

Moment-Distribution

The method of moment distribution relies on a series of calculations that are repeated and that with every cycle come closer to the final situation. In this way we are able to avoid solving simultaneous equations. Inspection of the slope-deflection equations shows us that the final end-moments depend on 4 effects namely, $\theta_{\mathrm{A}}, \theta_{\mathrm{B}}, \psi_{\mathrm{AB}}$ and the fixed end moments, FEM. By using moment-distribution we are able to investigate each effect separately. The following beam will be used to illustrate moment-distribution.

Rotation is possible at both B and C

Rotation at B and C are prevented and the load is applied. FEM will result. These are called the initial moments.

Allow B to rotate until moment equilibrium is reached. Rotation at B will induce a moment at C.

Allow C to rotate until moment equilibrium is reached. The rotation of C will induce a moment at B.

Repeat this process until moment equilibrium is reached at

Assume that the sum of the initial moments at the node B is equal to M_{0}.
Rotation will take place until moment equilibrium is attained, i.e., sum moments $\Sigma \mathrm{M}_{\mathrm{B}}=0$.

Therefore: $M_{B A}^{D}+M_{B C}^{D}+M_{0}=0$
Where $M_{B A}^{D}$ and $M_{B C}^{D}$ are the moments as a result of the rotation at B, θ_{B}, and are called the distribution moments. Remember that all the other rotations and sway are prevented.
$M_{B A}^{D}=\frac{2 \cdot E I_{A B}}{L_{A B}} \cdot\left(2 \cdot \theta_{B}\right)=\frac{4 \cdot E I_{A B} \cdot \theta_{B}}{L_{A B}}$. In a similar fashion $M_{B C}^{D}=\frac{2 \cdot E I_{B C}}{L_{B C}} \cdot\left(2 \cdot \theta_{B}\right)=\frac{4 \cdot E I_{B C} \cdot \theta_{B}}{L_{B C}}$
But: $M_{B A}^{D}+M_{B C}^{D}+M_{0}=0$
Solve for θ_{B}.
$\theta_{B}=-\frac{M_{0}}{\frac{4 \cdot E I_{A B}}{L_{A B}}+\frac{4 \cdot E I_{B C}}{L_{B C}}}$
Solve the distribution moments.

$M_{B A}^{D}=-\frac{\frac{4 \cdot E I_{A B}}{L_{A B}} \cdot M_{0}}{\frac{4 \cdot E I_{A B}}{L_{A B}}+\frac{4 \cdot E I_{B C}}{L_{B C}}}=-\frac{k_{B A} \cdot M_{0}}{k_{B A}+k_{B C}}=-\frac{k_{B A} \cdot M_{0}}{\sum k_{B}}$
$M_{B C}^{D}=-\frac{\frac{4 \cdot E I_{B C}}{L_{B C}} \cdot M_{0}}{\frac{4 \cdot E I_{A B}}{L_{A B}}+\frac{4 \cdot E I_{B C}}{L_{B C}}}=-\frac{k_{B C} \cdot M_{0}}{k_{B A}+k_{B C}}=-\frac{k_{B C} \cdot M_{0}}{\sum k_{B}}$
$k_{B A}$ is the stiffness of the member $B A$ at the node B. It is also the moment that would be induced if a unit rotation were applied at B in the member $B A$ and the rotation at A was zero.

If B rotates a bending moment will be induced at A and C. Assume a rotation θ_{B} and calculate the moment at A.
$M_{A B}^{D}=\frac{2 \cdot E L_{A B}}{L_{A B}} \cdot\left(\theta_{B}\right)$, but bear in mind that $\theta_{B}=-\frac{M_{0}}{\frac{4 \cdot E I_{A B}}{L_{A B}}+\frac{4 \cdot E I_{B C}}{L_{B C}}}$
$M_{A B}^{D}=-\frac{\frac{2 \cdot E l_{A B}}{L_{A B}} \cdot M_{0}}{\frac{4 \cdot E I_{A B}}{L_{A B}}+\frac{4 \cdot E I_{B C}}{L_{B C}}}$
The distributed bending moment is half the value of the distributed bending moment at B . This is called the carry-over factor, $C_{B A}=1 / 2$.

