify[aGrid + TaSnid]

0

m Start From Activity Coefficient or Excess Free Energy

You can design a non-ideal solution by writing down any function for activity coefficient of companiiatt

tells how it depends on temperature, pressure, and mole fraction. To create a solution, enter a function for
Iny ,usingT for temperatureP for pressure, and X4or mole fraction of componemt. Express everything using

XA; for XB, use (1-XA)instead.Note: whatever function you select, it should appro@dler activity coefficient

of 1) asXA->1 and should approach a Henry's law coefficien{As>0.

@+ 2+CP) ((1-XA)? +d (1-XA)?)
RT

[ Ny, =

(@+cP+2) ((1-XA)%+d (1-XA)%)
RT

Alternatively, you can design a non-ideal solution by writing down an expression for excess free energy of
mixing. As above, this function should be a functionTof P, and XA For example, we could try

AGIXS = RT [a N %) Si n [ XA]
R(a+ B) TSin[nXA]
T

From the excess free energy, we can calculate the partial molar excess free eAemjyiding this result byR
T givesiny ,.
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AGTXS + (1 - XA) dxa AGYXS

Iny, = Sinplify] — ]

(b+aT) (;r (-1 +XA) Cos [7 XA] - Si n [ XA])
T

Now both approaches have been expressed in tering pf The remainder of this section thus derives all terms
for the solution from that result. Here the sample results are based on theyfigiven above. Result based on
AGmXS could easily be created by reevaluating all equations.

Activity Coefficients: Using the Gibbs-Duhem equation and its application for calculating activity coefficients,
we can calculatény from Iny , using the following form of the “alpha” equation (which has been transformed
from the equation in the text to be an integrakéf instead of oveKB):

I n XA | n
I nyg = Sirrplify[—(l—XA)XA#+J‘ #cﬂXA]
(1 - XA)?2 0o (1-XA)?2

(b+ (a+cP) T) XA%2 (-2 +d (-3+2XA))
2RTZ

Excess FunctionsUsing the above activity coefficients we can easily calculate all excess functions. The simplest
method is to calculatAGmXS first and then differentiate it to find the other functions. Alternatively, the other
excess functions could be determined directly from activity coefficients.

AGIXS = Sinplify[RT (XAl ny, + (1 -XA) [ nyg)]

(b+ (a+cP)T) (-2+d (-2 +XA)) (-1 +XA) XA
2T

ASTXS = Sinplify[-87 AGTXS]

b (-2+d (-2+XA)) (-1+XA) XA
2 T2

AHMXS = Sinmpl i fy[AGWXS + T ASTXS]

(2b+(@a+cP)T) (-2+d (-2+XA)) (-1 +XA) XA
2T

AVIMXS = Sinplify[8p AGTXS]

%C (-2 +d (-2 +XA)) (-1 +XA) XA

Partial Molar Excess Functions Using the “method of tangents” which was calculated from the Gibbs-Duhem
equation, we can calculate partial molar excess functions from each of the above excess functions:

AGTMAXS = Sinplify[AGIXS + (1 -XA) dya AGTXS]

(b+(a+cP)T) (-1+d (-1 +XA)) (-1 + XA)?2
T
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AGTBXS = Sinplify[AGTXS - XA dxa AGYXS]

(b+ (a+CcP) T)XA%2 (-2 +d (-3+2XA))
2T

ASTAXS = Sinplify[ASTXS + (1 - XA) dya ASTXS]

b (-1+d (-1+XA)) (-1 +XA)?
T2

ASTBXS = Sinplify[ASNXS - XA 8ya ASNXS]

b (2+d (3-2XA)) XA?
2712

AHMAXS = Sinplify [AHTXS + (1 - XA) 8ya AHTXS]

(2b+(@+cP)T) (-1+d (-1 +XA)) (-1+XA)?
T

AHTBXS = Sinplify [AHTXS - XA dya AHTXS]

2b+(a+cP) T) XA (-2 +d (-3 +2XA))
2T

AVIAXS = Sinplify[AVAXS + (1 - XA) 8ya AVIXS]

¢ (-1+d (-1+XA)) (-1 +XA)?2

AHTBXS = Sinplify [AVIXS - XA dya AVIXS]

1

5 C (2+d (3-2XA)) XA?

Alternate Methods: By using the various equations derived from the Gibbs-Duhem analysis, many of the ablve
resutls could be calculated by alternate methods. For exan@@peXS can be calculated directly fromyjnusing

AGTXS = Sinplify[RT (1-XA) Integrate|
[ Nnya

————. {XA 0, XA}, Assunptions -> {XA<1, XA > 0}]]
(1 -XA)

(b+ (a+cP)T) (-2 + 2+ XA)) (-1 +XA) XA

d (-
2T
Plotting Parameters The rest of this section is to plot the results for the above solution. To do those plots, you
need to define some set of parameters. Using the following table command, create a table of tables where each

element is a set of parameters for subsequent plots. To create different plots, redefine the parameters and execute
the plot functions again.
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parameters =
Table[{R->1, T->1, P->1, a->1, b->value, ¢c->-2,
{val ue, -3, 2, 1}]
({R-1, T-»1, P-1, a-»1, b->-3, c>-2, d- -2},
{R-1, T-1, P=-1, a-1, b->-2, ¢c~>-2, d-> -2},
{R-1, T-1, P=-1,a-1, b->-1, c~>-2, d-> -2},
{(R-1, T-1, P»1, a-1, b-0, ¢c~>-2, d-> -2},
{(R-1, T-1, P»1, a-1, b->1 ¢c—--2, d-> -2},
{(R-1, T->1, P>1, a-1, b-2, ¢c~>-2,d->-2}}

Activity Coefficients of Components A and B:

Pl ot [ Rel ease [XAExp[l ny,] /. paraneters ],
{XA, 0, 1}, AxeslLabel -> {"Xp", "aa"}]

0.2 0.4 0.6 0.8 1

- Gaphics -
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Plot [ Rel ease[ (1 -XA) Exp[l nyg] /. paraneters ],
{XA, 0, 1}, AxeslLabel -> {"Xa", "ag"}]

as

0.
0.
0.
0.
0.2 0.4 0.6 0.8
- G aphics -

Excess and Total Free Energy of Mixing

Pl ot [ Rel ease [AGTXS /. paraneters ],
{XA, 0, 1}, AxeslLabel -> {"Xp", "AGWXS"}]

AGTXS
0.6+
0.5"
0.4F
0.3F
0.2°

0.1

- G aphics -
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Pl ot [ Rel ease[aGTid + AGYXS /. paraneters ],
{XA, 0, 1}, AxeslLabel -> {"Xa", "AGM }]

AGM
0.2 0.4 0.6 0.8 Xn
-0. 2!
-0.4/
-0.6/
0.8/
- G aphics -

Excess Entropy, Enthalpy, and Volume

Pl ot [ Rel ease [ASTXS /. paraneters ],
{XA, 0, 1}, AxeslLabel -> {"Xp", "ASNXS"}]

ASITXS

- G aphics -
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Pl ot [ Rel ease [AHMXS /. paraneters ],
{XA, 0, 1}, AxeslLabel -> {"Xa", "AHMXS" }]

AHMXS
1+

0.8}

0.2 0.4 0.6 - 1

- Gaphics -

Pl ot [ Rel ease [AVNMXS /. paraneters ],
{XA, 0, 1}, AxeslLabel -> {"Xp", "AVNMXS"}]

AVITXS
0.3t

0.25¢

0.27

0.15¢

0.05¢

0.2 0.4 0.6 0.8 1 X

- G aphics -
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m Problems

» Problem 9.1

a. Enthal;py: From table A-8\Hm for Al, Osis 107500 Jand its melting point i¥m=2324K. This data suffices
to calculateASm as

107500

asm = N =gz

46. 2565

As stated in the problem, this is also the entropy of melting€fgerOsz(l do not know why the text simply did not
include AHm for theCr, Ozin Table A-5 instead of using this arbitrary relation given in this problem). Given the
entropy of melring, the enthlapy of melting@f, Osfor its melting point or

AHM = ASmTm /. {Tm-> 2538}

117399.

