
 

Moment-Distribution 
 
 
The method of moment distribution relies on a series of calculations that are repeated and that with every 
cycle come closer to the final situation. In this way we are able to avoid solving simultaneous equations. 
Inspection of the slope-deflection equations shows us that the final end-moments depend on 4 effects 
namely, θA, θB, ψAB and the fixed end moments, FEM. By using moment-distribution we are able to 
investigate each effect separately. The following beam will be used to illustrate moment-distribution. 

 
 
Rotation is possible at both B and C 
 
 
 
Rotation at B and C are prevented and the load is applied. 
FEM will result. These are called the initial moments. 
 
 
Allow B to rotate until moment equilibrium is reached. 
Rotation at B will induce a moment at C. 
 
 
Allow C to rotate until moment equilibrium is reached. The 
rotation of C will induce a moment at B. 
 
Repeat this process until moment equilibrium is reached at 

the nodes. 
 
Assume that the sum of the initial moments at the node B is equal to M0. 
 
Rotation will take place until moment equilibrium is attained, i.e., sum moments ΣMB = 0. 
 

 
 
Therefore:  0 0D D

BA BCM M M+ + =

Where M a  are the moments as a result of the rotation at B, θD
BA BCnd MD

B, and are called the distribution 
moments. Remember that all the other rotations and sway are prevented. 
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Solve for θB. 
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Solve the distribution moments. 
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kBA is the stiffness of the member BA at the node B. It is also the moment that would be induced if a unit 
rotation were applied at B in the member BA and the rotation at A was zero. 
 
If B rotates a bending moment will be induced at A and C. Assume a rotation θB and calculate the moment at 
A. 
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The distributed bending moment is half the value of the distributed bending moment at B. This is called the 
carry-over factor, CBA = ½. 
 
The same solution may be obtained if one remembers that the stiffness of a member is the moment that is 
induced if a unit rotation is applied at the node. 
 
 

 
 

( ) ( )2 22 2 1,0 4AB AB
AB AB A

AB AB AB

EI EI EIM k
L L

θ
⋅ ⋅

= = ⋅ ⋅ = ⋅ ⋅ = AB

L
⋅  

( ) ( )2 2 21,0AB AB
BA A

AB AB AB

EI EI EIM
L L

θ
⋅ ⋅

= ⋅ = ⋅ = AB

L
⋅  

 
1
2

BA
AB

AB

MC
M

= =  

 
 

Moment-distribution Page 2 of 14 7/23/2003 



 
Example: 
 
Use the method of moment-distribution to determine the bending moment diagramme of the following beam. 
 

 
 
Distribution at A and B 
 
Stiffness of members at A:    Distribution Factors 
 

4 4 1,0
4

AB
AB

AB

EI EIk
L
⋅ ⋅

= = =    1,0 1,0
1,0

AB
AB

kD
k

= = =
∑

 

1,0k =∑  
 
Stiffness of members at B: 
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1,66667k =∑  
 
Initial Moments: 

0 10 4 5,0 .
8 8AB AB

W LM FEM kN⋅ ⋅
= = = = + m  

0 10 4 5,0 .
8 8BA BA

W LM FEM kN⋅ ⋅
= = − = − = − m  

2 2
0 5 6 15,0 .

12 12BC BC
w LM FEM kN⋅ ⋅
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2 2
0 5 6 15,0 .

12 12CB CB
w LM FEM kN⋅ ⋅

= = − = − = − m  
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Distribution of the moments: 
 
Carry over factors     ½             ½  
Action MAB MBA MBC MCB 

Distribution factors 1,00 0,60 0,40  

Initial moments + 5,000 - 5,000 + 15,000 - 15,000 

Allow rotation of A - 5,000 ½       - 2,500   

Allow rotation of B - 2,250       ½ - 4,500 -3,000 ½       -1,500 

Allow rotation of A + 2,250 + 1,125   

Allow rotation of B - 0,3375 - 0,675 - 0,450 - 0,225 

Allow rotation of A + 0,3375 + 0,1688   

Allow rotation of B - 0,051 - 0,1013 - 0,0675 - 0,0338 

Allow rotation of A + 0,051 + 0,0255   

  - 0,0153 - 0,0102  

 0,000 - 11,472 + 11,472 - 16,759 
 
 
Members with a hinge on one side: 
 
Assume a member with a hinge at B. 
 

 
 
Stiffness = moment required to induce a unit rotation at A: 
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Redo example 1 using the stiffness of a member with a hinge. 
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2 2

0 5 6 15,0 .
12 12CB CB
w LM FEM kN⋅ ⋅

= = − = − = − m  

 
 MBA MBC MCB 

Dist Factors 0,52941 0,47059  

Init moments - 7,500 + 15,000 - 15,000 

Rotate B - 3,9706 - 3,5294 - 1,7647 

 -11,4706 + 11,4706 -16,7647 
 
 
Example 3: 
 
Determine the bending moment diagramme of the following structure. 
 

 
 
Rotation will occur at B and C. 
 