The same solution may be obtained if one remembers that the stiffness of a member is the moment that is induced if a unit rotation is applied at the node.

$M_{A B}=k_{A B}=\frac{2 \cdot E I_{A B}}{L_{A B}} \cdot\left(2 \cdot \theta_{A}\right)=\frac{2 \cdot E I_{A B}}{L_{A B}} \cdot(2 \cdot 1,0)=\frac{4 \cdot E I_{A B}}{L_{A B}}$
$M_{B A}=\frac{2 \cdot E I_{A B}}{L_{A B}} \cdot\left(\theta_{A}\right)=\frac{2 \cdot E I_{A B}}{L_{A B}} \cdot(1,0)=\frac{2 \cdot E I_{A B}}{L_{A B}}$
$C_{A B}=\frac{M_{B A}}{M_{A B}}=\frac{1}{2}$

Example:
Use the method of moment-distribution to determine the bending moment diagramme of the following beam.

Distribution at A and B

Stiffness of members at A :
$k_{A B}=\frac{4 \cdot E I_{A B}}{L_{A B}}=\frac{4 \cdot E I}{4}=1,0$
$\sum k=1,0$

Stiffness of members at B :
$k_{B A}=\frac{4 \cdot E I_{B A}}{L_{A B}}=\frac{4 \cdot E I}{4}=1,0$
$D_{A B}=\frac{k_{A B}}{\sum k}=\frac{1,0}{1,66667}=0,60$
$k_{B C}=\frac{4 \cdot E I_{B C}}{L_{B C}}=\frac{4 \cdot E l}{6}=0,66667$
$D_{B C}=\frac{k_{B C}}{\sum k}=\frac{0,66667}{1,66667}=0,40$
$\sum k=1,66667$

Initial Moments:
$M_{A B}^{0}=F E M_{A B}=\frac{W \cdot L}{8}=\frac{10 \cdot 4}{8}=+5,0 \mathrm{kN} . \mathrm{m}$
$M_{B A}^{0}=F E M_{B A}=-\frac{W \cdot L}{8}=-\frac{10 \cdot 4}{8}=-5,0 \mathrm{kN} . \mathrm{m}$
$M_{B C}^{0}=F E M_{B C}=+\frac{w \cdot L^{2}}{12}=+\frac{5 \cdot 6^{2}}{12}=15,0 \mathrm{kN} . \mathrm{m}$
$M_{C B}^{0}=F E M_{C B}=-\frac{w \cdot L^{2}}{12}=-\frac{5 \cdot 6^{2}}{12}=-15,0 \mathrm{kN} . \mathrm{m}$

Distribution of the moments:

Carry over factors	1/2		1/2	
Action	$\mathrm{M}_{\text {AB }}$	$\mathrm{M}_{\text {BA }}$	M_{BC}	M_{CB}
Distribution factors	1,00	0,60	0,40	
Initial moments	+5,000	- 5,000	+ 15,000	- 15,000
Allow rotation of A	-5,000	- 2,500		
Allow rotation of B	- 2,250	-4,500	-3,000	$1 / 2 \quad-1,500$
Allow rotation of A	+ 2,250	+ 1,125		
Allow rotation of B	-0,3375	- 0,675	- 0,450	- 0,225
Allow rotation of A	+ 0,3375	+ 0,1688		
Allow rotation of B	- 0,051	-0,1013	- 0,0675	- 0,0338
Allow rotation of A	+ 0,051	+ 0,0255		
		-0,0153	- 0,0102	
	0,000	- 11,472	+ 11,472	- 16,759

Members with a hinge on one side:

Assume a member with a hinge at B.