Assuming this enthalpy of melting is independent of temperature and that the solution is ideal (as stated) and
therefore contributes no extra enthalpy effects, this result is the total enthalpy change on disolving solid
Cr, Osinto the liquid solution.

b. To get the total enropy change we add the entropy of melting to the entropy change on disol®mdthdt
is stated that the solution is very large, thus the entropy change is just the entropy of the added component which,
for 1 mole added, is just the partial molar entropy of that component. Thus

AStotal = ASm - RLOG[XA] /. {R->8.3144, XA ->0.2}

59. 638

Problem 9.2

Assuming the gas is made up of 1 mole of argon gas and the evaporated Mn gas, the partial pressure due to Mn
gas comes from its mole fraction in the total gas which is stated to be at 1 atm:

1.5 1.5
plvh - —/ (l * —)
massVh massVh
1.5

(1+ —=3-) masshh

To get activity, we need to find the vapor pressure of pure Mn. Using the results in Table A-4, the pure pressure is

pMPure = Exp[l nvapWh /. T ->1863]

EI nvapvh

Thus the activity is
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aWh = pMh /pMWnPure

1.5 E—I nvapvh
(1+ —=3-) masshh

Finally, dividing by the mole fraction gives the activity coefficient:

gammaMvh = aWh/XWh /. XMWh -> 0.5

3. E—I nvapvh
(1 + o) massMh

m Problem 9.3*

a. If the solution is regular thaAGmXS should be QXA XB. In other words AGmXS/(XA XB) should be
constant and equal to the regular solution interaction term. Evalulating that ratio for the result in the book gives

GXS = {395, 703, 925, 1054, 1100, 1054, 925, 703, 395} ;

GmXS[[i]]
0.1i (1-0.1i)"

atest = Table| {i, 1, 93]

{4388. 89, 4393. 75, 4404.76, 4391.67,
4400., 4391. 67, 4404.76, 4393.75, 4388.89}

Thus Qis constant and equal 4800 J. This constarf2 does not prove the solution is regular. To prove that there
would have to ba additional experiments showing that the entropy of mixing is zero and therefore the excess
enthalpy is equal to the excess free energy (note: | think the bookwair@ and is off by a factor dj).

b. The partial molar quantities for a regular solution are given by

GFeXS = XB°Q /. {XB->0.6, Q->4400}

4400 XB?
GreMn = XA’ Q /. {XA->0.4, Q->4400}
4400 XA?
c. The total free emergy of mixing is

AGN = RT (XALog[XA] + XBLog[XB]) + QXA XB /.
{R->8.3144, T->1863, XA->0.4, XB->0.6, Q->4400}

-10424. 8 + 4400 XA XB

d. First we need to get the activities from the partial molar free energies
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XB? @
RT
{R->8.3144, XB->0.2, XA->0.8, T->1863, Q ->4400}

aFe = Exp|

+ Log[XA]] /.

2
E-0- 223144 4 2400 XB7

2

amh = Exp| + Log[XB]] /.

RT
{R->8.3144, XB->0.2, XA->0.8, T->1863, Q->4400}

2
E-1. 60944  H00200

The pure vapor pressures are

pFePure = Exp[l nvapFe /. T ->1863]

EI nvapFe

pMPure = Exp[l nvapVvh /. T ->1863]

EI nvapvh

Finally, the partial vapor pressures over the solutions are

pFe = aFe pFePure

E-0- 223144 +I nvapFe + 4400 67

pWn = alh pWnhPure

E-1. 60944 +1 nvaphn 1 4400 Xp2.

(Note: all results above agree with the book solutiq=1052 instead of 4400 as found here).

=» Problem 9.4

The heat required is the total changein enthalpy. First, we have to use the methods of Chapter 6 to find the
enthalpy required to heat 1 mole of Cu and 1 mole of Ag from 298K to 1356 K. Accounting for

1356

AHCU = CpCu dT + AHMCU /. {AHTCU -> 12970}
298

12970 + 1058 CpCu
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1234 1356
AHAg = CpAgs dT + AHMAQ + CpAgl a@T /. {aHmMAg -> 11090}
298 1234

11090 + 122 CpAgl + 936 CpAgs
Next, these two liquids are mixed with the resulting excess enthalpy of
AHXS = 2 (XA (1-XA)) /. {XA->0.5 Q->-20590}
~41180 (1 - XA) XA
The total heat required is the sum of these three enthalpies

AHCu + AHAg + AHXS

24060 + 122 CpAgl + 936 CpAgs + 1058 CpCu - 41180 (1 - XA) XA

m Problem 9.5

a. For a regular solution, natural log of activity is given by

(1-XPb)?
InaPb = ———— + Log[XPb];
RT

We can thus find by solving

Solve[l naPb == Log[0.055], Q] /.
{R->8.3144, T ->473+273, XPb ->0.1}

— General ::ivar : (a+b (1-XA)) (1,;’[-) is not a valid variable.
— General ::ivar : (a+b (1-XA)) (171[6) is not a valid variable.
746
Sol ve [-2. 30259 + 0. 000130592 (a+b (1 -XA)) (1 - T) -- -2.90042,

746 )}

(@a+b (1-XA)) (1— -

b. To find any other activity, use the appropriate formula for a regular solution. Here
(1-XSn)? q

RT
{R->8.3144, T->473+273, XSn ->0.5, Q->-4577.91}

asn =Exp| + Log[Xsn]] /.

E70 693147 _ 4577.91 (1-Xsn)?
: —  RT

m Problem 9.6

This problem has to be solved by graphical or numerical integration which is hariléhematica The method
used here is to fit the data to a function and therMatbematicamethods to numercially integrate the results.
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a. Use Eqg. (9.55)Here is the data from the problem as x-y pairs of moles fraction and activity {B;aB)
(hereB is for Cu and Ais for Fe)

aCubData = {{1, 1}, {0.9, .935}, {0.8, .895},
(0.7, .865}, {0.6, .850}, {0.5, .830}, {0.4, .810},
(0.3, 0.780}, {0.2, .720}, {0.1, .575}, {0.05, .40}}:

This table divides the activity by mole fraction to get x-y pairé&<&,yB):

aCubDataf[[i, 2]]
aCubDataf[[i, 1]1]

yCuData = Table[{aCuData[[i, 111, }oogi 1, 11}

({1, 1}, {0.9, 1.03889}, (0.8, 1.11875},
(0.7, 1.23571}, {0.6, 1.41667}, (0.5, 1.66}, (0.4, 2.025},
(0.3, 2.6}, {0.2, 3.6}, (0.1, 5.75), {0.05, 8.}}

For equation (9.55) we need to integr&®/XA as a function ofnyB. This tables has the x-y pairs fo¢B/XA,
InyB). The frist point is left off becaus€B/XA is infinite when XA=0:

eq955Data =
aCubDataf[[i, 1]1]

1-aCubataf[i, 1]1]

Tabl e[{Log[yCuData[[i, 2111, }.ogi, 2, 11}

({0.0381518, 9.}, (0.112212, 4.},
(0.211649, 2.33333), (0.348307, 1.5}, {0.506818, 1.},
(0. 70557, 0.666667}, {0.955511, 0.428571},
(1.28093, 0.25}, (1.7492, 0.111111), {2.07944, 0.0526316})

Here is a plot of the points which is the same as Fig 9.15 in the text (except that here | am using natural log instead
of base 10 log, this change scales the x axis by 2.303):
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dp = ListPlot [eq955Dat a, AxesLabel -> {"I nyB", "XB/XA"}]

XB/ XA

os 1 1s 2 ImB

- Gaphics -

To do calculations ilMathematica one method is to fit the data and then numerically integrate the fit function.
Here the fit should includ&/x terms because the function looks lik&/a plot.

eq955Fit =Fit [eq955Data, {1/x, 1, x, x"2, x"3}, X]

1.71542 + O'Ziﬂ - 3.57707 x + 2. 49897 x? - 0. 577878 x°

We next need the integration limits. The lower limit is the intercept oKBIXA plot with thex axis. Solving for
where the fit is zero gives:

|l owl i m= Sol ve[eq955Fit ==0, X]

{{Xx > -0.128116}, {x - 1.17158 - 0.667313 1},
(x >1.17158 + 0. 6673131}, {X - 2.10935}}

This the lower limit of the integration &510935 which is IpB whenXA=1. For now the upper limit is justyB:

| nyB
| nyA = —j eq955Fi t dx
2.10935

0. 830274 + 0. 144469 (-2.91747 +1 nyB) (-1.03553 x10° % + | nyB)
(4. 06993 - 2. 84839 | nyB + | nyB?) - 0. 283895 Log[0. +| nyB]

To convert to Fe activity coefficients, we insert the datdrfeB at each value okB. This table thus givegA as
a function ofXB in x-y pairs (XB,yA):
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yFeData = Table[{yCuDataf[[i +1, 1]],
Exp[l nyA]l /. InyB->eq955Datafl[i, 111}, {i, 1, 10}]

({0.9, 5.44468}, {0.8, 3.59712}, {0.7, 2.66594},
(0.6, 2.04645}, {0.5, 1.67248}, {0.4, 1.42267}, {0.3, 1.25957},
(0.2, 1.14507}, {0.1, 1.03832}, {0.05, 1.00035}}

Finally, we get activity by multiplying b)XA = 1-XB:

aFeData = Tabl e[{yFeDataf[[i, 111,
yFeData[[i, 2]]1 (1 -yFeData[[i, 1]11)}, {i, 1, 10}]

({0.9, 0.544468}, {0.8, 0.719424}, {0.7, 0.799783}, {0.6, 0.818581},
(0.5, 0.836241}, {0.4, 0.853601}, {0.3, 0.881697},
(0.2, 0.916058}, {0.1, 0.93449}, {0.05, 0.950336})

Here is a plot of the activity of Fe as calculated and compared to activity of Cu. This plot is identical to Fig 9.9 in
the text:

Li st Pl ot [Joi n[aCuDat a, aFeData],
AxeslLabel -> {"XB", "activity"}, PlotRange -> {0, 1}]

activity
1 .