Stiffness at B 
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Initial moments: 
 

0 20 4 10,0 .
8 8BC BC

W LM FEM kN⋅ ⋅
= = + = + = + m  
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0 10 4 10,0 .
8 8CB CB

W LM FEM kN⋅ ⋅
= = − = − = − m  

 
MAB MBE MBC MCB MCD MDC 

0,2727 0,1818 0,5455 0,600 0,400  

  +10,0000 -10,000   

-2,727 -1.818 -5.455 -2,728   

  +3,818 +7,637 +5,091 +2,545 

-1,041 -0,694 -2,083 -1,041   

  +0,312 +0,625 +0,416 +0,208 

-0,085 -0,057 -0,170 -0,085   

   +0,051 +0,034  

-3,853 -2,569 +6,422 -5,541 +5,541 +2,753 
 
 
Structural Frames with Sway. 
 
Frames with a sway mechanism may be tackled by preventing the sway and calculating the force required to 
prevent the sway, call this P. Arbitrary sway is then applied to the structure and the force that leads to the 
arbitrary sway is calculated, call this Q. Apply the super-position equation as neither of the forces are really 
there. 
 
P + x Q = 0 
 
Final bending moment = Bending moment with sway prevented + x times bending moment with arbitrary 
sway. 
 
Example 4: 
 
Determine the bending moment diagramme of the following sway structure. The support A is a hinge, E is 
fixed and D is a roller. There is a hinge in BC at C. 
 

 
 
Force P prevents the sway and force Q induces the arbitrary sway. 
Apply force P to prevent the sway. Rotation will occur at B and at C. 
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At B 
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Initial moments: 
 

CBBCBC FEMFEMM 2
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MBA MBC MCD MCE MEC 

0,375 0,625 0,5556 0,4444  

 +45,000    

-16,875 -28,125    

-16,875 +16,875 0 0 0 
 
 
Force, P, that prevents sway: 
 

 
 
Take moments about O1. 
Σ MO1 = 0.  - Px4 + VAB x 10 = 0 
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Arbitrary Sway 
 

 
 
Choose ψAB as the unknown angle and calculate all others in terms of this angle. 

ψ⋅= 5'BB  ψψψ ===
5

'
1

BB
BCBO   ψ⋅= 5'CC  ψψψ ⋅−=== 5,0

10
'

2

CC
CDCO  

Assuming that all rotation angles are equal to 0 and there are sway angle it is possible to write the initial 
moments in terms of these sway angle. 
 

Standard case: ( ABBA
AB

AB
AB L

EI
M ψθθ ⋅−+⋅

⋅
= 32

2 )   with θ angles = 0 
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Modified form: ( ABA
AB

AB
AB L

EI
M ψθ −

⋅
=

3 )   with θ angles = 0 
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Therefore: 
 
MBA : MBC : MCD : MCE : MEC 
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5
)(3 ψ−⋅⋅

−
EI :

6
)(23 ψ+⋅⋅

−
EI :

6
)5,0(23 ψ⋅−⋅⋅

−
EI :

5
)(6 ψ−⋅⋅

−
EI :

5
)(6 ψ−⋅⋅

−
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0,6 EI : -1,0 EI : 0,5 EI : 1,2 EI : 1,2 EI 
 
Set EI = 20 
 
12 : -20 : 10 : 24 : 24 
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MBA MBC MCD MCE MEC 

0,375 0,625 0,5556 0,4444  

12,000 -20,000 +10,000 +24,000 +24,00 

+3,000 +5,000 -18,890 -15,110 -7,555 

     

+15,000 -15,000 -8,890 +8,890 +16,445 
 
 

 
 
∑ = 01OM  
 - 4 x Q + 3 x 10 – 16,445 + 5,067 x 10 – 1,4817 x 9 = 0 
 
Q = 12,7237 kN 
 
Superposition equation: 
 
P + x Q = 0 
X = 0,66313 
 
Final bending moments: 
 
MF = M sway prevented + x M arbitrary sway 
 

MBA MBC MCD MCE MEC  

-16,875 +16,875 0 0 0 M sway prevented 

+9,947 -9,947 -5,895 +5,895 +10,905 x M arbitrary sway 

-6,928 +6,928 -5,895 +5,895 +10,905 MF 
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Final Bending Moment Diagramme. 
 
 
Structure with Displacement of a Support 
 
Example 5: 
 
Determine the bending moment diagramme of the structure if E = 200 GPa, I = 150 x 10-6 m4 and the support 
E moves 20 mm to the right. 
 

 
 
View the structure with the displacement of the support. 
 
 

 
 

EE’ = 20 mm, therefore:  CECOBO ψψψ ==
+

= 11 4000
20  

mmCC CO 153000
4000

203000' 1 =⋅=⋅= ψ  
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6000
' −
==
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6000
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6000
'
==
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Use the slope-deflection equations to determine the initial moments with all rotations θ equal to zero. 
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At B 
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MAB MBA MBC MCB MCD MCE 

 0,4286 0,5714 0,4546 0,3409 0,2045 

  +170,000 +110,000 -75,000 -90,000 

-36,431 -72,862 -97,138 -48,569   

  +23,541 +47,082 +35,307 +21,180 

-5,045 -10,090 -13,451 -6,726   

  +1,529 +3,058 +2,293 +1,375 

-0,328 -0,655 -0,874 -0,437   

  +0,099 +0,199 +0,149 +0,089 

 -0,042 -0,057    

      

-41,804 -83,649 +83,649 +104,607 -37,251 -67,356 

 
 
 
 

 
 
Final Bending Moment Diagramme 
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