Stiffness $=$ moment required to induce a unit rotation at A :
$k_{A B}=M_{A B}=\frac{3 \cdot E I_{A B}}{L_{A B}}\left(\theta_{A}\right)=\frac{3 \cdot E I_{A B}}{L_{A B}}$
$M_{A B}^{0}=F E M_{A B}-\frac{1}{2} F E M_{B A}$

Redo example 1 using the stiffness of a member with a hinge.
$k_{B A}=\frac{3 \cdot E I_{B A}}{L_{A B}}=\frac{3 \cdot E l}{4}=0,750$

$$
\begin{aligned}
& D_{A B}=\frac{k_{A B}}{\sum k}=\frac{0,750}{1,41667}=0,52941 \\
& D_{B C}=\frac{k_{B C}}{\sum k}=\frac{0,66667}{1,41667}=0,47059
\end{aligned}
$$

$k_{B C}=\frac{4 \cdot E I_{B C}}{L_{B C}}=\frac{4 \cdot E l}{6}=0,66667$
$\sum k=1,41667$
$M_{B A}^{0}=F E M_{B A}-1 / 2 F E M_{A B}=-\frac{W \cdot L}{8}-1 / 2 \cdot\left(+\frac{W \cdot L}{8}\right)=-7,50 \mathrm{kN} \cdot \mathrm{m}$
$M_{B C}^{0}=F E M_{B C}=+\frac{w \cdot L^{2}}{12}=+\frac{5 \cdot 6^{2}}{12}=15,0 \mathrm{kN} \cdot \mathrm{m}$
$M_{C B}^{0}=F E M_{C B}=-\frac{w \cdot L^{2}}{12}=-\frac{5 \cdot 6^{2}}{12}=-15,0 \mathrm{kN} . \mathrm{m}$

	M_{BA}	M_{BC}	M_{CB}
Dist Factors	0,52941	0,47059	
Init moments	$-7,500$	$+15,000$	$-15,000$
Rotate B	$-3,9706$	$-3,5294$	$-1,7647$
	$-11,4706$	$+11,4706$	$-16,7647$

Example 3:

Determine the bending moment diagramme of the following structure.

Rotation will occur at B and C.
Stiffness at B
$k_{B A}=\frac{3 \cdot E I_{B A}}{L_{A B}}=\frac{3 \cdot 2 E I}{4}=1,5$
$D_{B A}=\frac{k_{B A}}{\sum k}=\frac{1,5}{5,5}=0,2727$
$k_{B E}=\frac{3 \cdot E I_{B E}}{L_{B E}}=\frac{3 \cdot E l}{3}=1,0$
$D_{B E}=\frac{k_{B E}}{\sum k}=\frac{1,0}{5,5}=0,1818$
$k_{B C}=\frac{4 \cdot E I_{B C}}{L_{B C}}=\frac{4 \cdot 3 E l}{4}=3,00$
$D_{B C}=\frac{k_{B C}}{\sum k}=\frac{3,0}{5,5}=0,5455$
$\sum k=5,5$
$k_{C B}=\frac{4 \cdot E I_{C B}}{L_{C B}}=\frac{4 \cdot 3 E I}{4}=3,0$
$D_{C B}=\frac{k_{C B}}{\sum k}=\frac{3,0}{5,0}=0,600$
$k_{C D}=\frac{4 \cdot E I_{C D}}{L_{C D}}=\frac{4 \cdot 2 E I}{4}=2,0$
$D_{C D}=\frac{k_{C D}}{\sum k}=\frac{2,0}{5,0}=0,400$
$\sum k=5,0$
Initial moments:
$M_{B C}^{0}=F E M_{B C}=+\frac{W \cdot L}{8}=+\frac{20 \cdot 4}{8}=+10,0 \mathrm{kN} \cdot \mathrm{m}$

$M_{C B}^{0}=F E M_{C B}=-\frac{W \cdot L}{8}=-\frac{10 \cdot 4}{8}=-10,0 \mathrm{kN} \cdot \mathrm{m}$

$\mathrm{M}_{\text {AB }}$	$\mathrm{M}_{\text {BE }}$	$M_{B C}$	M_{CB}	M_{CD}	M_{DC}
0,2727	0,1818	0,5455	0,600	0,400	
-2,727	-1.818	$\begin{array}{r} \hline+10,0000 \\ -5.455 \end{array}$	$\begin{array}{r} \hline-10,000 \\ -2,728 \end{array}$		
		+3,818	+7,637	+5,091	+2,545
-1,041	-0,694	-2,083	-1,041		
		+0,312	+0,625	+0,416	+0,208
-0,085	-0,057	-0,170	-0,085		
			$+0,051$	+0,034	
$-3,853$	-2,569	+6,422	-5,541	+5,541	+2,753

Structural Frames with Sway.