L] s : °

0.8} . .

0.6

0.4 -

0.2}

0.2 04 o6  os 1 ©®

- Gaphics -

b. Use Eqg. (9.61)Eq. (9.61) is the last equation on page 242 and it is not labeled. First we convert the activity
coefficient data to x-y pairs ¢KA,aB) which is the function that needs to be integrated:
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eq961Data =
Log[yCuDatal[[i, 2111

Tabl e[{l—wCuData[[i , 111,
(1 -vyCuDataf[[i, 111)2

}.ogi, 2, 11}

({0.1, 3.81518}, {0.2, 2.8053}, {0.3, 2.35166},
(0.4, 2.17692}, {0.5, 2.02727}, {0.6, 1.95992}, {0.7, 1.95002},
(0.8, 2.00146}, {0.9, 2.15951}, {0.95, 2.30409}}

Here is a plot ofrB. This should be the same as plot 9.17 in the text. It has the same form, but here | am using
natural log instead of base 10 log. Thus the y axis here is scaled by a factor of 2.303.

ap = ListPlot [eq961Data, Pl otRange -> {{0, 1}, {0, 4}}]

0.2 0.4 0.6 0.8 1

- Gaphics -
Here is a good fit fuction. Th&/x is required to get a nice fit:

eq961Fit =Fit [eq961Data, {1, 1/x, x, x"2, x"3}, X]

1.86931 + % ~0.0315193 x - 2. 18802 x? + 2. 58653 x°

Finally, we do all the calculations in one step. These x-y pairgX@eA) whereaA is calculation equation
(9.61). But, Eq. (9.61) givdsyA; thus we have to use exponential to get activity coefficient and multipKAby
to get activity omA = XA Exp[InyA]:
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aFe961 = Table[{1-eq961Data[[i, 1]], eq961lData[[i, 1]] Exp|
-(1-XA) XAal pha - jXAeq%lFit dx /. {XA->eq96lDatafl[i, 1]1,
al pha -> eq96lDa1ta[[i ., 2113] } (i, 1, 10} ]
[{0.9, 0.544856}, {0.8, 0.712799}, (0.7, 0.790949}, {0.6, 0.816825},

(0.5, 0.841623}, (0.4, 0.859137}, (0.3, 0.877303},
(0.2, 0.900018}, (0.1, 0.932132}, {0.05, 0.95813})

Here is a plot of data which again is identical to Fig 9.9 in the text:

Li st Pl ot [Joi n[aCuDat a, aFe961],
AxeslLabel -> {"XB", "activity"}, PlotRange -> {0, 1}]

activity
1 -

0.8r * ¢ .

0.2 0.4 0.6 0.8 1

- G aphics -

=» Problem 9.7

This problem is identical to Problem 9.6 except the data is different and we need to veroiify that the function
forms used to fit the results for numerical integration are god fitting functions

a. Use Eg. (9.55)Here is the data from the problem as x-y pairs of moles fraction and activity (dfB\iaB)
(hereB is for Ni andA is for Fe)

aNi Data = {{1, 1}, {0.9, .89},
(0.8, .766}, {0.7, .62}, {0.6, .485}, {0.5, .374},
(0.4, .283}, {0.3, 0.207}, {0.2, .136}, {0.1, .067}}:
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This table divides the activity by mole fraction to get x-y pairé<éf,yB):

aNiDataf[[i, 2]]
aNiDataf[[i, 1]1]

yNi Data = Table[{aNi Data[[i, 111, }. g, 1, 10}]

({1, 1}, {0.9, 0.988889}, (0.8, 0.9575},
(0.7, 0.885714}, {0.6, 0.808333}, {0.5, 0.748},
(0.4, 0.7075}, {0.3, 0.69}, {0.2, 0.68}, {0.1, 0.67}}

For equation (9.55) we need to integrXt®/XA as a function ofnyB. This tables has the x-y pairs fo¢B/XA,
InyB). The frist point is left off becaus€B/XA is infinite when XA=0:

eq955Dat a =
aNiDataf[[i, 1]1]
l-aNiDataf[[i, 1]]

Tabl e[{Log[yNi Data[[i, 2111, }. g, 2, 10}]

{{-0.0111733, 9.}, {-0.0434296, 4.}, {-0.121361, 2.33333},
(-0.212781, 1.5}, {-0.290352, 1.}, {-0.346018, 0. 666667,
(-0.371064, 0.428571}, {-0.385662, 0.25}, {-0.400478, 0.111111}}

Here is a plot of the points which is the same as Fig 9.14 in the text (except for a scaling of 2.303 in the x axis
because of use of natural log instead of base 10 log)

dp = ListPlot [eq955Dat a, AxesLabel -> {"|I nyB", "XB/XA"}]

XB/ XA
sl
sl
. 4+
. . 27
-dJ.. 0.3 -0.2 o1 I ny®
- Graphics -

To do calculations itMathematica one method is to fit the data and then numerically integrate the fit function.
Here the fit should includ&/x terms because the function looks lik&/a plot.
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eq955Fit =Fit [eq955Data, {1/x, 1, x, x"2, x"3}, X]
2.95126—-9;9§§gi§£-+13.845x-+38.2076x2-+55.8155x3

We next need the integration limits. The lower limit is the intercept oKBIXA plot with thex axis. Solving for
where the fit is zero gives:

| owl i m= Sol ve[eq955Fit ==0, X]

{{X > -0.411755}, {x - -0.147001 - 0. 346932 | },
(X > -0.147001 + 0. 346932 1 }, {x > 0.0212219}}

This the lower limit of the integration i€.411755which islnyB when XA=1. For now the upper limit is just
InyB:

| nyB
| nyA = —j eq955Fi t dx
-0. 411755

(-0. 468087 - 0.217534 1) -
13. 9539 (7.52373 x107*" +1 nyB) (0. 650056 + | nyB)
(0. 325358 + 0. 262657 | nyB + | nyB?) + 0. 0692434 Log [0. +| nyB]

To convert to Fe activity coefficients, we insert the datdrfeB at each value okB. This table thus givegA as
a function ofXB in x-y pairs (XB,yA):

yFeData = Table[{yNi Data[[i +1, 1]],
Re[Exp[l nyA] /. InyB->eq955Data [[i, 1111}, (i, 1, 9}]

({0.9, 0.473713}, (0.8, 0.565996}, (0.7, 0.713072},
(0.6, 0.846538}, (0.5, 0.934413}, (0.4, 0.978622},
(0.3, 0.991411}, (0.2, 0.996371}, (0.1, 0.999303})

Finally, we get activity by multiplying bXA = 1-XB:

aFeData = Tabl e[{yFeDataf[[i, 111,
yFeData[[i, 2]] (1 -yFeDataf[[i, 111)}, {i, 1, 9}]

({0.9, 0.0473713}, (0.8, 0.113199}, (0.7, 0.213922},
(0.6, 0.338615}, (0.5, 0.467206}, (0.4, 0.587173},
(0.3, 0.693988}, (0.2, 0.797097}, (0.1, 0.899373})

Here is a plot of the activity of Fe as calculated and compared to activity of Ni. This plot is identical to Fig 9.8 in
the text:
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Li st Pl ot [Joi n[aNi Dat a, aFeData],
AxeslLabel -> {"XB", "activity"}, PlotRange -> {0, 1}]

activity
1. ]

0.8/ .

0.6 . .

0.4 ]

0.21 . .
0.2 0.4 08 o8 1L =
- Gaphics -

b. Use Eqg. (9.61)Eq. (9.61) is the last equation on page 242 and it is not labeled. First we convert the activity
coefficient data to x-y pairs ¢KA,aB) which is the function that needs to be integrated:

eq96l1Data =
Log[yNiData [[i, 2]11]

Table[{1-yNiData[[i, 111,
(L-yNiDataf[[i, 111)2

, {i, 2, 10}]

({0.1, -1.11733}, {0.2, -1.08574}, {0.3, -1.34845},
(0.4, -1.32988}, {0.5, -1.16141}, {0.6, -0.96116},
(0.7, -0.757273}, {0.8, -0.602598}, {0.9, -0.494417})

Here is a plot ofrB. This should be the same as plot 9.16 in the text. It has the same form, but scaled here by
2.303 because of the use of natural logs instead of base 10 logs. Also the plot reversed the direction of the y axis
and this this plot is also a mirror image of the book plot.
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ap = ListPlot [eq961Data, Pl ot Range -> {{0, 1}, {-2, 0}}]

-0.25¢

-0.5¢ .