Frames with a sway mechanism may be tackled by preventing the sway and calculating the force required to prevent the sway, call this P. Arbitrary sway is then applied to the structure and the force that leads to the arbitrary sway is calculated, call this Q. Apply the super-position equation as neither of the forces are really there.
$P+x Q=0$
Final bending moment = Bending moment with sway prevented $+x$ times bending moment with arbitrary sway.

Example 4:
Determine the bending moment diagramme of the following sway structure. The support A is a hinge, E is fixed and D is a roller. There is a hinge in $B C$ at C.

Force P prevents the sway and force Q induces the arbitrary sway.
Apply force P to prevent the sway. Rotation will occur at B and at C.

At B

$$
\begin{array}{ll}
k_{B A}=\frac{3 \cdot E I_{A B}}{L_{A B}}=\frac{3 \cdot E l}{5}=0,6 & D_{B A}=\frac{k_{B A}}{\sum k}=\frac{0,6}{1,6}=0,375 \\
k_{B C}=\frac{3 \cdot E I_{B C}}{L_{B C}}=\frac{3 \cdot 2 E l}{6}=1,0 & D_{B C}=\frac{k_{B C}}{\sum k}=\frac{1,0}{1,6}=0,625 \\
\sum k=1,6 & \sum D=1,000
\end{array}
$$

At C

$$
\begin{array}{ll}
k_{C D}=\frac{3 \cdot E I_{C D}}{L_{C D}}=\frac{3 \cdot 2 E I}{6}=1,00 & D_{C D}=\frac{k_{C D}}{\sum k}=\frac{1,0}{1,8}=0,5556 \\
k_{C E}=\frac{4 \cdot E I_{C E}}{L_{C E}}=\frac{4 \cdot E l}{5}=0,8 & D_{C E}=\frac{k_{C E}}{\sum k}=\frac{0,8}{1,8}=0,4444 \\
\sum k=1,8 & \sum D=1,000
\end{array}
$$

Initial moments:
$M_{B C}^{0}=F E M_{B C}-1 / 2 F E M_{C B}$
$M_{B C}^{0}=\frac{w \cdot L^{2}}{12}-1 / 2\left(\frac{-w \cdot L^{2}}{12}\right)=\frac{10 \cdot 6^{2}}{12}+\frac{10 \cdot 6^{2}}{2 \cdot 12}=+45,00 \mathrm{kN} \cdot \mathrm{m}$

M_{BA}	M_{BC}	M_{CD}	M_{CE}	M_{EC}
0,375	0,625	0,5556	0,4444	
	$+45,000$			
$-16,875$	$-28,125$			
$-16,875$	$+16,875$	0	0	0

Force, P, that prevents sway:

Take moments about O_{1}.
$\Sigma \mathrm{M}_{\mathrm{O} 1}=0 . \quad-\mathrm{Px} 4+\mathrm{V}_{\mathrm{AB}} \times 10=0$

$V_{A B}=\frac{-M_{B A}}{L_{A B}}=\frac{-16,875}{5}=-8,4375 \mathrm{kN}$

Arbitrary Sway

Choose ψ_{AB} as the unknown angle and calculate all others in terms of this angle.
$B B^{\prime}=5 \cdot \psi \quad \psi_{O_{1} B}=\psi_{B C}=\frac{B B^{\prime}}{5}=\psi \quad C C^{\prime}=5 \cdot \psi \quad \psi_{O_{2} C}=\psi_{C D}=\frac{C C^{\prime}}{10}=-0,5 \cdot \psi$
Assuming that all rotation angles are equal to 0 and there are sway angle it is possible to write the initial moments in terms of these sway angle.

Standard case: $M_{A B}=\frac{2 \cdot E I_{A B}}{L_{A B}}\left(2 \cdot \theta_{A}+\theta_{B}-3 \cdot \psi_{A B}\right) \quad$ with θ angles $=0$

$$
M_{A B}=\frac{-6 \cdot E I_{A B}\left(\psi_{A B}\right)}{L_{A B}}
$$

Modified form: $\quad M_{A B}=\frac{3 \cdot E I_{A B}}{L_{A B}}\left(\theta_{A}-\psi_{A B}\right) \quad$ with θ angles $=0$

$$
M_{A B}=\frac{-3 \cdot E I_{A B}\left(\psi_{A B}\right)}{L_{A B}}
$$

Therefore:
$M_{B A}: M_{B C}: M_{C D}: M_{C E}: M_{E C}$
$-\frac{3 \cdot E I_{A B} \cdot \psi_{A B}}{L_{A B}}:-\frac{3 \cdot E I_{B C} \cdot \psi_{B C}}{L_{B C}}:-\frac{3 \cdot E I_{C D} \cdot \psi C D}{L_{C D}}:-\frac{6 \cdot E I_{C E} \cdot \psi_{C E}}{L_{C E}}:-\frac{6 \cdot E I_{C E} \cdot \psi_{C E}}{L_{C E}}$
$-\frac{3 \cdot E I \cdot(-\psi)}{5}:-\frac{3 \cdot 2 E I \cdot(+\psi)}{6}:-\frac{3 \cdot 2 E I \cdot(-0,5 \cdot \psi)}{6}:-\frac{6 \cdot E I \cdot(-\psi)}{5}:-\frac{6 \cdot E I \cdot(-\psi)}{5}$
0,6 EI : -1,0 EI : 0,5 EI : 1,2 EI : 1,2 EI
Set El $=20$
12:-20:10:24:24

M_{BA}	M_{BC}	M_{CD}	M_{CE}	M_{EC}
0,375	0,625	0,5556	0,4444	
12,000	$-20,000$	$+10,000$	$+24,000$	$+24,00$
$+3,000$	$+5,000$	$-18,890$	$-15,110$	$-7,555$
$+15,000$	$-15,000$	$-8,890$	$+8,890$	$+16,445$

$\sum M_{01}=0$
$-4 \times Q+3 \times 10-16,445+5,067 \times 10-1,4817 \times 9=0$
$Q=12,7237 \mathrm{kN}$
Superposition equation:
$P+x Q=0$
$X=0,66313$
Final bending moments:
$M_{F}=M_{\text {sway prevented }}+x M_{\text {arbitrary sway }}$

M_{BA}	M_{BC}	M_{CD}	M_{CE}	M_{EC}	
$-16,875$	$+16,875$	0	0	0	$M_{\text {sway prevented }}$
	$-9,947$	$-9,947$	$-5,895$	$+5,895$	$+10,905$
$-6,928$	$+6,928$	$-5,895$	$+5,895$	$+10,905$	M_{F} arbitrary sway

Final Bending Moment Diagramme.

Structure with Displacement of a Support

Example 5:

Determine the bending moment diagramme of the structure if $E=200 \mathrm{GPa}, \mathrm{I}=150 \times 10^{-6} \mathrm{~m}^{4}$ and the support E moves 20 mm to the right.

View the structure with the displacement of the support.