-0.75¢ .

-1.25¢

-1.5¢

-1.75¢

- Gaphics -
Here is a good fit fuction. Thi/x is required to get a nice fit:

eq96lFit =Fit [eq961Data, {1, x, x"2, x"3}, X]

~0.689222 - 4. 48737 x +9. 54183 x> - 4. 76855 x°

Finally, we do all the calculations in one step. These x-y pairgX@eA) whereaA is calculation equation
(9.61). But, Eq. (9.61) givdsyA; thus we have to use exponential to get activity coefficient and multipKAby
to get activity oraA = XA Exp[InyA]:

aFe961 = Table[{1-eq961Data[[i, 1]],
eq96lDataf[[i, 111 Exp[-(1- XA) XAal pha - jmeq961Fit dx /. {XA->
eq961Dataf[[i, 1]], al pha ->eq961DatafT[i, 12]]}] }oodi, 1, 93]
{{0.9, 0.046974}, {0.8, 0.113483}, {0.7, 0.21594},

(0.6, 0.339624}, {0.5, 0.465444}, {0.4, 0.585182},
(0.3, 0.69424}, {0.2, 0.799316}, (0.1, 0.901121})

Here is a plot of data which again is identical to Fig 9.8 in the text:
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Li st Pl ot [Joi n[aNi Data, aFe9611],
AxeslLabel -> {"XB", "activity"}, PlotRange -> {0, 1}]

activity
1, -
0.8¢ .
0.6 . ¢
0.4+ .
0.2+ . *
: : : : : XB
0.2 0.4 0.6 0.8 1
- Gaphics -

= Problem 9.8*

When one mole of a substance is added to a large amount of a substance, the dilute substance is in the Henrian
limit while the other substance is in the ideal or Raoult's limit. The total enthalpy change is the partial molar
enthalpy of the dilute substanct times the number of moles of the diluite substance. Using the formula for partial
molar enthalpy we find

0
+1.58] /. nA->1

AHM = - NART? &7 ('
_840R

This result is negative and thus heat is released. In adiabatic conditions, this heat increased the temperature of the
allow according to its heat capacity:

Solve[nCp AT == - AHMA /. {n -> 100, Cp ->29.5, R->8.3144}, AT]

({AT > 2.36749}}

This result is a factor of 10 lower than the book solution.
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=» Problem 9.10

This problem is most easily calculated using Eq. (9.61)

| nyZn = al XCd? + a2 XCd®

al XCd? + a2 Xcd®

which is substituted into Eq. (9.61)

dXcd ]

) , | nyZn XCd | nyZn
InyCd = Sinplify[-(1-XCd) XCd —j
1

XCd? XCd?

% (-1 +XCd)? (2al +a2+2 a2 XCd)

Expand [Sinplify[InyCd /. {XCd ->1-XZn, al->0.875, a2 ->-.3}]]

0. 425 XZn? + 0. 3 XZn®

Thus activity ofCd is whenXCd=0.5is

aCd = XCd Exp[l nyCd] /. {XCd ->0.5, al->0.875, a2 ->-0.3}

0.577298

» Problem 9.11*

The activity coefficients can be calculated from the method of tangents applied to the excess free energy of mixing
which is given as
AGTXS = XNi (1 -XNi)

.
(24140 (1 -XNi ) + 38280 XNi - 14230 XNi (1 - XNi )) (1- M)

(1_ %) (1-XNi ) XNi (24140 (1 - XNi ) + 38280 XNi - 14230 (1 - XNi ) XNi )

The full activity coefficients are

AGYXS + (1- XNi ) Oxni AGTXS

]

InyNi = Sinplify]

RT
(-2660 + T) (-1 +XNi )? (2414 - 18 XNi + 4269 XNi ?)
B 266 RT
www.iran—mava CI com

Age Cpmodie 5 (il gy



Notes on Gaskell Text

AGMXS - XNi axy AGYXS

InyAu = Sinplify| =T ]

(~2660 + T) XNi 2 (2423 - 2864 XNi + 4269 XNi 2)
266 RT

Thus, the activities are
aNi = XNi Exp[lnyNi] /. {XNi ->0.5, T->1100, R->8.3144}
0. 872396
aAu = (L-XN ) Exp[lnyAu] /. {XNi ->0.5, T->1100, R->8.3144}
0. 695454

The book must have interchanged the activities in the final provided answer.

Chapter 10: The Phase Diagrams of Binary Systems

m Problems

= Problem 10.1*

From Table A-5, for Caf

AH,
AHp = 31200 ; Tp=1691; ASy=N[—]
Tm
18. 4506
From Table A-5, for Mgk
AHB,,

AHBy, = 58160 ; TBy = 1563 ; ASBy = N|

]

Bm

37. 2105

Plotting the liquidus lines (using Eq. (10.23)) and assumiHgandAS are independent of temperature, because
we do not know otherwise and thgfor these compounds are not given in Table A-2) gives
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-AHB,, + T ASB,

-AH, + T AS,
—RT R 1)

RT
R->8.3144], (T, 1300, 1350}]

Pl ot [Rel ease[{Exp| ], 1-Exp]

0.58¢

0.56¢

0.54¢

1310 1320 1330 1340 1350

- G aphics -

These plots intersect at the predicted eutectic temperature BB28K and mole fractionCaF, = 0.54These
results differ from the actual eutectic composition and from the answers in the text.

m Problem 10.2

1. Relative to the unmixed liquids we compare the line connecting the pure solid states, which goes through the
free energy of the eutectic composition, to the line connecting the pure solid states, at the eutectic composition, as
illustrated by the arrow in the following diagram:

B(1)
A(l)

A(s) B(s)

Thus using
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TSI -T

AGSi = AHS ( -
TSi

) /. {aHSi ->50200, TSi -> 1685}

10040 (1685 -T)
337

TAuU -T
TAu

AGAU = AHAU ( ) /. {aHAU -> 12600, TAu -> 1338}

2100 (1338 -T)
223

AGL = XSi AGSi + (1 -XSi) AGAU /. {XSi ->.186, T ->636}

11194.1

Note: some copies of the text has a mi-printed solution of 1119, which is a factor of 10 too low.

2. The energy difference relative to the solids is zero because the liquid solution curve just touches the line
between the solid states at the eutectic composition (see above figure).

= Problem 10.3

For ideal solid and liquid solutions, the liquidus and solidus lines are given be Egs. (10.19) and (10.21).
AssociatingA with Al, O3 and Bwith Cr, O3, with equal entropies of melting (as stated in the problem), we have

AHmM
ASA = N[T_ /. {AHM-> 107500, Tm-> 2324}]
m

46. 2565

AGA = AHMm - TASm /. {AHmM-> 107500, ASm-> ASA}

107500 - 46. 2565 T

AGB = AHMm - TASm /. {AHM-> 2538 ASA, ASm-> ASA}

117399. -46.2565T

The phase diagram can be plotted (as a reversed ptat oé T instead of the more usuBlvs X,):
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1 - Exp[ =2 (1-Exp[227]) Exp[ =&
Pl ot [Rel ease|{ — PL ]AGB : pEGART : p[AGQT : }/
Exp[ _RT ] _Exp[ _RT ] Exp[ _RT ] _Exp[_R_T]

R->8.3144], (T, 2324, 2538}, AxesLabel -> (T, Xa}]

2400 2450 2500
- Gaphics -
Prodeeding graphically from this phase diagram (by expanding and plotting key sections), the answers are:
a. A compositiong oK = 0.5begins to melt a2418K.
b. The initial composition of the melt }, = 0.62
c. Melting is completed @443K.

d. The last formed solid has, = 0.38

m Problem 10.4

The liquid-liquid and solid-solid solutions resemble the curves in Fig. 10.20d except they are symmetric about the
middle. To find the totaAG, we add theAG,, of each component to the ideAlGyixing . For Na O B, O; using
data in the appendix, we have:

Tm-T
AGA = N[AHm(T—) /. {AHmM-> 67000, Tm-> 1240} ]
m
54.0323 (1240. - 1. T)

ForK, O B, O3 using data in the appendix, we have :
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Tm-T
AGB = N[AHm(—) /. {AHmM-> 62800, Tm-> 1220}]
Tm
51.4754 (1220. -1. T)
The totalAG is then the following sum (which remembers to usealif®le for each component):