$E^{\prime} E^{\prime}=20 \mathrm{~mm}$, therefore: $\quad \psi_{O 1 B}=\frac{+20}{4000}=\psi_{\text {O1C }}=\psi_{C E}$
$C C^{\prime}=\psi_{O 1 C} \cdot 3000=\frac{20}{4000} \cdot 3000=15 \mathrm{~mm}$
$\psi_{B C}=\frac{C C^{\prime}}{6000}=\frac{-15}{6000} \quad \psi_{D C}=\frac{C C^{\prime}}{6000}=\frac{15}{6000}$
Use the slope-deflection equations to determine the initial moments with all rotations θ equal to zero.
$M_{B C}^{0}=\frac{2 \cdot E I_{B C}}{L_{B C}}\left(2 \cdot \theta_{B}+\theta_{C}-3 \cdot \psi_{B C}\right)+F E M_{B C}$
$M_{B C}^{0}=\frac{2 \cdot 2 E I}{6}\left(-3 \cdot \psi_{B C}\right)+F E M_{B C}=\frac{2 \cdot 2 \cdot 200 \times 10^{6} \cdot 150 \times 10^{-6}}{6}\left(-3 \cdot \frac{-15}{6000}\right)+\frac{45 \cdot 4 \cdot 2^{2}}{6^{2}}$
$M_{B C}^{0}=150+20=170 \mathrm{kN} . \mathrm{m}$
$M_{C B}^{0}=\frac{2 \cdot 2 E I}{6}\left(-3 \cdot \psi_{B C}\right)+F E M_{C B}=\frac{2 \cdot 2 \cdot 200 \times 10^{6} \cdot 150 \times 10^{-6}}{6}\left(-3 \cdot \frac{-15}{6000}\right)+\frac{-45 \cdot 4^{2} \cdot 2}{6^{2}}$
$M_{C B}^{0}=150-40=110 \mathrm{kN} . \mathrm{m}$
$M_{C D}^{0}=\frac{3 \cdot 2 E I}{6}\left(-\psi_{C D}\right)=\frac{3 \cdot 2 \cdot 200 \times 10^{6} \cdot 150 \times 10^{-6}}{6}\left(-\frac{15}{6000}\right)$
$M_{C D}^{0}=-75 \mathrm{kN} \cdot \mathrm{m}$
$M_{C E}^{0}=\frac{3 \cdot E l}{5}\left(-\psi_{C E}\right)=\frac{3 \cdot 200 \times 10^{6} \cdot 150 \times 10^{-6}}{5}\left(-\frac{20}{4000}\right)$
$M_{C E}^{0}=-90 \mathrm{kN} \cdot \mathrm{m}$

At B

$$
\begin{gathered}
k_{B A}=\frac{4 \cdot E I_{A B}}{L_{A B}}=\frac{4 \cdot E l}{4}=1,0 \\
k_{B C}=\frac{4 \cdot E I_{B C}}{L_{B C}}=\frac{4 \cdot 2 E l}{6}=1,3333 \\
\sum k=2,3333
\end{gathered}
$$

$$
D_{B A}=\frac{k_{B A}}{\sum k}=\frac{1,0}{2,3333}=0,4286
$$

$$
D_{B C}=\frac{\bar{k}_{B C}}{\sum k}=\frac{1,3333}{2,3333}=0,5714
$$

$$
\bar{\sum} D=1,000
$$

At C

$$
\begin{array}{cc}
k_{C B}=\frac{4 \cdot E I_{C B}}{L_{C B}}=\frac{4 \cdot 2 E I}{6}=1,3333 & D_{C B}=\frac{k_{C B}}{\sum k}=\frac{1,3333}{2,9333}=0,4546 \\
k_{C D}=\frac{3 \cdot E I_{C D}}{L_{C D}}=\frac{3 \cdot 2 E I}{6}=1,000 & D_{C D}=\frac{k_{C D}}{\sum k}=\frac{1,000}{2,9333}=0,3409 \\
k_{C E}=\frac{3 \cdot E I_{C E}}{L_{B C E}}=\frac{3 \cdot E I}{5}=0,6000 & D_{C E}=\frac{k_{C E}}{\sum k}=\frac{0,6}{2,9333}=0,2045 \\
\sum k=2,9333 & \sum D=1,000
\end{array}
$$

$\mathrm{M}_{\text {AB }}$	$\mathrm{M}_{\text {BA }}$	$M_{B C}$	M_{CB}	M_{CD}	$\mathrm{M}_{\text {CE }}$
	0,4286	0,5714	0,4546	0,3409	0,2045
-36,431		+170,000	+110,000	-75,000	-90,000
	-72,862	-97,138	-48,569		
	-10,090	+23,541	+47,082	+35,307	+21,180
-5,045		-13,451	-6,726	+2,293	+1,375
		+1,529	+3,058		
-0,328	-0,655	-0,874	-0,437	+0,149	+0,089
	-0,042	+0,099	+0,199		
		-0,057			
-41,804	-83,649	+83,649	+104,607	$-37,251$	-67,356

Final Bending Moment Diagramme

EXAMPLE: DISPLACEMENT OF SUPPORT
Determine the bending momentohagramme of the structure if $E=200 \mathrm{GPR}, I=750 \times 10^{-6} \mathrm{~m}^{4}$ and the support E moves 20 mm to the right

$\begin{aligned} \mu_{g c}^{0}=\frac{2 E I_{G C}}{L_{S c}}\left(-3 \psi_{B C}\right)+F E M_{B C} & =\frac{2 \times 2 \times 200 \times 10^{+6} \times 150 \times 10^{6}}{6}\left(-3 * \frac{-15}{6000}\right)+\frac{45 * 4 \times 2^{2}}{6^{2}} \\ & =150+170\end{aligned}$ $=150+20=170 \mathrm{kNem}$
$\begin{aligned} & m_{c B}^{0}=\frac{2 E E_{b c}}{L_{b c}}\left(-3 U_{c}\right)+\text { FEM }_{C B}=\frac{2 \times 2 \times 200 \times 10^{6} \times 150 \times 10^{-6}\left(-3 \times \frac{15}{600}\right)-\frac{45 \times 4{ }^{2} \times 2}{6^{2}}}{} \\ &=150-40=110 \mathrm{kN} . \mathrm{m}\end{aligned}$
$m_{c_{0}}=\frac{3, E_{C_{c s}}}{L_{c D}}\left(-\psi_{c_{0}}\right)=\frac{3 \times 2 \times 200 \times 10^{6} \times 150 \times 10^{-6}}{6}\left(-\frac{15}{6000}\right)=-75$
$m_{C_{E}}=\frac{3 . E_{C_{C E}}}{L_{C E}}\left(-\psi_{C_{E}}\right)=\frac{3 \times 200 \times 10^{6} \times 100 * 10^{-6}}{5}\left(\frac{-20}{4000}\right)=-90$
© B

$$
\begin{array}{ll}
k_{B A}=\frac{4 \cdot E_{E_{A}}}{L_{B A}}=\frac{4 \cdot E I}{4}=1.0 & D_{B A}=\frac{k_{B A}}{\Sigma_{k}}=\frac{1}{2,3333}=0,4286 \\
k_{B C}=\frac{4 \cdot E_{I B C}}{L_{C C}}=\frac{4 \times 2, E I}{6}=\frac{1,3333}{2,3333} & D_{B C}=\frac{k_{G}}{2 E}=\frac{1,3333}{2,3333}=\frac{0,5714}{1,0000} .
\end{array}
$$

$@_{C} k_{C B}=\frac{4 . E E_{C B}}{L_{C B}}=\frac{4.2}{6}=1,3333 . \quad D_{C B}=\frac{1,2333}{1,9233}=0,4546$
$k_{C_{D}}=\frac{L C_{C} E_{C D}}{L_{C D}}=\frac{3, L_{6}^{2}}{6}=1,0000 \quad D_{C S}=\frac{1,000}{2,9333}=0,3409$

$M_{A B}$	$M B A$	MBC	Mcb	Mes	Mce
	0,4286	0,5714	0,4546	0,3409	0,2045
-36,431	$-72,862$	$\begin{array}{\|l\|} +170,000 \\ -97,138 \\ \hline \end{array}$	$\begin{aligned} & +110,000 \\ & -48,569 \end{aligned}$	-75,000	$-90,000$
		+23, 54,	+47,082	$+35,307$	$+21,180$
$\left.\begin{aligned} & -5,045 \\ & -0,328 \end{aligned} \right\rvert\,$	10,090	$-13,451$	$-6,726$		
	-0,655	$+1,529$.	$+3,058$	$+2,293$	$+1,375$
		$-0,874$	$-0,437$		
	-0,042	$\left(\left.\begin{array}{l} +0,099^{4} \\ -0,057 \end{array} \right\rvert\,\right.$	$1+0,199$	+0,149	+0,089
$-41,804$	$-83,649$	+83,649	104,607	$-37,251$	$-67,356$

41,802.