AG = RTLog[0.5] + 0.5AGA +0.5AGB /. {T-»1123, R->8.3144}

-814.52

= Problem 10.5
The only information we need to know is that the solution is regular with minina&a0.24 when T=1794C.
Because the minima occur when the derivativA@f,ixing IS zero (see page 277), we can solvefarsing:
Sol ve [Log[ 2] + —— (XA-XB) == 0 /
ol ve[Log| —| + — - -= )
g XA RT
{XA->0.24, XB->0.76, R->8.3144, T ->1794 + 273}]

({2 - 38095. 8} )

Using the standard formula, the critical temperature is

Q

Tcr = >R

/. {Q->38095.8, R->8.3144}

2290. 95

= Problem 10.6

a. The intention of this problem is to use Eqg. (10.20) for ideal solution liquidus mole fraction and solve for
AHmMGe as the only unknown. The free energies of melting of each component in terms of the enthalpies of

melting are:
) Tm- T
AGNSI = AHm(T—) /. {AHM->50200, Tm-> 1685}
m
10040 (1685 -T)
337
Tm- T
AGTGe = AHm(_l_—) /. {AHM-> AHMGe, Tm-> 1210}
m

(1210 - T) AHMGe
1210

The following two terms are the exponential terms in Egs. (10.19) and (10.20):
. -ACGTSi -AG e
exSi = Exp[——] - =
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Solving Eq. (10.21) for AMGe gives:

(1 -exCe) exSi
exSi - exGe
{T ->1200+273, XSil ->0.32, R->8.3144}, AHrrGe]

Sol ve [XSi | ==

{ {AHTGe > 21529. 2})

b. Similarly, Eq. (10.19) can be solved to give:

1-exG

exSi - exGe
{T ->1200+273, XSis ->0.665, R->8.3144}, AHnGe]

Sol ve [XSi S ==

({AHTGe - 33114.2})

Comments Part b gives the better result, but actually neither result is appropriate. Equations (10.19) and (10.20)
are based on the assumption thath the liquid and the solid solutions are ideal. The problem says to assume that
only one of them is ideal.Unfortunately, there is not enough information provided taHindse when only one
solution is ideal and the other is non-ideal.This problem is poorly written, but can the answers in the book can be
obtained by using Egs. (10.19) and (10.20) has shown above.

Problem 10.7

Let XAl be the mole fraction of MgO at the point of maximum soluability of MgO in CaO andARtbe the
mole fraction of MgO at the point of maximum soluability of CaO in MgOXAt, the activity of MgO (which
obeys Henry's law) igA0 XAl and in the Henry's limit we assume the activity of CaO is its mole fracti¢h or
XA1). Similar, atXA2, the activity of CaO igrB0O(1-XA2) and the activity of MgO iXA2. Because these two
compositions exist in equilibrium, we can equate the activities of the two components and s¥AE éord XA2

Sol Ve[{)’AO XAl == y )’BO (1—XA2) == (1—XA1)} /.
{yAO -> 6. 23, ¥BO -> 12. 88} ]

[ {XALl - 0. 14992, XA2 »0.934})

The first answer is the maximum soluabiility of MgO in Cd@0.934=0.066s the maximum soluability of CaO
in MgO.

Chapter 11: Reactions Involving Gases

Problems

Problem 11.1

For the reaction CO + (1/2),-> CGO,, the free energy is given in the text as:
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AGC = -282400 + 86.85T

-282400 +86.85 T
For the reactiomd, + (1/2)O,-> H, O, the free energy is given in the text as:

AGH = -246400 + 54.8T

-246400 +54.8T
Subtracting the former from the latter gives the free energy for the reattionCO, —> H, O + CO:

AG = ACGCH- ACGC

36000 -32.05T

The equilibrium constant for this reaction at 900C (1173K) is

-AG
Kp = Exp[ﬁ] /. {R->8.3144, T->900+273}
1.17763

After starting with .5 mole fraction CO and .25 mole fraction,@8&iH,and reacting x mole fraction towards the
right, we have the following final mole fractions (note total number of moles is constant at 1)

nfs = {XCO->.5+X%, XCR -> .25-x, XH2 ->.25-x, XH20->x};

Because P=1, the mole fractions are equal to the partial pressures and we just need to solve

X (.5 +X)

extent = Solve[Kp == ———
(.25 -x)?2

]

{{x ->0.0683606}, {x—6.0612}}
which gives final mole fractions or

nfs /. extent

{{XCO - 0. 568361, XCO2 - 0. 181639, XH2 - 0. 181639, XH20 - 0. 0683606 )
(XCO > 6.5612, XCOR  -5. 8112, XH2 > -5.8112, XH2O - 6. 0612} )

Only the first solution is physcially possible and it agrees with the text.

Problem 11.2

From section 11.6, the reaction S® (1/2)0,-> SO; has

AG = -94600 + 89.37 T

-94600 + 89. 37T
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After mixing 1 mole of S@ and 1/2 mole ofD,, allowing x moles to reaction and equlibrating at 1 atm total
pressure, the final mole fractions are

1-X .5-.5% X
X2 = ———— X2 =z ——— XSB = ———————
1.5-.5% 1.5-.5% 1.5-.5%

Because total pressure is P=1 atm, these mole fractions are equal to partial pressures. The Kp for the reaction is

-AG
Kp = Exp[ﬁ] /. {R->8.3144, T ->1000}
1. 87579

We find x by solving

XSC3

—_—, X
XSQ2 v/ XC2

extent = Sol ve[Kp ==

{{x > 0.463196}}
If x moles reaction, the heat evolved is
X (-aH) /. {x ->0.4631956, AH-> -94600}
43818.3
Problem 11.3
For the reaction CO + (1/8), -> CO,, the text gives:

AGC = -282400 + 86.85T

-282400 +86.85T

which leads to Kp at 1600C (1873K) of:

-ACC
KpC = Exp[-75$—] /. {R->8.3144, T ->1600 +273}
2182.81
For the reactiomd, + (1/2) O, -> H, O, the text gives:

AGH = -246400 +54.8T

-246400 +54.8T

which leads to Kp at 1600C (1873K) of:
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-ACGH

KpH = Exp| =T

] 7. {R->8.3144, T->1600 + 273}

10213.
We start with 1 mole oH, and R moles of Cgthus the C@to H,starting ratio is R). After allowing the
CO,reaction to back react by x moles and lthgeaction to forward react by y moles, the number of moles of all

components are:

X -y

nme = {nCO->x, nC® -> R-x, n®2 -> , NH2 ->1-y, nHOH->y}

{nCO- x, nC® - R-x, n@e%, nH2 > 1 -y, nHOH -y}

The total number of moles is no longer constant; it is

nm=nCO + nC2 + n® + nH2 + nHOH /. nns

1+R+ Xéy

Thus, the mole fractions are as follows (note these are equal to the partial pressures because the total partial
pressure is 1 atm):

nCO nCOo2
pps = {XCO-> —, XC®2 -> ,
nm nm
nQo2 nH2 nHCH
X -> ——, XH2 -> ——, XHOH -> } /. nns
nm nm nm
X R-x
(XCO- g gy X0 Ry
X-y 1-y y
Xm%2(1+R+%)'XH2%71+R+%'XHO_|%71+R+%}

We are told the partial pressure @ is 10 'atm. This information can be used to eliminate x or y. Here we
eliminate y by solving

elimy = Solve [X?2 == 10™7 /. pps, VY]

_2 _2 R+ 9999999 x
{{y- 9999999 b}

In terms of x and R, the mole fractions (which are equal to the partial pressures) are:

xpps = Simplify[pps /. eliny]

9999999 x 9999999 (R- X) 1
{{XC0~ 15560000 1R %2~ 10000000 (1:R "’ %~ 10000000

10000001 + 2 R- 9999999 x o -2 -2 R+ 9999999 x 3
10000000 (1 +R) ’ 10000000 (1 +R)

XH2 —
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Finally, solving the two equilibria for the above two reactions for the two unknowns gives the final answer:

Sol ve[

{XCR == VX2 KpCXCO, XHOH == VX2 KpHXH2} /. xpps, {x, R}]

{{x >0.763573, R~ 1.29064}}
The required initial ratio is this R value; the final reaction proceeds by extents x (given here) and

eliny /. %
{{{y - 0.763572}}}

m Problem 11.4

From Table A-1, the free energy for the reaction LiBr -> Li + (1/2)iBr

AG = 333900 - 42.09T

333900 -42.09T

If we start with 1 mole of LiBr of which x moles dissociate, we end with total numbers of moles of
) ] X
nms = {nLiBr -> 1-x, nLi ->x, nBr -> —}
2

{nLi Br -1-x, nLi - x, nBr e%}

The total number of moles is

nm= nLiBr + nLi + nBr /. nns

l+%

Thus the final mole fractions (which are equal to the final partial pressures because the total pressure is 1 atm) are

) nLi Br ) nLi nBr
pp = {pLiBr -> , pLi -> ——, pBr -> —1} /. nn®
nm nm nm
. 1-x . X X
{pLiBr - 1o % pLi %—1+%' pBr - 21+ %) }

We are told that the final partial pressure of Li is>Hdm which can be used to solve for x:

elink = Solve[pLi == 10"° /. pp, X]

({x > Tos55 )}

The final partial pressures are thus
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ppf = pp /. elinx

199997

{{pLi Br — 500000 pLi -

1
. PB > 55600 ) )

-
100000

which leads to an equilibrium constant of

pLi  pBr )

Kp = N
P [ pLi Br

ppf |
{2.2361x10°%)

The temperature at which this is the correct equilibrium constant is found by solving

Sol ve[2.2361107° == Exp[:ﬁgg] /. R->8.3144, T]
RT

({T >1770.83})

m Problem 11.5

The decomposition reaction follows $& SQ + (1/2)O, with free energy
AG = 94600 - 89.37T

94600 -89.37T

If x moles of an initial 1 mole of SOdecompose we end up with the following numbers of moles:

X
nne = {nSG3—>1—x, nsS?2 ->x, n2 -> E}

{nSCB»l—x, nsS2 - X, nC)Zeg}

The total number of moles is

nm= nSG8 + nS2 + n&®2 /. nns

l+§

Thus the partial pressures (mole fractions time pressure P) are

nSC3 P nSQ2 P n>2 P
pps = {pS®B -> , pSx -»> , p2 -> } 7. nns
nm nm nm
P (1-x) P x P x
{pSCBe 1. x ,pS@elJr—x, p0292<1+i)}

2

We can eliminate x from the given information about pOZ2:
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elimk = Solve[pQ2 ==.05 /. pps, X]

(x> 255

Thus, the final partial pressures are:

ppsf =Sinplify[pps /. elink]
{{pSAB - -0.15+1. P, pSA2 - 0.1, pO2 - 0.05}}

Finally, we solve for the P required to make this pressures give the correct equilibrium constant:
Kp = Exp| 'AG] /. {R->8.3144, T ->1000}
= ————— . -> 8. , ->
P P RT
0. 533109

pSe2 Vp2

Sol ve [K ==
pSC3

/. ppsf , P]

({P>0.191944})

If the total pressure is changed to P=1 atm, the new Kp is

pSe2 Vp2
Kp = —4m — o /. sf /. P->1
p 0SB pp >

{0. 0263067

To find the temperature that gives this Kp, we solve

-AG
Sol ve[0. 0263067 == Exp[ji?—] /. R->8.3144, T]

{{T > 790. 856}
= Problem 11.6

For the reactioM,-> 2N, the free energy is

AG = 945000 -114.9T

945000 -114.9T

At 3000K, the equiltibrium constant is
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K Ex [_ ] /. {R 8.3144 3000}
= — . -> 0. y ->
p p RT

3.53162x 107

a. If x moles of an initial 1 mole dfl, dissociates, the final partial pressures are

N2 (1-x)P N 2xP
= =3 e ->
PP {p 1+X P l+X}
P (1-x) 2Px
{pN2% +x pN%l+X}

The value of x to reach equilibrium is

Sol ve[Kp — /. {pp /. P->1} x]
== . . -> y
pN2

[{X > -2.97137x10%}, {x »2.97137x10°%}}

The positive root is the correct one. Thus

final pN = /. {P->1, x->2.9713710°%)

+ X

5.94272 x10°°
b. If pN2 is 90% of the total pressure, we can solve for x

. pN2
elim = Solve[ ———— ==.9 /. pp, Xx]
PN + pN2

{{x - 0.0526316}}
Thus the partial pressure become:

ppf = pp /. elinx

{{PN2 - 0.9P, pN->0.1P}}

The pressure is found from

Sol ve [Kp == /. ppf, P]

LMl
pN2
({P-3.17846 x10°°}}

m Problem 11.7

From Table A-1, for the reactia8/2) H, + (1/2)N,-> NHjz, the free energy is
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1
AG = — (-87030 +25.8 TLog[T] + 31.7T)

% (-87030 +31.7T+25.8 TLog[T])
The equilibrium constant at 300C (575K) is
-AG
Kp = Exp[ﬁ] /. {R->8.3144, T ->300+273}

0. 0723638

If x mole of and initial 1 mole of Nkldissociates, the final partial pressures are

(L-x)P (3x/2)P (X/2)P

= NH3 -> —io . pH2 - o N2 -> ———
PP {p 1+X P 1+X P 1+X }
P (1-x) 3Px P x
{PNHS > —— 'pH2%2<1+x)'pN2%2(1+x)}

If the mole fraction of N2 is 0.2, the x must be

eIim<=SoIve[ ==0.2, x]

2 (1 +Xx)

{{x > 0.666667}}
Thus, the partial pressures become
ppx = pp /. elinx
{{pPNH3 - 0.2P, pH2 - 0.6 P, pN2 - 0.2 P}}
To equal the equilibrium constant, the pressure must be

pNH3
Solve[Kp == ———— /. ppx, P]
pH23/2 pN21/2

{{P-13.2974})
b. At 300C, the entropy can be found from

AS = -9 AG /. T ->300+273

-110. 676

which can be used to find the enthalpy
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AH = AG+ TAS /. T->300+273

-50906. 7
= Problem 11.8
From Table A-1, the reaction PGt Cl,-> PCkhas free energy

AG = -95600 - 7.94 TLog[T] + 235.2T

~95600 +235.2 T -7.94 TLog[T]

At 500K, the equilibrium constant is

-AG
Kp = Exp[ﬁ] /. {R->8.3144, T ->500}
1. 90168

Let R be the startint ratio of P{&b PC}. Starting with 1 mole of Pgand reacting x moles, we end up with the
following mole fractions (which are also partial pressures when P=1 atm):

R-x 1+Xx X
pp = {XPA5 -> ————, XPA3 -> ————, XCA2 -> ———}
1+R+X 1+R+Xx 1+R+Xx
R-x 1+Xx X
XPAS - T rx XA i X920 Torix )

If the final partial pressure of &k 0.1 atm, we can eliminate x by solving

eIim<=SoIve[ ==0.1, x]

1+R+X
{{x~->0.111111 (1. +1. R)}}

Thus, the partial pressures are

ppx = Sinmplify[pp /. elinx]

0.1+0.8R ypgg ., 1 *0-1R yq2 0.1}

{{xPa5 > 1+R 1+R

Finally, we solve for R by equating to the equilibrium constant:

Sol K XPd 5 / R
ol ve == e X,
[p XPCl 3 X 2 PP ]

{{R>0.371542})
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=» Problem 11.9*

From the text for the reactidi, + (1/2) O,-> H, O, the free energy is:

AG = -246400 + 54.8T

-246400 +54.8T

At 1200K, the equilibrium constant is
K Ex [ _ ] /. {R->8.3144 1200}
= —_— . -> 0. s ->
P P RT

7.29391 x 107

If we mix 1 partH, to 4 parts air, the final partial pressures (after x moles of reaction) are:

X (1-x)P
nm=5- —; pp = {pH2 -> ,
2 nm
(%P (4 %79 /100) P X P
po2 -> 0z pN2 -> , pHOH -> ——
nm nm nm
{H2%P<1_x> m%P(g—é—%) o 9P o PX }
p 5_% :p 5_% :p 25<5_%)1p 5_%
a. At total pressure of 1 atm, the partial pressures are:
ppl = pp/. P->1
1-x 24X 79
{pHZeﬁ, p@»ﬁ, pm»m, pHO—|»5_%}

The extent of reaction is nearly complete as found by solving

pHCH
Sol ve [Kp == /. ppl]
pH2 VpQ2
{{x->1.}}

which converts to final partial pressures of

ppl /. %

{{pH2 > 1.10839x 108,
pOR2 - 0. 0755556, pN2 - 0. 702222, pHOH - 0. 2222221}

b. At a total pressure of 10 atm, the partial pressures are:
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ppl0 = pp/. P->10

10 (1 - x) b2

10 (32 - %) 158 10 x
5-% 5-

{pHZe , PN2 -

INEI

The extent of reaction is nearly complete as found by solving

pHOH
Sol ve [Kp == ————— /. ppl0]
pH2 V pO2
{{x-=>1.}}

which converts to final partial pressures of

ppl0 /. %

({pH2 > 3. 50505 x 108, pC2 - 0. 755556, pN2 7. 02222, pHOH - 2. 22222} )

The O, partial pressures agree with the solutions in the text, thdtpeessures are slightly different.

m Problem 11.10*

From Table A-1, the reactidd, + |,-> 2HI has free energy

AG = -8370 -17.65T

-8370-17.65T

At 1500K, the equilibrium constant is

-AG
Kp = Exp[75$-] /. {R->8.3144, T->1500}
16. 3454

After mixing and x moles of reaction, the final partial pressures (which are the mole fractions when P=1 atm) are

D 1-x |2 1-x H 1+2x
= -> , -> , ->
pp = {p 3 p 3 p 3 }

1-X 1-X

1
{pH2 - 3 PI2> =5=, pH > = (1+2x)}
a. Solving for x at equilibrium gives
pHI 2
Solve [Kp == —— / , X
[Kp TIE pp, X]

{{X - 0.503553}, {x - 2.46847}}

The first root is the correct one. Thus the mole fractions (which at P=1 atm are the partial pressures) are
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pp /. X -> 0.503553

(pH2 - 0. 165482, pl 2 - 0. 165482, pH - 0. 669035)

This answers differs from the solution in the text.

b. Now change the temperature such that pHl is five times pH2. Using this information we can eliminate

Solve[pH == 5pH2 /. pp, X]

ppf = pp /. %

1 1 5
{{pHZe?, p|2+?, pHI e?}}

This give the correct equilibrium constant at the solution to the following equation

-AG ] pHI 2
8.3144T+ ~ pH2pl2

Sol ve [Exp| /. ppf, T]

({T—918.466}}

Chapter 12: Reactions Involving Pure Condensed Phases and Gases

m Problems

m Problem 12.1

From Table A-1, for MgO + C®> MgCQ,, the free energy is

ARD = -117600 + 170 T

-117600 + 170 T

But this is for CQ at P=1 atm. If we add the above reaction to the change in pressure reactidra{@() ->
CO, (P) which has

AGP = RTLog[P]

RTLog [P]

The totalAG for the reaction with C&at pressure is
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AG = AQD - AGP

-117600 + 170 T - RT Log [P]
The T for equilibrium when P=0.01 is

Solve[aG==0 /. {R->8.3144, P->1072%}, T]

({T->564.6}}

At temperature below this resultiG<0 and the reaction proceeds to the right to form MgGQ temperature
above this result, MgC{Will decompose.

m Problem 12.2

Consider the two reactions. First Ni(sj}/ 2) O,-> NiO(s) with free energy (in Table A-1):
1
AGs = 5 (-471200 + 172 T)

(-471200 + 172 T)

N =

Second Ni(l) +1/2) O,-> NiO(s) with free energy (in Table A-1):
1
AQd = 5 (-506180 + 192.2T)

% (-506180 + 192. 2 T)

a. The melting temperature is where these two free energies are equal:

Solve[aGs == AQ , T]

{{T->1731.68}}
b. Subtracting these two reactions gives the readli¢s) -> Ni(l) with free energy

AGNM = Simplify[aGs - AQ ]

17490. -10.1T
The AHyecis easily found from

AHMelt = AGn/. T->0

17490.

TheAS,eris found from
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AHTelt - AGmM

aSmelt =Sinplify] = ]

10.1
= Problem 12.3
For the reaction 2Ag + (1/2),(1 atm) -> AgO, the free energy is

AQD = -30540 + 66. 11T

-30540 +66. 11T
a. The decomposition temperature (or equilibrium temperature) is

Solve[aRD == 0, T]

({T > 461.957})

b. In air (which is 21 percerd,, the oxygen pressure is reduces. As in Problem 12.1, we need to subtract the
change in free energy due to reducing@heressure. The new equilibrium temperature is

1
Sol ve [AQD - > RTLog[P] == 0 /. {R->8.3144, P->.21}, T]
{({T->420.673}}
= Problem 12.4
The water reaction isi2, + O,-> 2H, O with

AGH = 2 (-247500 + 55.85T)

2 (-247500 + 55. 85 T)

The chromium reaction (on molar oxygen basis;& Gr+0, -> % Cr, O3 with
2
AGCr = 3 (-1110100 + 247.3T)

% (-1110100 + 247.3T)

The difference of these reactions gives a reaction for oxidation of Cr by Watergaér is2H, O -> % Cr, O3+
2H, with

AG = Sinplify[aGCr - AGH]

-245067. +53.1667 T

The equilibrium constant is
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-AG
K = Exp[ﬁ] /. {R->8.3144, T -> 1500}
571174.

The water pressure (when tHgpressure is 1 atm) at equilibrium is

1

Sol ve[K == >
Pmax

, Prrax]

{{Pmax - -0.00132317}, {Pmax - 0.00132317}}

If the pressure is above this values will become negative and the Cr oxidation will proceed. Thus, this pressure
is the maximum water pressure to which Cr can be heater without oxidizing.

From theAG result above, the reaction is exothermiti(a -245067 < (.

= Problem 12.5

The two key reactions af¢, + Cl,->2HCI with

AGH = -188200 -12.80T

-188200-12.8T
and Sn + G-> SnChwith

AGSn = -333000 + 118.4T

-333000 +118.4 T
The difference of these reactiondHs+ SnCh-> 2HCI + Sn with

AG = Sinplify[aGH - AGSNn]

144800. -131.2T

The final equilbrium constant from the given composition

2

pHCI
Kg = /. {pH->.5, pHO ->.07}
pH
0. 0098

FromAG, the equilibrium constant should be

-AG
K = Exp[75$-] /. {R->8.3144, T ->900}

0. 0281339
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Thus the mixture is not at equilibrium. The text book answer gives the actual equilibrium answer, but they might
be in error. There does not seem to be enough information to find the final composition unless one knows the
starting composition of Ar and, (it is not supplied). The question can be answered, however, without finding the
final equilibrium.

m Problem 12.6

It is stated the Fe and FeO are in equilibrium with CO anda®ome ratio and at 1273K. If the temperature is
reduced, the lower slope of the 2FeDy —> 2FeO line means the 2CO @,-> 2CO,line would have to be
rotated to the left to regain equilibium. This rotation to the left requires a lower pressure CO. Thus in the reaction
FeO + CO -> Fe + CH FeO and CO must react. The FeO will eventually disappear.

m Problem 12.7

The key reactions for Table A-1 are 2Mg(gP3> 2MgO(s) with

AGM = 2 (-729600 + 204 T)

2 (-729600 + 204 T)
2 MgO(s) + SiQ-> Mg, SiO; with

AR = -67200 + 4.31T

-67200+4.31T
and Si +O,-> SiO, with

AGS = -907100 + 175 T

-907100 + 175 T
The reaction in the problem 4MgO + Si -> 2Mg(g) + MO, has

AG = AGZ2 - AGM + AGS

-974300 +179.31 T -2 (-729600 + 204 T)

The equilibirum contant at 1400 C is

-AG
K = Exp[—] /. {R->8.3144, T ->1400 + 273}
RT
0. 00063968
The only gas is Mg; thus its pressure is

Sol ve [K == pMy? ]

{{pMy -» -0. 0252919}, {pMy —» 0.0252919}}
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m Problem 12.8

CaCQcan decompose to a gas and a solid by Gag0aO + CQwith

AG = 161300 -137.2T

161300 -137.2T

The equilibrium constant is simply K=pCO2; thus

-AG
pCo2 = Exp[ﬁ] /. R->8.3144

0.120273 (161300-137.2T)
N T

The number of moles of GOreated as a function of T is

nmcoR = ——— /. {V->1, R->0.082057}

0.120273 (161300-137.2T)
T

12. 1867 E-

-
The initial number of moles of CaG@ere

1
massCa + massC + 3 massO

nnCaCC3 =
0. 00999201

1. We need to equate the number of moles of @OCaCQand solve for T. That equation can not be solved for
T, but a plot over T shows the final temperature to be about 1173
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Pl ot [Rel ease [{nnCO2, nmCaCC3}1],
{T, 1000, 1200}, Pl otRange -> {0.009, .011}]

0.011;
0.01075¢
0. 0105}
0. 01025

1050 1100 1150 1200
0. 00975/

0. 0095}
0. 00925}
0. 009"

- Gaphics -
This result can be checked by calculating the number of moles of CO

nnmco2 /. T ->1173

0.0100083
2. The pressure in the vessel at 1000K is

pCo2 /. T -> 1000

0. 0551011

3. At 1500K, allCaCO3; hasconverted t€0,: thus

nmMCaCC8 RT
p = — v /. {R->0.082057, V->1, T->1500}

1.22987

= Problem 12.9

First consider the reaction CoO + £ CoSQwhich is given in Table A-1 with

AG = -227860 + 165.3T

-227860 +165.3 T

The only gas here is SOthus its pressure is determined by the the equilibrium constant
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-AG
K = Exp[ﬁ]

-227860+165.3 T
- R

thus, the presure is
1
pSO, = m /. {R->8.3144, T ->1223}
0.

0798805
Next, this SQ might decompose according to $8 SO, + % O, with

ACGd = 94600 - 89.37T

94600 -89.37T

From the decomposition, the pressur®gfnust be exactly half the pressure of,SO

1
PO, = E;IDSC&

PSG,
2

The equilibrium constant for the decomposition reaction is

-Ad

K= Exp| =T

] 7. {R->8.3144, T-> 1223}
4.24436

The final pressures are found from

PSG, VPG,

Sol ve [K == o, pSQ, |

{{pSO, - 0. 612602} }

The total pressure is thus

pTotal = pSQ, +pSO, + pO, /. %

(0. 998784

m Problem 12.10

Consider the three reactions from table A-1: § ®,-> CO with
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AGlL = -111700 - 87.65T

-111700 -87.65T
C+2 0, + 3 S$-> COS with

AG2 = -202800 - 9.96 T

-202800-9.96T
and Fe +5 S-> FeS with

AG3 = -150200 + 52.55T

-150200 +52.55 T
Then the reaction in the problem of COS + Fe -> CO + FeS has

AFA = AGl - AR + AG3

-59100-25.14T
1. The problem means to remove sulfer from the CO$nibles get removed the final partial pressures are:

pp = {pCOS -> .004-x, pCO -> .9 +x}

{pCCS - 0. 004 - x, pCO- 0.9 +x}

The equilibrium constant is

K4 = Exp|

A
] 7. {R->8.3144, T-> 1000}

RT

25130.

Thus, the number of moles removed is

Sol ve [K4 b /
\/ - R . X
[ pCOs PP - ]

{{x -» 0.00396403} }

The percentage removed is

100 x
. 004

%

{99. 1007}

2. The pressure d&, is calculated from reaction 3 and only one gas:
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-A
K3 = Ex /. {R->8.3144, T -> 1000
d| =T ] { }
126082.
which leads to
1
Sol ve [K3 == . PS,]
\/pS,

{{pS, - 6.29067 x10 '}

m Problem 12.11

In 1 liter (or 1 minute of time), .9/(R T) moles of enter the reaction and we take x as the number of these moles
that react to reach equilibrium. Thus the total number of moles of water is

9V
NHOH = —— - x /. {R->0.082057, V->1, T->298)
0. 0368053 - x

The Ar does not react, thus it has the following constant number of moles

.1V
nAr = =T /. {R->0.082057, V->1, T->298}
0. 00408948
The moles of HF formed are

nHF = 2 x

2 X
The total number of moles in the equilibrium mixture is

nms = NnHOH + nAr + nHF

0. 0408948 + x
In terms of x, the mass rate loss per hour

rate = 60x (massCa + 2 massF - massCa - massO)

1320. x

The x values at the two temperature determined from the two supplied mass loss rates
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x1 = Solve[rate == expt /. expt ->2.69%107*]
{{X >2.03788x10 "}}
x2 = Solve[rate == expt /. expt ->8.30%107%]

{{X > 6.28788x107°}}

The equilibrium constants at the two temperatures are

nHF2
KL = —————— /. x1[[1]]
nns NHOH
1.10367 x 10710
nHF2
K2 = —— /. x2[[1]]
nns NHOH

1.05074 x 10"’
The G's at the two temperature are

Gl = -RTLog[K1] /. {R->8.3144, T ->900}

171563.

& = -RTLog[K2] /. {R->8.3144, T ->1100}
146961.
Drawing a line through these two slopes, the entropy is

- (& - al)
200

AS =
123.013

and the enthalpy is

AH = GL + AST /. T ->900

282275.
The final variation of free energy with temperature is

AG = AH - TAS

282275. -123.013 T
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m Problem 12.12*

It was not clear what the problem is asking or even if enough information is available. If you have a solution, let
me know.

m Problem 12.13

The three reactions are

AG = -604000 - 5.36 TLog[T] + 142.0T;
AG i = -759800 - 13.4 TLog[T] + 317 T;
AGii = -608100 - 0.44 TLog[T] + 112.8T;

We can plot then all

Pl ot [Rel ease[{aG , AG i

, AGii}], (T, 800, 1500}]

- 440000 |

- 460000 |

- 480000 |

- 500000 |

- 520000

- 540000 |

- 560000 |

900 1000 1100 1200 1300 1400 1500
- Graphics -

The one with the steepest slope is obvious the gas oxidation (the lat§eist caused by conversion of gas to
solid). Similarly, the next steepest slope is the liquid oxidation. Thus, reaction (ii) is for the gas, but it is not clear
whcih of (i) and (iii) has the steeper slope. Another approach is to find the intersections of each. From the plot
abve (and identifying the gas, liquid, and solid oxidation from the slopes) the melting point is the highest
intersection and the boiling point is the lowest intersection. From the following solutions

Solve[aGi ==2AG , T]

({T->1329.68}, {T-2.83742x10%}}
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Solve[AG i ==AGii , T]

{({T->1371.89}, {T-6.95165x10°}}

Solve[aG ==AGii , T]

{{T~->927.959}}
we deduce the (i) is the gas, (iii) is the liquid, and (i) is the solid. The melting point and boiling point are

Tm= 928; T, = 1372;
m Problem 12.14
First, we find the non-negligible vapor pressure of Zn:
pZn = Exp[l nvapzn /. T ->1030]

0.178681
The reacion Zn + O,-> ZnO has

AG = -460200 + 198 T

-460200 + 198 T
in two moles of air (which as given elsewhere is 21% oxygen) has the following number of n@jes of

n2 = .42 - X

0.42 -x
and moles of\,

nNN2 = 2 .79

1.58

The partial pressure @,and N,come from mole fraction (betwedd,and N;) using total pressure due to just
those compounds (the given .8 atm minus the vapor pressure of Zn):

n P
pR2 = ———— /. P->.8-pZn
n®2 + nN2
0.621319 (0.42 -x)
2. - X
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nN2 P
pN2 = —— — /. P->.8-pZn
n®2 + nN2

0. 981684
2. -X

The equilibirum constant is

K= Exp[—] /. {R->8.3144 -> 1030}
= . > 0. , >
RT
9. 89965 x 1012

which can be solved to get extent of reaction x. Note the due to the high K, the reaction is essentailly complete and
all oxygen is used up:

Sol ve[K2 == L ]
pO2

{{x->0.42}}
Each mole of oxygen consummes 2 moles of Zn. The mass oxidized is thus

msSsOX = 2 .42 »massZn

54.9192

Comparing Zn vapor pressure to the two moles of air, the mass of Zn in the vapor is

pZn
massVap = 2 5 massZn

29. 2054

m Problem 12.15*

No solution.

m Problem 12.16*

The reaction Hg(l) t1/2) O,-> HgO(s) has

AG = -152200 + 207.2T

-152200 +207.2 T

with equilibrium constant at 600 K of
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-AG
K = Exp[ﬁ] /. {R->8.3144, T -> 600}

267. 387

BecausdD,is the only gas, it must develop partial pressure

1
Vp2
{{pO2 -~ 0. 0000139868} }

Sol ve[K ==

., p2]

pO2 = 0.0000139868;
The vapor pressure of the liquid Hg is

pHg = Exp[l nvapHgl /. T ->600]

0. 547409
Finally, the partial pressure dkbecomes

PN2 = P - pO2 - pHg /. P->2

1. 45258

The mole fractions are half these values (because there total pressure is 2 atm):

pQ2 pHg pPN2

{2’2 2}

(6.9934x10°°, 0.273704, 0.726289)

These results differe from those in the text.

= Problem 12.17*

This problem is related to section 12.7 of the text which was not covered in class and will not be on the final exam.

Final Exam

m Problem 1

The water reaction isi2, + O,-> 2H, O with

AGH = 2 (-247500 + 55.85T)

2 (-247500 + 55. 85 T)
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The silicon reaction (on molar oxygen basis) is 8i,+> SiO, with

AGSi = -907100 + 175T

-907100 +175T
The difference of these reactions gives a reaction for oxidation of Si by water adHi3iG--2 SiO,+ 2H, with

AG = Sinplify[aGSi - AGH]

-412100. +63.3T

The equilibrium constant is

K = EX [ , ] /. { 8.3144 1600}
= — . -> 0. s ->
Pl =7 R
1. 40317 x 10

The water pressure (when tHgpressure is 1 atm) at equilibrium is

1

Prmax?

Sol ve[K == , Prrax]

{{Pmax - -8.44199 x10°®}, {Pmax - 8.44199x10°}}

If the pressure is above this valueG will become negative and the Si oxidation will proceed. Thus, this pressure
is the maximum water pressure to which Si can be heated without oxidizing.

From theAG result above, the reaction is exothermic (AF412100 < .
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